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Abstract 
 

Software integrity and confidentiality play a central 
role in making embedded computer systems resilient to 
various malicious actions, such as software attacks; 
probing and tampering with buses, memory, and I/O 
devices; and reverse engineering. In this paper we 
describe an efficient hardware mechanism that 
protects software integrity and guarantees software 
confidentiality. To provide software integrity, each 
instruction block is signed during program installation 
with a cryptographically secure signature. The 
signatures embedded in the code are verified during 
program execution. Software confidentiality is 
provided by encrypting instruction blocks. To achieve 
low performance overhead, the proposed mechanism 
combines several architectural enhancements: a 
variation of one-time-pad encryption, parallelizable 
signatures, and conditional execution of unverified 
instructions. A relatively high memory overhead due to 
embedded signatures can be reduced by protecting 
multiple instruction blocks with one signature, with 
minimal effects on complexity and performance 
overhead. 

 
1. Introduction 
 

With current trends toward computer systems’ 
ubiquitous accessibility, connectivity, diversification, 
and proliferation, computer security has become a 
critical issue in computer system design and operation. 
A need for computing devices resilient to various 
attacks is further underscored by a growing number of 
software vulnerability exploits, as well as by ever-
increasing system complexity and tightening time-to-
market constraints leaving less time for system testing.  

Depending on the nature of the threat, computer 
security encompasses three components: 
confidentiality, integrity, and availability. 
Confidentiality is violated whenever information is 
disclosed to unauthorized entities (humans, programs, 
computer systems). Integrity is violated whenever 
information (code or data) is altered by an 

unauthorized entity. Availability is violated whenever 
an attacker succeeds in denying services to legitimate 
users.  

Software integrity is ensured if the computer system 
can detect any unauthorized code and prevent its 
execution. Software confidentiality is ensured if an 
adversary cannot read binaries, thus preventing 
software duplication through reverse engineering and 
intellectual property theft. Attacks against software 
integrity are typically launched across the network by 
exploiting known software vulnerabilities (e.g., buffer 
overflow or unsafe format string). In embedded 
systems, adversaries can easily get physical access to 
the system and can probe buses and tamper with code 
and data in main memory, hard disk, and I/O devices. 
As a result, the computer system becomes vulnerable 
to many attacks, such as spoofing, splicing, and replay. 
In a spoofing attack, an adversary intercepts a request 
for an instruction block (I-block) and returns a block 
with malicious code instead. In a splicing attack, an 
adversary intercepts a request for an I-block and 
returns another valid I-block, but not the one that has 
been requested. In a replay attack, an adversary returns 
a stale copy of the requested data block. 

The multitude of software attacks has prompted the 
development of a large number of predominantly 
software-based counter-measures. Static software 
techniques rely on formal analysis and/or 
programmers’ annotations to detect security flaws in 
the code, and then leave it to the programmers to 
correct these flaws. Dynamic software techniques 
augment the original code or operating system to detect 
malicious attacks at runtime and to terminate attacked 
programs. Software techniques are unlikely to counter 
all attacks by themselves, as they lack generality, 
suffer from false-positives and false-negatives, and 
often induce prohibitive overhead in performance and 
power consumption. On the other hand, a further 
increase in the number of transistors on a single chip 
will enable integrated hardware support for functions 
that so far have been restricted to the software domain.  

Several recent research efforts propose hardware-
assisted techniques to prevent execution of 
unauthorized code [1-4]. These techniques promise 
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higher security with relatively modest overheads in 
performance or energy. However, the existing 
techniques often fail to counter all attacks, induce 
prohibitive overheads, or their evaluation does not 
explore the implications of various implementation 
choices. Several general purpose processors now 
include security extensions, for example, IBM’s Secure 
Blue for PowerPC, and AMD’s Athlon-64 and Intel’s 
Itanium buffer overflow protection.  

In this paper we propose a hardware-supported 
technique for software integrity and confidentiality in 
embedded platforms that provides a maximum level of 
security at minimal cost, power overhead, and 
performance loss. Software integrity is ensured by 
signing I-blocks by a parallelizable cryptographically 
secure signature. During program execution, the 
signature is recalculated from instructions in the 
I-block and compared to the signature embedded in the 
executable code. If the two values do not match, the 
program cannot be trusted, and it is terminated. 
Software confidentiality is provided by encrypting 
instruction blocks using a variation of the one-time-pad 
technique (OTP).  

The proposed technique overcomes shortcomings of 
the previously proposed techniques for software 
integrity. It relies on cryptographically strong but 
parallelizable signatures and supports code 
confidentiality. We also propose a novel cost-effective 
signature verification implementation: unverified 
instructions can be executed but they cannot commit 
their results until the verification is done. This 
implementation almost completely hides the overhead 
of I-block verification. A relatively high memory 
overhead because of embedded signatures can be 
reduced by protecting multiple I-cache blocks with one 
signature. 

The experimental analysis encompasses evaluation 
of performance, power, and memory overheads. The 
results of cycle-accurate simulations for multiple 
machine models indicate negligible overhead in 
performance: from ~4% for platforms with extremely 
small instruction caches to almost 0% for platforms 
with relatively large instruction caches. This result is 
achieved with low overhead in energy consumed (less 
than 5%).  

The rest of the paper is organized as follows. 
Section 2 describes the proposed architecture for 
software integrity and confidentiality and discusses its 
implementation. Section 3 details the experimental 
environment used for performance analysis. Section 4 
shows results of the experimental evaluation. Section 5 
surveys hardware-assisted techniques for software 
integrity and confidentiality and addresses potential 
weaknesses of the existing techniques, and Section 6 
concludes the paper. 

2. Architecture for Software Integrity & 
Confidentiality  

 
The proposed technique encompasses the following 

components: secure program installation, program 
loading, and program execution (Figure 1). Depending 
on the required level of protection, a program can run 
in an unprotected mode, a software integrity only mode 
(SIOM), or a software integrity and confidentiality 
mode (SICM). Information about the selected security 
mode is stored in the program header during secure 
installation.  
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Figure 1. Mechanism for Software Integrity and 
Confidentiality. 
 
2.1. Secure Program Installation 
 

Secure program installation encompasses key 
generation, signature generation, and code encryption. 
Secure program installation is performed in a special 
installation mode not interruptible by other processes, 
similar to the installation mode described by Kirovski 
et al. [2]. 

Key generation. Depending on the selected security 
mode, a program requires zero, 2 or 3 keys (Key1, 
Key2, Key3). The keys may be generated using 
thermal noise within the processor, or by physical 
unclonable functions [5]. These keys are encrypted 
with a secret processor key (Key.CPU), and stored in 
the program header (see blue boxes in Figure 1). 
Plaintext keys must never leave the processor chip, so 
key generation and encryption are done using only on-
chip resources.  

Signature calculation. To ensure software integrity, 
each I-block is signed with a signature during the 
secure installation process and signatures are 
embedded in the executable code. An I-block signature 
is a cryptographic function of the following: (a) the 
starting virtual address of the I-block or offset from the 
beginning of the code section, (b) unique program keys 
created during secure installation, and (c) instruction 
words in the I-block. Using the starting virtual address 
prevents any splicing attacks, because a legitimately 
signed I-block from a different address will result in a 
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different signature than that calculated with the 
requested address. Using unique program keys should 
prevent execution of any unauthorized code, regardless 
of whether it has been injected by a software attack or 
inserted by a physical attack. It also prevents an 
adversary from replaying a valid instruction block of 
one program with a valid instruction block of another 
program residing at the same virtual address. Using 
instruction words is necessary to prevent any splicing 
or spoofing attacks.  

Signatures are generated using the parallelizable 
MAC (PMAC) algorithm, developed by Black and 
Rogaway [6]. They prove PMAC secure and show that 
it approximates a random permutation. To illustrate the 
process of signature generation, we assume a 32-bit 
architecture, 32B I-blocks, 128-bit signatures appended 
as footers to I-blocks, and each I-block partitioned into 
two sub-blocks: (I0:3), (I4:7). For each sub-block SBi 
(i = 0, 1), the signature generation is described in Eq. 
1, where Sig(SBi) is sub-block signature, SP is a secure 
padding function, A(SBi) is the starting virtual address 
of the sub-block, and Key1 and Key2 are secure 
program keys. The I-block signature S is an XOR 
function of all sub-block signatures (Eq. 2). Signatures 
prevent tampering with the code, but the code can still 
be inspected by an adversary. To provide software 
confidentiality, we can expand this scheme with 
software encryption.  
Eq. 1 ( )[ ]))(()()( 134:42 iKEYiiKEYi SBASPAESxorIAESSBSig +=  

Eq. 2 )()( 10 SBSigxorSBSigS = . 
Software encryption. Software encryption should 

provide a high level of security, yet it should not cause 
significant delays in the critical path during signature 
verification and software decryption processes. In 
order to satisfy these requirements, we adopt an OTP-
like encryption scheme. Depending on the order in 
which we encrypt an instruction block and calculate its 
signature, there are three possible approaches known in 
cryptography as encrypt&sign, encrypt, then sign, and 
sign, then encrypt (StE). These three schemes differ in 
security strength which is still a matter of debate. 
However, for our implementation, all three schemes 
have similar hardware complexity and we decided to 
use the StE scheme.  

In StE, the signature is calculated on plaintext 
instructions, as described in Eq. 1 and Eq. 2, and then 
both instructions and the signature are encrypted, as 
described in Eq. 3 and Eq. 4. We use Key3 for code 
encryption because it is recommended that 
authentication and encryption should not use the same 
keys [7]. 
Eq. 3 ( )))(()()( 334:434:4 iKEYiiii SBASPAESxorIC ++ = , i = 0, 1. 

Eq. 4 ( )))((3 SASPAESxorSeS KEY=  

Security considerations. Even with a mechanism 
that protects software integrity, a skilled attacker can 
exploit software vulnerabilities to change the target of 
an indirect jump or return instructions to different 
existing code sections (so-called arc injection attacks). 
The SICM mode makes creation of meaningful arc 
injection attacks much more difficult, but it does not 
prevent them. Complete protection from such attacks 
may be provided by using a dedicated resource to store 
allowed targets of indirect jumps and a secure stack 
[8], or by using data encryption. 

Another consideration is dynamically generated 
code, such as the code generated by the Java Just-In-
Time compiler, which may never be saved in an 
executable file. Such code can be marked as non-
signed and executed in the unprotected mode, or the 
code generator can generate the signatures together 
with the code. If the generator is trusted, its output 
should be trusted too. The same argument applies to 
interpreted code. 

 
2.2. Program Loading and Execution 

 
Program loading. Unique program keys are loaded 

from the program header into dedicated processor 
registers. The program keys are decrypted using the 
hidden processor key (Key.CPU) and can only be 
accessed using dedicated processor resources: the 
program key generation unit and an instruction block 
signature verification unit (IBSVU). On a context 
switch, these keys are encrypted before they leave the 
processor, and are stored in the process control block. 

Secure program execution. When an instruction is 
fetched from memory, the integrity of the 
corresponding I-block needs to be verified. 
Consequently, the most suitable instruction block size 
is the cache line size of the lowest level of the 
instruction cache (the cache that is the closest to the 
memory) or some multiple thereof, or the size of the 
fetch buffer in systems without the cache. Without loss 
of generality, in the rest of this paper we focus on a 
system with separated data and instruction first level 
caches and no second level cache. The instruction 
cache (I-cache) is a read-only resource, so the integrity 
is guaranteed for instructions already in the I-cache. 
Hence, signatures only need to be verified on I-cache 
misses. Signatures are not stored in the I-cache and 
they are not visible to the processor core at the time of 
execution. To achieve this, an additional step is needed 
for address translation that maps the original code to 
the code with embedded signatures and potential page 
padding. 

Signatures are verified in parallel with program 
execution using the IBSVU. Fetched instructions pass 
through a logic block that calculates a signature in the 
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same way it was generated during secure installation. 
This calculated signature cS is then compared to the 
one fetched from memory (S). If the two values match, 
the instruction block can be trusted; if the values differ, 
a trap to the operating system is asserted. The 
operating system then neutralizes the process whose 
code integrity cannot be verified and possibly audits 
the event. The process of runtime verification depends 
on security mode.  

Software integrity only mode. The signature cS is 
calculated as described in Eq. 1 and Eq. 2. Figure 2 
illustrates the process of signature calculation and 
runtime verification. The arrow running from top to 
bottom indicates the flow of time. Encryption of 
securely padded sub-block addresses (dark shaded 
boxes in Figure 3) can be initiated at the beginning of 
the memory cycle that fetches the required I-block 
(blocks marked with I) and its signature (blocks 
marked with S). In this way the AES block outputs will 
be ready to be XOR-ed with incoming instructions, 
assuming that the crypto latency is less than the 
memory access time.  
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Figure 2. Runtime signature verification in SIOM 
mode.  

 
Figure 3. Memory and crypto pipeline for PMAC-
based runtime signature verification.  
 

A simple cipher implementation would use the 
CBC-MAC [9]. Assuming 32B I-blocks, 128-bit 
signatures, 12 clock cycle AES cipher implementation, 
64-bit data bus, and 12/2 memory latency (12 clock 
cycles for the first chunk, 2 clock cycles for each 
thereafter), the verification process will be completed 

in 25 clock cycles after the last instruction is fetched. 
However, if the cipher is replaced with a PMAC, the 
instruction verification process will be completed in 
only 13 clock cycles after the last instruction is fetched 
(Figure 3). 

Software integrity and confidentiality mode. The 
fetched ciphertext is decrypted, producing the original 
I-block with minimal delay - one XOR operation, since 
the AES encryption of virtual addresses is overlapped 
with memory latency (Eq. 5). The signature cS is 
calculated from decrypted instructions. The signature 
fetched from memory is also decrypted as described in 
Eq. 6. 
Eq. 5 ( )))(()()( 334:434:4 iKEYiiii SBASPAESxorCI ++ = , i = 0,  1. 

Eq. 6 ( )))((3 eSASPAESxoreSS KEY=  

A naïve implementation of the proposed mechanism 
will not allow execution of instructions before they are 
verified (Wait-’til-Verified scheme – WtV). 
Consequently, each I-cache miss event will extend the 
processor wait time for the duration of I-block 
verification (13 clock cycles in the example). However, 
this verification latency can be alleviated if we keep 
track of instructions under verification (Run-before-
Verification scheme – RbV). Instructions can start 
execution immediately after they are fetched, but they 
cannot commit before the whole block is verified. For 
in-order processors, an additional Instruction 
Verification Buffer resource is needed (Figure 4, top). 
This buffer is similar to the Sequential Authentication 
Buffer proposed by Shi et al. [10]. All instructions that 
belong to a block under verification as well as possibly 
verified instructions that follow the unverified 
instructions get an entry in this buffer. The instructions 
can commit when the IBSVU confirms that the I-block 
is secure (verified flag is set). It should be noted that 
this buffer is used only when I-cache misses occur, so a 
relatively small buffer will suffice. In out-of-order 
processors, this functionality can be implemented by 
adding a verified bit to the reorder buffer and not 
allowing instructions to retire until that bit is set. Shi 
and Lee [11] assert that schemes allowing unverified 
instructions to execute (but not commit until 
verification is complete) may allow sensitive data to be 
exposed by a malicious memory access instruction 
inserted in the block. However, this action would not 
violate the confidentiality of instructions, and the 
tampering would be evident after verification. 

Memory overhead can be reduced by making the 
protected I-block size a multiple of I-cache block size. 
For instance, protecting two cache blocks with one 
signature will cut the memory overhead for the code 
section in half. On an I-cache miss, the entire protected 
block and its signature are fetched from memory. Once 
they are decrypted, the portion of the protected block 
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that is currently needed is placed into the I-cache. A 
naïve implementation would always discard the other 
portion of the block. Performance can be improved by 
placing I-block(s) after the I-block that caused an I-
cache miss into an instruction opportunity buffer (IOB, 
Figure 4, bottom). The IOB is a FIFO queue with 
address tags searched in a fully associative manner. On 
future I-cache misses, the IOB is searched for the 
desired block. If there is an IOB hit, the data is taken 
from the IOB and placed into the I-cache, preventing a 
memory access and subsequent verification latency. 
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Figure 4. Instruction verification buffer (top) and 
instruction opportunity buffer (bottom). 
 
3. Experimental Methodology 
 

An ideal technique should provide an adequate level 
of software integrity and confidentiality, yet it should 
be easy to implement (minimal cost), should not 
impose significant delays in program execution or 
increased power consumption, and should not 
introduce significant memory overhead.  

A qualitative assessment indicates relatively low 
hardware complexity of the proposed IBSVU – it 
includes a key generation unit, a pipelined AES cipher, 
temporary buffers, the instruction verification buffer 
(for RbV implementation), the instruction opportunity 
buffer (if multiple cache blocks are protected by a 
single signature), and control logic. The AES cipher, 
following the commercially available Cadence High 
Performance AES core, is comprised of approximately 
57,000 logic gates [12]. The memory overhead is 
simply determined by comparing the sizes of the 
original code and the code with signatures. To emulate 
the secure installation process, we have developed a 
program that calculates signatures of instruction blocks 
in executable sections of programs in the ELF format, 
and modifies programs to include calculated 
signatures.  

The performance overhead is evaluated using a 
modified SimpleScalar ARM simulator [13] that 
supports the proposed schemes. As a measure of 

performance, we use the number of clock cycles, 
normalized to the number of clock cycles for the base 
configuration (without signature verification). The 
benchmarks running on the base configuration 
exhibited the best performance for an I-cache line size 
of 32 bytes. Therefore, a 32 byte I-cache line size is 
used for evaluating the proposed integrity and 
confidentiality techniques, while the I-cache size varies 
between 1, 2, 4, and 8 KB. We assume a bus width of 
64 bits. We use IOBs that are 25% of the size of the 
base I-cache, and protected block sizes of 64 bytes 
(twice the size of the I-cache block). The I-cache size 
is reduced by 25% to maintain a constant cache budget: 
it has the same number of sets and 3 instead of 4 ways.  

The energy overhead is determined by comparing 
the total energy spent by the processor with the base 
configuration to the energy spent with signature 
verification. Energy is estimated using a modified Sim-
Panalyzer ARM simulator [14], which models the 
effects of internal and external switching and leakage. 
For Sim-Panalyzer parameters related to power, we use 
values from a template file provided with Sim-
Panalyzer. The operating frequency is 200MHz, the 
I/O supply voltage is 3.3V, and the internal logic 
power supply is 1V. The technology parameters 
correspond to the 0.18µm process. The AES cipher’s 
power consumption is modeled as the power consumed 
by 57,000 gates. 

As a workload for performance and power analysis, 
we use benchmarks from several benchmark suites for 
embedded systems (MiBench [15], MediaBench [16], 
BasicCrypt [17]). Since signature verification is done 
only at an I-cache miss, the benchmarks selected from 
these suites have a relatively high number of I-cache 
misses for at least one of the simulated cache sizes. 
Table 1 lists the benchmarks, their descriptions, the 
number of executed instructions, and the number of I-
cache misses per 1000 executed instructions for the 
simulated cache sizes (1 – 8 KB).  

 

Table 1. Benchmark descriptions and 
characteristics. 

Benchmark Description 
Executed 

instr.  
[106] 

I-cache misses  
per 1000 executed 

instr. 
   1K 2K 4K 8K
blowfish_enc Blowfish encryption 544.0 33.8 5.1 0 0
cjpeg JPEG compression 104.6 7.6 1.3 0.3 0.1
djpeg JPEG decompression 23.4 11.9 5.5 1.3 0.3

ecdhb 
Diffie-Hellman key 
exchange 122.5 28.5 8.5 2.9 0.1

ecelgencb El-Gamal encryption 180.2 25.4 4.5 1.4 0.1
ispell Spell checker 817.7 72.4 53 18.8 2.9
mpeg2_enc MPEG2 compression 127.5 2.2 1.1 0.4 0.2
rijndael_enc Rijndael encryption 307.9 110.2 108.3 69.5 10.3
stringsearch String search 3.7 57.7 35 6.2 2.4
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4. Results 
 

Performance overhead. Figure 5 summarizes the 
total performance overhead of three analyzed 
architectures: WtV scheme with both CBC-MAC 
(CBC-MAC WtV) and PMAC (PMAC WtV) ciphers 
and RbV scheme with PMAC cipher (PMAC RbV). 
The bars in these figures indicate the average 
normalized execution time across all the benchmarks, 
while the candlestick lines indicate the minimum and 
maximum normalized execution times. They clearly 
show that the PMAC cipher with the RbV scheme 
yields a negligible performance overhead. Even with a 
very small 1KB I-cache, the total overhead with 
PMAC RbV is only 4% (min=0.4%, max=4.3%), 
compared to 63% (min=6%, max=80.6%) with PMAC 
WtV, and 93% (min=8.7%, max=117%) with CBC-
MAC WtV. The total performance overhead decreases 
with an increase in the I-cache size, and it is almost 
non-existing with a relatively large 8 KB I-cache, 
compared to 5% with PMAC WtV, and 8% with CBC-
MAC WtV. Longer memory latencies do not 
negatively influence the effectiveness of the proposed 
mechanism; on the contrary, the time spent in signature 
verification becomes relatively smaller in the total 
execution time, as illustrated by the results in Figure 5 
bottom where memory latency is 24/2 clock cycles. 
Consequently, in the rest of this section we will present 
results for the modeled processor with 12/2 memory 
latency.  

It should be noted that in our implementation the 
SICM and SIOM modes have the same overhead – an 
additional XOR gate delay in SICM mode 
implementation does not require a separate pipeline 
stage and the additional address decryption is fully 
overlapped with memory access. 

Energy overhead. Figure 6 summarizes the total 
energy overhead of the three aforementioned 
architectures. The bars show the average normalized 
energy overhead across all the benchmarks, while the 
candlestick lines indicate the minimum and maximum 
normalized energy overhead. The normalized energy 
overhead roughly follows the performance overhead. 
The implementation with the PMAC cipher and the 
RbV scheme again introduces minimal power 
overhead. 

Memory overhead. Memory overhead is a simple 
function of the size of signatures and the size of 
protected instruction blocks. The proposed signature is 
16 bytes, and the size of a protected block corresponds 
to a multiple of the I-cache line size. Consequently, the 
executable section of an executable file increases 50% 
for 32-byte protected blocks, 25% for 64-byte, and 
12.5% for 128-byte. 
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Figure 5. Performance overhead relative to the base 
configuration. Bus latency is 12/2 (top) and 24/2 
(bottom). 
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Figure 6. Energy overhead relative to the base 
configuration.  
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Figure 7. Performance overhead of reduced 
memory overhead implementations relative to the 
base configuration.  

 
We consider two implementations which reduce 

memory overhead by using 64-byte protected blocks 
(i.e., twice the size of the I-cache blocks). Both 
implementations are based on the PMAC cipher and 
the RbV scheme. The first implementation naively 
discards currently unused blocks (PMAC Double 
RbV), while the second puts them into an IOB (PMAC 
Double IOB RbV). Figure 7 shows that the instruction 
opportunity buffer may even improve performance for 
smaller cache sizes, since the benefit of prefetching 
into the fully associative IOB may outweigh the loss of 
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one cache way. However, with larger caches the naïve 
implementation performs better. Several applications 
benefit a lot from an increase in cache size from 4 KB 
to 8 KB (ispell, rijndael_enc, and stringsearch, see 
Table 1), so the loss of one cache way significantly 
impacts performance and IOB hit rate is not 
sufficiently high to compensate for it. 

 
5. Related Work 

 
A number of hardware-assisted techniques have 

been proposed recently, differing in scope and 
complexity. A set of relatively simple techniques 
counters the most frequent stack smashing attacks by 
utilizing a secure hardware stack [18, 19] or through 
encryption of address pointers [20]. The use of 
untrustworthy data for jump target addresses can be 
prevented by tagging all data coming from 
untrustworthy channels [21, 22]; however, this 
approach requires relatively complex tracking of 
spurious data propagation and may produce false 
alarms. More comprehensive secure architectures that 
are directly related to this work include execute-only 
memory (XOM) [1], an architecture for protecting 
critical secrets in microprocessors [23], an architecture 
for memory integrity verification [24], a XOM-like 
architecture with fast one-time-pad encryption [3], an 
architecture for runtime verification of instruction 
block signatures [4], and a hardware/software platform 
for intrusion prevention [9].  

Execute-only memory (XOM) strives to provide 
copy and tamper resistant software [1]. All off-chip 
memory transactions have to pass through encryption 
and decryption processes providing a high level of 
security. Though the original proposal was susceptible 
to replay attacks, this problem can be addressed with 
relatively minor changes [25]. However, the main 
problem with XOM is its significant performance 
overhead since lengthy encryption and decryption 
processes reside on the critical path. 

Gassend et al. [24] propose a hash-tree based 
verification of untrusted external memory, providing a 
tamper-proof environment for program execution. The 
hash-tree based verification dramatically increases 
memory bandwidth requirements (~logN, where N is 
the memory size). To address this issue, the authors 
propose integration of hash-tree mechanism with 
caches. However, the overall overhead of this approach 
remains high and its implementation cost may still be 
prohibitive.  

Lu et al. [26] propose a similar architecture to that 
of Gassend, using a tree of message authentication 
codes (MACs). Cache block MACs are computed from 
hashes of the cache block, its virtual address, and an 
application-specific secret key. Higher level nodes of 

the tree are computed from lower level nodes 
concatenated with a random number generated from 
thermal noise. Performance is increased by caching 
MAC data on the chip. Although this architecture 
achieves significant performance improvements over 
that proposed by Gassend et al., it still results in an 
average performance overhead between 10% and 20%. 

Jun Yang et al. [3] propose a technique that shifts 
the cryptographical computation off of the critical 
memory access path. This scheme uses ‘one-time-pad’ 
(OTP) encryption to produce the instruction and data 
ciphertexts. An I-block is encrypted by XOR-ing it 
with its encrypted virtual address. Though very 
efficient, this scheme does not provide software 
integrity: it fails when an attacker is able to correctly 
guess instructions in a block, which then can be 
replaced by a malicious block (the so-called “known 
plaintext” attack).  

Drinic and Kirovski [9] propose a similar approach, 
but with more cryptographically secure signatures. 
Each I-block is signed by a keyed MAC that is 
attached to the I-block. Secure MACs are built using 
an AES cipher in chain block cipher mode (CBC-
MAC). In order to alleviate the effects of signature 
verification overhead, the authors propose to execute 
non-critical instructions before they are verified and 
propose code transformations that will postpone 
execution of critical instructions. However, these 
transformations may fail in hiding the crypto latency. 
In addition, the proposed technique has not been 
evaluated using a cycle-accurate machine model, so the 
true potential of the proposed optimizations remain an 
open issue. Next, the authors do not consider the 
effects of storing MACs in the I-cache. Finally, this 
approach does not offer a solution for code 
confidentiality, nor is it resistant to replay/splicing 
attacks. 

 
6. Conclusions 
 

This paper presents an efficient, low-complexity 
hardware technique that provides software integrity 
and confidentiality. It also presents a scheme for 
reducing memory overhead, but at the cost of minimal 
added complexity. The proposed technique improves 
computer systems’ resilience to both software and 
physical attacks. To achieve low overhead operation of 
the proposed secure modes, we employ two new 
approaches: (a) parallelizable instruction block 
signatures, which are strong double-keyed 
cryptographic functions providing a high-level of 
security, yet allowing efficient verification at runtime, 
and (b) the instruction block verification buffer, which 
allows instruction execution before the corresponding 
block is verified, eliminating performance overhead of 
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runtime verification almost completely. To reduce 
memory overhead, we utilize the instruction 
opportunity buffer, which allows instruction blocks 
larger than the I-cache block size to be protected. The 
experimental analysis based on a cycle-accurate 
machine model shows that the proposed solutions 
impose very low performance and energy overhead. 
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