
A Low Overhead Hardware Technique for
Software Integrity and Confidentiality

Austin Rogers†, Milena Milenković§, Aleksandar Milenković¶

† Dynetics, Huntsville, Alabama; § IBM, Austin, Texas
¶ ECE Department, The University of Alabama in Huntsville

Email: ¶ milenka@ece.uah.edu

Abstract

Software integrity and confidentiality play a central
role in making embedded computer systems resilient to
various malicious actions, such as software attacks;
probing and tampering with buses, memory, and I/O
devices; and reverse engineering. In this paper we
describe an efficient hardware mechanism that
protects software integrity and guarantees software
confidentiality. To provide software integrity, each
instruction block is signed during program installation
with a cryptographically secure signature. The
signatures embedded in the code are verified during
program execution. Software confidentiality is
provided by encrypting instruction blocks. To achieve
low performance overhead, the proposed mechanism
combines several architectural enhancements: a
variation of one-time-pad encryption, parallelizable
signatures, and conditional execution of unverified
instructions. A relatively high memory overhead due to
embedded signatures can be reduced by protecting
multiple instruction blocks with one signature, with
minimal effects on complexity and performance
overhead.

1. Introduction

With current trends toward computer systems’
ubiquitous accessibility, connectivity, diversification,
and proliferation, computer security has become a
critical issue in computer system design and operation.
A need for computing devices resilient to various
attacks is further underscored by a growing number of
software vulnerability exploits, as well as by ever-
increasing system complexity and tightening time-to-
market constraints leaving less time for system testing.

Depending on the nature of the threat, computer
security encompasses three components:
confidentiality, integrity, and availability.
Confidentiality is violated whenever information is
disclosed to unauthorized entities (humans, programs,
computer systems). Integrity is violated whenever
information (code or data) is altered by an

unauthorized entity. Availability is violated whenever
an attacker succeeds in denying services to legitimate
users.

Software integrity is ensured if the computer system
can detect any unauthorized code and prevent its
execution. Software confidentiality is ensured if an
adversary cannot read binaries, thus preventing
software duplication through reverse engineering and
intellectual property theft. Attacks against software
integrity are typically launched across the network by
exploiting known software vulnerabilities (e.g., buffer
overflow or unsafe format string). In embedded
systems, adversaries can easily get physical access to
the system and can probe buses and tamper with code
and data in main memory, hard disk, and I/O devices.
As a result, the computer system becomes vulnerable
to many attacks, such as spoofing, splicing, and replay.
In a spoofing attack, an adversary intercepts a request
for an instruction block (I-block) and returns a block
with malicious code instead. In a splicing attack, an
adversary intercepts a request for an I-block and
returns another valid I-block, but not the one that has
been requested. In a replay attack, an adversary returns
a stale copy of the requested data block.

The multitude of software attacks has prompted the
development of a large number of predominantly
software-based counter-measures. Static software
techniques rely on formal analysis and/or
programmers’ annotations to detect security flaws in
the code, and then leave it to the programmers to
correct these flaws. Dynamic software techniques
augment the original code or operating system to detect
malicious attacks at runtime and to terminate attacked
programs. Software techniques are unlikely to counter
all attacks by themselves, as they lack generality,
suffer from false-positives and false-negatives, and
often induce prohibitive overhead in performance and
power consumption. On the other hand, a further
increase in the number of transistors on a single chip
will enable integrated hardware support for functions
that so far have been restricted to the software domain.

Several recent research efforts propose hardware-
assisted techniques to prevent execution of
unauthorized code [1-4]. These techniques promise

1-4244-1258-7/07/$25.00 ©2007 IEEE 113

higher security with relatively modest overheads in
performance or energy. However, the existing
techniques often fail to counter all attacks, induce
prohibitive overheads, or their evaluation does not
explore the implications of various implementation
choices. Several general purpose processors now
include security extensions, for example, IBM’s Secure
Blue for PowerPC, and AMD’s Athlon-64 and Intel’s
Itanium buffer overflow protection.

In this paper we propose a hardware-supported
technique for software integrity and confidentiality in
embedded platforms that provides a maximum level of
security at minimal cost, power overhead, and
performance loss. Software integrity is ensured by
signing I-blocks by a parallelizable cryptographically
secure signature. During program execution, the
signature is recalculated from instructions in the
I-block and compared to the signature embedded in the
executable code. If the two values do not match, the
program cannot be trusted, and it is terminated.
Software confidentiality is provided by encrypting
instruction blocks using a variation of the one-time-pad
technique (OTP).

The proposed technique overcomes shortcomings of
the previously proposed techniques for software
integrity. It relies on cryptographically strong but
parallelizable signatures and supports code
confidentiality. We also propose a novel cost-effective
signature verification implementation: unverified
instructions can be executed but they cannot commit
their results until the verification is done. This
implementation almost completely hides the overhead
of I-block verification. A relatively high memory
overhead because of embedded signatures can be
reduced by protecting multiple I-cache blocks with one
signature.

The experimental analysis encompasses evaluation
of performance, power, and memory overheads. The
results of cycle-accurate simulations for multiple
machine models indicate negligible overhead in
performance: from ~4% for platforms with extremely
small instruction caches to almost 0% for platforms
with relatively large instruction caches. This result is
achieved with low overhead in energy consumed (less
than 5%).

The rest of the paper is organized as follows.
Section 2 describes the proposed architecture for
software integrity and confidentiality and discusses its
implementation. Section 3 details the experimental
environment used for performance analysis. Section 4
shows results of the experimental evaluation. Section 5
surveys hardware-assisted techniques for software
integrity and confidentiality and addresses potential
weaknesses of the existing techniques, and Section 6
concludes the paper.

2. Architecture for Software Integrity &
Confidentiality

The proposed technique encompasses the following

components: secure program installation, program
loading, and program execution (Figure 1). Depending
on the required level of protection, a program can run
in an unprotected mode, a software integrity only mode
(SIOM), or a software integrity and confidentiality
mode (SICM). Information about the selected security
mode is stored in the program header during secure
installation.

Original Code Signed Code

Secure
Installation

Trusted Code

Signature
Match

Signature Fetch

Instruction Fetch

Secure
Execution

Calculate
Signature

EKey3(I-Block)

Signature

Encrypt

Generate Program Keys
(Key1,Key2,Key3)

Secure Mode
EKey.CPU(Key1)
EKey.CPU (Key2)
EKey.CPU(Key3)

Encrypt

I-Block

Program
Loading

Decrypt Program Keys
(Key1,Key2,Key3)

Decrypt I-Block

=?

Calculate
Signature

Original Code Signed Code

Secure
Installation

Trusted Code

Signature
Match

Signature Fetch

Instruction Fetch

Secure
Execution

Calculate
Signature

EKey3(I-Block)

Signature

Encrypt

Generate Program Keys
(Key1,Key2,Key3)

Secure Mode
EKey.CPU(Key1)
EKey.CPU (Key2)
EKey.CPU(Key3)

Encrypt

I-Block

Program
Loading

Decrypt Program Keys
(Key1,Key2,Key3)

Decrypt I-Block

=?

Calculate
Signature

Figure 1. Mechanism for Software Integrity and
Confidentiality.

2.1. Secure Program Installation

Secure program installation encompasses key
generation, signature generation, and code encryption.
Secure program installation is performed in a special
installation mode not interruptible by other processes,
similar to the installation mode described by Kirovski
et al. [2].

Key generation. Depending on the selected security
mode, a program requires zero, 2 or 3 keys (Key1,
Key2, Key3). The keys may be generated using
thermal noise within the processor, or by physical
unclonable functions [5]. These keys are encrypted
with a secret processor key (Key.CPU), and stored in
the program header (see blue boxes in Figure 1).
Plaintext keys must never leave the processor chip, so
key generation and encryption are done using only on-
chip resources.

Signature calculation. To ensure software integrity,
each I-block is signed with a signature during the
secure installation process and signatures are
embedded in the executable code. An I-block signature
is a cryptographic function of the following: (a) the
starting virtual address of the I-block or offset from the
beginning of the code section, (b) unique program keys
created during secure installation, and (c) instruction
words in the I-block. Using the starting virtual address
prevents any splicing attacks, because a legitimately
signed I-block from a different address will result in a

114

different signature than that calculated with the
requested address. Using unique program keys should
prevent execution of any unauthorized code, regardless
of whether it has been injected by a software attack or
inserted by a physical attack. It also prevents an
adversary from replaying a valid instruction block of
one program with a valid instruction block of another
program residing at the same virtual address. Using
instruction words is necessary to prevent any splicing
or spoofing attacks.

Signatures are generated using the parallelizable
MAC (PMAC) algorithm, developed by Black and
Rogaway [6]. They prove PMAC secure and show that
it approximates a random permutation. To illustrate the
process of signature generation, we assume a 32-bit
architecture, 32B I-blocks, 128-bit signatures appended
as footers to I-blocks, and each I-block partitioned into
two sub-blocks: (I0:3), (I4:7). For each sub-block SBi
(i = 0, 1), the signature generation is described in Eq.
1, where Sig(SBi) is sub-block signature, SP is a secure
padding function, A(SBi) is the starting virtual address
of the sub-block, and Key1 and Key2 are secure
program keys. The I-block signature S is an XOR
function of all sub-block signatures (Eq. 2). Signatures
prevent tampering with the code, but the code can still
be inspected by an adversary. To provide software
confidentiality, we can expand this scheme with
software encryption.
Eq. 1 ()[]))(()()(134:42 iKEYiiKEYi SBASPAESxorIAESSBSig +=

Eq. 2)()(10 SBSigxorSBSigS = .
Software encryption. Software encryption should

provide a high level of security, yet it should not cause
significant delays in the critical path during signature
verification and software decryption processes. In
order to satisfy these requirements, we adopt an OTP-
like encryption scheme. Depending on the order in
which we encrypt an instruction block and calculate its
signature, there are three possible approaches known in
cryptography as encrypt&sign, encrypt, then sign, and
sign, then encrypt (StE). These three schemes differ in
security strength which is still a matter of debate.
However, for our implementation, all three schemes
have similar hardware complexity and we decided to
use the StE scheme.

In StE, the signature is calculated on plaintext
instructions, as described in Eq. 1 and Eq. 2, and then
both instructions and the signature are encrypted, as
described in Eq. 3 and Eq. 4. We use Key3 for code
encryption because it is recommended that
authentication and encryption should not use the same
keys [7].
Eq. 3 ()))(()()(334:434:4 iKEYiiii SBASPAESxorIC ++ = , i = 0, 1.

Eq. 4 ()))((3 SASPAESxorSeS KEY=

Security considerations. Even with a mechanism
that protects software integrity, a skilled attacker can
exploit software vulnerabilities to change the target of
an indirect jump or return instructions to different
existing code sections (so-called arc injection attacks).
The SICM mode makes creation of meaningful arc
injection attacks much more difficult, but it does not
prevent them. Complete protection from such attacks
may be provided by using a dedicated resource to store
allowed targets of indirect jumps and a secure stack
[8], or by using data encryption.

Another consideration is dynamically generated
code, such as the code generated by the Java Just-In-
Time compiler, which may never be saved in an
executable file. Such code can be marked as non-
signed and executed in the unprotected mode, or the
code generator can generate the signatures together
with the code. If the generator is trusted, its output
should be trusted too. The same argument applies to
interpreted code.

2.2. Program Loading and Execution

Program loading. Unique program keys are loaded

from the program header into dedicated processor
registers. The program keys are decrypted using the
hidden processor key (Key.CPU) and can only be
accessed using dedicated processor resources: the
program key generation unit and an instruction block
signature verification unit (IBSVU). On a context
switch, these keys are encrypted before they leave the
processor, and are stored in the process control block.

Secure program execution. When an instruction is
fetched from memory, the integrity of the
corresponding I-block needs to be verified.
Consequently, the most suitable instruction block size
is the cache line size of the lowest level of the
instruction cache (the cache that is the closest to the
memory) or some multiple thereof, or the size of the
fetch buffer in systems without the cache. Without loss
of generality, in the rest of this paper we focus on a
system with separated data and instruction first level
caches and no second level cache. The instruction
cache (I-cache) is a read-only resource, so the integrity
is guaranteed for instructions already in the I-cache.
Hence, signatures only need to be verified on I-cache
misses. Signatures are not stored in the I-cache and
they are not visible to the processor core at the time of
execution. To achieve this, an additional step is needed
for address translation that maps the original code to
the code with embedded signatures and potential page
padding.

Signatures are verified in parallel with program
execution using the IBSVU. Fetched instructions pass
through a logic block that calculates a signature in the

115

same way it was generated during secure installation.
This calculated signature cS is then compared to the
one fetched from memory (S). If the two values match,
the instruction block can be trusted; if the values differ,
a trap to the operating system is asserted. The
operating system then neutralizes the process whose
code integrity cannot be verified and possibly audits
the event. The process of runtime verification depends
on security mode.

Software integrity only mode. The signature cS is
calculated as described in Eq. 1 and Eq. 2. Figure 2
illustrates the process of signature calculation and
runtime verification. The arrow running from top to
bottom indicates the flow of time. Encryption of
securely padded sub-block addresses (dark shaded
boxes in Figure 3) can be initiated at the beginning of
the memory cycle that fetches the required I-block
(blocks marked with I) and its signature (blocks
marked with S). In this way the AES block outputs will
be ready to be XOR-ed with incoming instructions,
assuming that the crypto latency is less than the
memory access time.

I0 I1I0 I1
I2 I3

I4 I5
I6 I7

AES

x

AES

SP[A(SB0)]

AES

x

AES

SP[A(SB1)]

SB0’ SB1’

x

I0
I1
I2

I4
I5

I3

31 0
A(SB0)

031

I6
I7

A(SB1)
031

S0
S1
S2
S3

31 0

=?

S0 S1
S2 S3

KEY1 KEY1

KEY2 KEY2

Figure 2. Runtime signature verification in SIOM
mode.

Figure 3. Memory and crypto pipeline for PMAC-
based runtime signature verification.

A simple cipher implementation would use the
CBC-MAC [9]. Assuming 32B I-blocks, 128-bit
signatures, 12 clock cycle AES cipher implementation,
64-bit data bus, and 12/2 memory latency (12 clock
cycles for the first chunk, 2 clock cycles for each
thereafter), the verification process will be completed

in 25 clock cycles after the last instruction is fetched.
However, if the cipher is replaced with a PMAC, the
instruction verification process will be completed in
only 13 clock cycles after the last instruction is fetched
(Figure 3).

Software integrity and confidentiality mode. The
fetched ciphertext is decrypted, producing the original
I-block with minimal delay - one XOR operation, since
the AES encryption of virtual addresses is overlapped
with memory latency (Eq. 5). The signature cS is
calculated from decrypted instructions. The signature
fetched from memory is also decrypted as described in
Eq. 6.
Eq. 5 ()))(()()(334:434:4 iKEYiiii SBASPAESxorCI ++ = , i = 0, 1.

Eq. 6 ()))((3 eSASPAESxoreSS KEY=

A naïve implementation of the proposed mechanism
will not allow execution of instructions before they are
verified (Wait-’til-Verified scheme – WtV).
Consequently, each I-cache miss event will extend the
processor wait time for the duration of I-block
verification (13 clock cycles in the example). However,
this verification latency can be alleviated if we keep
track of instructions under verification (Run-before-
Verification scheme – RbV). Instructions can start
execution immediately after they are fetched, but they
cannot commit before the whole block is verified. For
in-order processors, an additional Instruction
Verification Buffer resource is needed (Figure 4, top).
This buffer is similar to the Sequential Authentication
Buffer proposed by Shi et al. [10]. All instructions that
belong to a block under verification as well as possibly
verified instructions that follow the unverified
instructions get an entry in this buffer. The instructions
can commit when the IBSVU confirms that the I-block
is secure (verified flag is set). It should be noted that
this buffer is used only when I-cache misses occur, so a
relatively small buffer will suffice. In out-of-order
processors, this functionality can be implemented by
adding a verified bit to the reorder buffer and not
allowing instructions to retire until that bit is set. Shi
and Lee [11] assert that schemes allowing unverified
instructions to execute (but not commit until
verification is complete) may allow sensitive data to be
exposed by a malicious memory access instruction
inserted in the block. However, this action would not
violate the confidentiality of instructions, and the
tampering would be evident after verification.

Memory overhead can be reduced by making the
protected I-block size a multiple of I-cache block size.
For instance, protecting two cache blocks with one
signature will cut the memory overhead for the code
section in half. On an I-cache miss, the entire protected
block and its signature are fetched from memory. Once
they are decrypted, the portion of the protected block

116

that is currently needed is placed into the I-cache. A
naïve implementation would always discard the other
portion of the block. Performance can be improved by
placing I-block(s) after the I-block that caused an I-
cache miss into an instruction opportunity buffer (IOB,
Figure 4, bottom). The IOB is a FIFO queue with
address tags searched in a fully associative manner. On
future I-cache misses, the IOB is searched for the
desired block. If there is an IOB hit, the data is taken
from the IOB and placed into the I-cache, preventing a
memory access and subsequent verification latency.

Tag I-block
Valid
Flag

0

1

...

m-1

Itype Destination Value

0

1

...

n-1

Ready
Flag

Verified
Flag

Figure 4. Instruction verification buffer (top) and
instruction opportunity buffer (bottom).

3. Experimental Methodology

An ideal technique should provide an adequate level
of software integrity and confidentiality, yet it should
be easy to implement (minimal cost), should not
impose significant delays in program execution or
increased power consumption, and should not
introduce significant memory overhead.

A qualitative assessment indicates relatively low
hardware complexity of the proposed IBSVU – it
includes a key generation unit, a pipelined AES cipher,
temporary buffers, the instruction verification buffer
(for RbV implementation), the instruction opportunity
buffer (if multiple cache blocks are protected by a
single signature), and control logic. The AES cipher,
following the commercially available Cadence High
Performance AES core, is comprised of approximately
57,000 logic gates [12]. The memory overhead is
simply determined by comparing the sizes of the
original code and the code with signatures. To emulate
the secure installation process, we have developed a
program that calculates signatures of instruction blocks
in executable sections of programs in the ELF format,
and modifies programs to include calculated
signatures.

The performance overhead is evaluated using a
modified SimpleScalar ARM simulator [13] that
supports the proposed schemes. As a measure of

performance, we use the number of clock cycles,
normalized to the number of clock cycles for the base
configuration (without signature verification). The
benchmarks running on the base configuration
exhibited the best performance for an I-cache line size
of 32 bytes. Therefore, a 32 byte I-cache line size is
used for evaluating the proposed integrity and
confidentiality techniques, while the I-cache size varies
between 1, 2, 4, and 8 KB. We assume a bus width of
64 bits. We use IOBs that are 25% of the size of the
base I-cache, and protected block sizes of 64 bytes
(twice the size of the I-cache block). The I-cache size
is reduced by 25% to maintain a constant cache budget:
it has the same number of sets and 3 instead of 4 ways.

The energy overhead is determined by comparing
the total energy spent by the processor with the base
configuration to the energy spent with signature
verification. Energy is estimated using a modified Sim-
Panalyzer ARM simulator [14], which models the
effects of internal and external switching and leakage.
For Sim-Panalyzer parameters related to power, we use
values from a template file provided with Sim-
Panalyzer. The operating frequency is 200MHz, the
I/O supply voltage is 3.3V, and the internal logic
power supply is 1V. The technology parameters
correspond to the 0.18µm process. The AES cipher’s
power consumption is modeled as the power consumed
by 57,000 gates.

As a workload for performance and power analysis,
we use benchmarks from several benchmark suites for
embedded systems (MiBench [15], MediaBench [16],
BasicCrypt [17]). Since signature verification is done
only at an I-cache miss, the benchmarks selected from
these suites have a relatively high number of I-cache
misses for at least one of the simulated cache sizes.
Table 1 lists the benchmarks, their descriptions, the
number of executed instructions, and the number of I-
cache misses per 1000 executed instructions for the
simulated cache sizes (1 – 8 KB).

Table 1. Benchmark descriptions and
characteristics.

Benchmark Description
Executed

instr.
[106]

I-cache misses
per 1000 executed

instr.
 1K 2K 4K 8K
blowfish_enc Blowfish encryption 544.0 33.8 5.1 0 0
cjpeg JPEG compression 104.6 7.6 1.3 0.3 0.1
djpeg JPEG decompression 23.4 11.9 5.5 1.3 0.3

ecdhb
Diffie-Hellman key
exchange 122.5 28.5 8.5 2.9 0.1

ecelgencb El-Gamal encryption 180.2 25.4 4.5 1.4 0.1
ispell Spell checker 817.7 72.4 53 18.8 2.9
mpeg2_enc MPEG2 compression 127.5 2.2 1.1 0.4 0.2
rijndael_enc Rijndael encryption 307.9 110.2 108.3 69.5 10.3
stringsearch String search 3.7 57.7 35 6.2 2.4

117

4. Results

Performance overhead. Figure 5 summarizes the
total performance overhead of three analyzed
architectures: WtV scheme with both CBC-MAC
(CBC-MAC WtV) and PMAC (PMAC WtV) ciphers
and RbV scheme with PMAC cipher (PMAC RbV).
The bars in these figures indicate the average
normalized execution time across all the benchmarks,
while the candlestick lines indicate the minimum and
maximum normalized execution times. They clearly
show that the PMAC cipher with the RbV scheme
yields a negligible performance overhead. Even with a
very small 1KB I-cache, the total overhead with
PMAC RbV is only 4% (min=0.4%, max=4.3%),
compared to 63% (min=6%, max=80.6%) with PMAC
WtV, and 93% (min=8.7%, max=117%) with CBC-
MAC WtV. The total performance overhead decreases
with an increase in the I-cache size, and it is almost
non-existing with a relatively large 8 KB I-cache,
compared to 5% with PMAC WtV, and 8% with CBC-
MAC WtV. Longer memory latencies do not
negatively influence the effectiveness of the proposed
mechanism; on the contrary, the time spent in signature
verification becomes relatively smaller in the total
execution time, as illustrated by the results in Figure 5
bottom where memory latency is 24/2 clock cycles.
Consequently, in the rest of this section we will present
results for the modeled processor with 12/2 memory
latency.

It should be noted that in our implementation the
SICM and SIOM modes have the same overhead – an
additional XOR gate delay in SICM mode
implementation does not require a separate pipeline
stage and the additional address decryption is fully
overlapped with memory access.

Energy overhead. Figure 6 summarizes the total
energy overhead of the three aforementioned
architectures. The bars show the average normalized
energy overhead across all the benchmarks, while the
candlestick lines indicate the minimum and maximum
normalized energy overhead. The normalized energy
overhead roughly follows the performance overhead.
The implementation with the PMAC cipher and the
RbV scheme again introduces minimal power
overhead.

Memory overhead. Memory overhead is a simple
function of the size of signatures and the size of
protected instruction blocks. The proposed signature is
16 bytes, and the size of a protected block corresponds
to a multiple of the I-cache line size. Consequently, the
executable section of an executable file increases 50%
for 32-byte protected blocks, 25% for 64-byte, and
12.5% for 128-byte.

1.91
1.73

1.43

1.08

1.63
1.50

1.30
1.051.04 1.03 1.02 1.00

0.0

0.5

1.0

1.5

2.0

2.5

1K 2K 4K 8K

Cache Size

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

CBC-MAC WtV
PMAC WtV
PMAC RbV

1.63
1.52

1.35

1.08

1.43 1.36
1.24

1.051.02 1.001.03 1.02

0.0

0.5

1.0

1.5

2.0

2.5

1K 2K 4K 8K

Cache Size

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

CBC-MAC WtV
PMAC WtV
PMAC RbV

Figure 5. Performance overhead relative to the base
configuration. Bus latency is 12/2 (top) and 24/2
(bottom).

1.91
1.73

1.43

1.08

1.63
1.50

1.30
1.051.04 1.03 1.02 1.00

0.0

0.5

1.0

1.5

2.0

2.5

1K 2K 4K 8K

Cache Size

No
rm

al
iz

ed
 E

ne
rg

y
CBC-MAC WtV
PMAC WtV
PMAC RbV

Figure 6. Energy overhead relative to the base
configuration.

1.18 1.14 1.09 1.01
0.90 0.98

1.10 1.09

0.0

0.5

1.0

1.5

2.0

2.5

1K 2K 4K 8K

Cache Size

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

PMAC Double RbV
PMAC Double IOB RbV

Figure 7. Performance overhead of reduced
memory overhead implementations relative to the
base configuration.

We consider two implementations which reduce

memory overhead by using 64-byte protected blocks
(i.e., twice the size of the I-cache blocks). Both
implementations are based on the PMAC cipher and
the RbV scheme. The first implementation naively
discards currently unused blocks (PMAC Double
RbV), while the second puts them into an IOB (PMAC
Double IOB RbV). Figure 7 shows that the instruction
opportunity buffer may even improve performance for
smaller cache sizes, since the benefit of prefetching
into the fully associative IOB may outweigh the loss of

118

one cache way. However, with larger caches the naïve
implementation performs better. Several applications
benefit a lot from an increase in cache size from 4 KB
to 8 KB (ispell, rijndael_enc, and stringsearch, see
Table 1), so the loss of one cache way significantly
impacts performance and IOB hit rate is not
sufficiently high to compensate for it.

5. Related Work

A number of hardware-assisted techniques have

been proposed recently, differing in scope and
complexity. A set of relatively simple techniques
counters the most frequent stack smashing attacks by
utilizing a secure hardware stack [18, 19] or through
encryption of address pointers [20]. The use of
untrustworthy data for jump target addresses can be
prevented by tagging all data coming from
untrustworthy channels [21, 22]; however, this
approach requires relatively complex tracking of
spurious data propagation and may produce false
alarms. More comprehensive secure architectures that
are directly related to this work include execute-only
memory (XOM) [1], an architecture for protecting
critical secrets in microprocessors [23], an architecture
for memory integrity verification [24], a XOM-like
architecture with fast one-time-pad encryption [3], an
architecture for runtime verification of instruction
block signatures [4], and a hardware/software platform
for intrusion prevention [9].

Execute-only memory (XOM) strives to provide
copy and tamper resistant software [1]. All off-chip
memory transactions have to pass through encryption
and decryption processes providing a high level of
security. Though the original proposal was susceptible
to replay attacks, this problem can be addressed with
relatively minor changes [25]. However, the main
problem with XOM is its significant performance
overhead since lengthy encryption and decryption
processes reside on the critical path.

Gassend et al. [24] propose a hash-tree based
verification of untrusted external memory, providing a
tamper-proof environment for program execution. The
hash-tree based verification dramatically increases
memory bandwidth requirements (~logN, where N is
the memory size). To address this issue, the authors
propose integration of hash-tree mechanism with
caches. However, the overall overhead of this approach
remains high and its implementation cost may still be
prohibitive.

Lu et al. [26] propose a similar architecture to that
of Gassend, using a tree of message authentication
codes (MACs). Cache block MACs are computed from
hashes of the cache block, its virtual address, and an
application-specific secret key. Higher level nodes of

the tree are computed from lower level nodes
concatenated with a random number generated from
thermal noise. Performance is increased by caching
MAC data on the chip. Although this architecture
achieves significant performance improvements over
that proposed by Gassend et al., it still results in an
average performance overhead between 10% and 20%.

Jun Yang et al. [3] propose a technique that shifts
the cryptographical computation off of the critical
memory access path. This scheme uses ‘one-time-pad’
(OTP) encryption to produce the instruction and data
ciphertexts. An I-block is encrypted by XOR-ing it
with its encrypted virtual address. Though very
efficient, this scheme does not provide software
integrity: it fails when an attacker is able to correctly
guess instructions in a block, which then can be
replaced by a malicious block (the so-called “known
plaintext” attack).

Drinic and Kirovski [9] propose a similar approach,
but with more cryptographically secure signatures.
Each I-block is signed by a keyed MAC that is
attached to the I-block. Secure MACs are built using
an AES cipher in chain block cipher mode (CBC-
MAC). In order to alleviate the effects of signature
verification overhead, the authors propose to execute
non-critical instructions before they are verified and
propose code transformations that will postpone
execution of critical instructions. However, these
transformations may fail in hiding the crypto latency.
In addition, the proposed technique has not been
evaluated using a cycle-accurate machine model, so the
true potential of the proposed optimizations remain an
open issue. Next, the authors do not consider the
effects of storing MACs in the I-cache. Finally, this
approach does not offer a solution for code
confidentiality, nor is it resistant to replay/splicing
attacks.

6. Conclusions

This paper presents an efficient, low-complexity
hardware technique that provides software integrity
and confidentiality. It also presents a scheme for
reducing memory overhead, but at the cost of minimal
added complexity. The proposed technique improves
computer systems’ resilience to both software and
physical attacks. To achieve low overhead operation of
the proposed secure modes, we employ two new
approaches: (a) parallelizable instruction block
signatures, which are strong double-keyed
cryptographic functions providing a high-level of
security, yet allowing efficient verification at runtime,
and (b) the instruction block verification buffer, which
allows instruction execution before the corresponding
block is verified, eliminating performance overhead of

119

runtime verification almost completely. To reduce
memory overhead, we utilize the instruction
opportunity buffer, which allows instruction blocks
larger than the I-cache block size to be protected. The
experimental analysis based on a cycle-accurate
machine model shows that the proposed solutions
impose very low performance and energy overhead.

7. References

[1] D. Lie, C. Thekkath, M. Mitchell, P. Lincolny, D. Boneh, J.

Mitchell, and M. Horowitz, "Architectural Support for Copy
and Tamper Resistant Software," in 9th International
Conference on Architectural Support for Programming
Languages and Operating Systems, Cambridge, MA, USA,
2000, pp. 168-177.

[2] D. Kirovski, M. Drinic, and M. Potkonjak, "Enabling Trusted
Software Integrity," in 10th International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS-X), San Jose, CA, USA, 2002, pp.
108-120.

[3] J. Yang, L. Gao, and Y. Zhang, "Improving Memory
Encryption Performance in Secure Processors," IEEE
Transactions on Computers, vol. 54, May 2005, pp. 630-640.

[4] M. Milenkovic, A. Milenkovic, and E. Jovanov, "Hardware
Support for Code Integrity in Embedded Processors," in The
2005 International Conference on Compilers, Architectures
and Synthesis for Embedded Systems. San Francisco, CA, USA:
ACM Press, 2005.

[5] G. E. Suh, W. O. D. Charles, S. Ishan, and D. Srinivas, "Design
and Implementation of the Aegis Single-Chip Secure Processor
Using Physical Random Functions," in Proceedings of the 32nd
Annual International Symposium on Computer Architecture:
IEEE Computer Society, 2005.

[6] J. Black and P. Rogaway, "A Block-Cipher Mode of Operation
for Parallelizable Message Authentication," in
EUROCRYPT'02, Amsterdam, Netherlands, 2002, pp. 384-397.

[7] N. Ferguson and B. Schneier, Practical Cryptography: John
Wiley & Sons, 2003.

[8] T. Zhang, X. Zhuang, S. Pande, and W. Lee, "Anomalous Path
Detection with Hardware Support," in The 2005 International
Conference on Compilers, Architectures and Synthesis for
Embedded Systems, San Francisco, CA, USA, 2005, pp. 43-54.

[9] M. Drinic and D. Kirovski, "A Hardware-Software Platform for
Intrusion Prevention," in 37th Annual ACM/IEEE International
Symposium on Microarchitecture (MICRO), Portland, OR,
USA, 2004, pp. 233-242.

[10] W. Shi, H.-H. S. Lee, M. Ghosh, and C. Lu, "Architectural
Support for High Speed Protection of Memory Integrity and
Confidentiality in Multiprocessor Systems," in Proceedings of
the 13th International Conference on Parallel Architectures
and Compilation Techniques: IEEE Computer Society, 2004.

[11] W. Shi and H.-H. S. Lee, "Accelerating Memory Decryption
with Frequent Value Prediction," in ACM International
Conference on Computing Frontiers, Ischia, Italy, 2007, pp. 35-
46.

[12] "Cadence Aes Cores,"
<http://www.cadence.com/datasheets/AES_DataSheet.pdf>
(Available 2007).

[13] T. Austin, E. Larson, and D. Ernst, "Simplescalar: An
Infrastructure for Computer System Modeling," IEEE
Computer, vol. 35, February, pp. 59-67.

[14] N. Kim, T. Kgil, V. Bertacco, T. Austin, and T. Mudge,
"Microarchitectural Power Modeling Techniques for Deep Sub-
Micron Microprocessors," in International Symposium on Low
Power Electronics and Design (ISLPED), Newport Beach, CA,
USA, 2004, pp. 212-217.

[15] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T.
Mudge, and R. B. Brown, "Mibench: A Free, Commercially
Representative Embedded Benchmark Suite," in IEEE 4th
Annual Workshop on Workload Characterization, Austin, TX,
USA, 2001.

[16] C. Lee, M. Potkonjak, and W. H. Mangione-Smith,
"Mediabench: A Tool for Evaluating and Synthesizing
Multimedia and Communications Systems," in International
Symposium on Microarchitecture, 1997, pp. 330-335.

[17] I. Branovic, R. Giorgi, and E. Martinelli, "A Workload
Characterization of Elliptic Curve Cryptography Methods in
Embedded Environments," ACM SIGARCH Computer
Architecture News, vol. 32, June, pp. 27-34.

[18] J. Xu, Z. Kalbarczyk, S. Patel, and R. K. Iyer, "Architecture
Support for Defending against Buffer Overflow Attacks," in
Workshop on Evaluating and Architecting System dependability
(EASY), San Jose, CA, USA, 2002.

[19] H. Ozdoganoglu, C. E. Brodley, T. N. Vijaykumar, B. A.
Kuperman, and A. Jalote, "Smashguard: A Hardware Solution
to Prevent Security Attacks on the Function Return Address,"
Purdue University, TR-ECE 03-13, November 2003 2003.

[20] N. Tuck, B. Calder, and G. Varghese, "Hardware and Binary
Modification Support for Code Pointer Protection from Buffer
Overflow," in 37th Annual ACM/IEEE International
Symposium on Microarchitecture (MICRO), Portland, OR,
USA, 2004, pp. 209-220.

[21] G. E. Suh, J. W. Lee, and S. Devadas, "Secure Program
Execution Via Dynamic Information Flow Tracking," in 11th
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), Boston, MA, USA, 2004, pp.
85-96.

[22] J. R. Crandall and F. T. Chong, "Minos: Control Data Attack
Prevention Orthogonal to Memory Model," in 37th Annual
IEEE/ACM International Symposium on Microarchitecture
(MICRO), Portland, OR, USA, 2004, pp. 221-232.

[23] R. B. Lee, P. C. S. Kwan, J. P. McGregor, J. Dwoskin, and Z.
Wang, "Architecture for Protecting Critical Secrets in
Microprocessors," in International Symposium on Computer
Architecture, Madison, WI, 2005, pp. 2-13.

[24] B. Gassend, G. E. Suh, D. Clarke, M. v. Dijk, and S. Devadas,
"Caches and Hash Trees for Efficient Memory Integrity
Verification," in Proceedings of the 9th International
Symposium on High-Performance Computer Architecture
Anaheim, California, 2003.

[25] D. Lie, J. Mitchell, C. A. Thekkath, and M. Horowitz,
"Specifying and Verifying Hardware for Tamper-Resistant
Software," in IEEE Conference on Security and Privacy,
Berkeley, CA, USA, 2003, pp. 166-177.

[26] C. Lu, T. Zhang, W. Shi, and H.-H. S. Lee, "M-Tree: A High
Efficiency Security Architecture for Protecting Integrity and
Privacy of Software," Journal of Parallel and Distributed
Computing, vol. 66, pp. 1116-1128.

120

