
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2004; (in press) (DOI: 10.1002/spe.572)

Microbenchmarks for
determining branch predictor
organization

Milena Milenkovic, Aleksandar Milenkovic∗,† and Jeffrey Kulick

Electrical and Computer Engineering Department, The University of Alabama in Huntsville,
301 Sparkman Drive, Huntsville, AL 35899, U.S.A.

SUMMARY

In order to achieve an optimum performance of a given application on a given computer platform, a
program developer or compiler must be aware of computer architecture parameters, including those related
to branch predictors. Although dynamic branch predictors are designed with the aim of automatically
adapting to changes in branch behavior during program execution, code optimizations based on the
information about predictor structure can greatly increase overall program performance. Yet, exact
predictor implementations are seldom made public, even though processor manuals provide valuable
optimization tips.

This paper presents an experimental flow with a series of microbenchmarks that determine
the organization and size of a branch predictor using on-chip performance monitoring registers.
Such knowledge can be used either for manual code optimization or for design of new, more architecture-
aware compilers. Three examples illustrate how insight into exact branch predictor organization can be
directly applied to code optimization. The proposed experimental flow is illustrated with microbenchmarks
tuned for Intel Pentium III and Pentium 4 processors, although they can easily be adapted for other
architectures. The described approach can also be used during processor design for performance evaluation
of various branch predictor organizations and for testing and validation during implementation. Copyright
c© 2004 John Wiley & Sons, Ltd.

KEY WORDS: compiler optimizations; microbenchmarks; branch predictor; performance monitoring

INTRODUCTION

Improved performance of today’s microprocessors is not only due to the increase in the operating
frequency, but also due to the increase in processor complexity in every new generation.
Compilers must keep up with new processor features, such as extended instruction sets, pipelining,

∗Correspondence to: Aleksandar Milenkovic, Electrical and Computer Engineering Department, The University of Alabama in
Huntsville, 301 Sparkman Drive, Huntsville, AL 35899, U.S.A.
†E-mail: milenka@ece.uah.edu

Copyright c© 2004 John Wiley & Sons, Ltd.
Received 4 December 2002

Revised 28 July 2003
Accepted 28 July 2003

M. MILENKOVIC, A. MILENKOVIC AND J. KULICK

multiple-level cache hierarchy, instruction-level parallelism, and branch prediction, exploiting new
optimization possibilities. Although compilers for new processors do include some advanced
optimization features, for instance the Intel C++ Compiler [1], future compilers must be even more
aware of the underlying architecture. Currently, program developers must specifically set compiler
switches that notify the compiler which architecture to optimize the code for. The Intel processors also
include CPUID (CPU identification instruction) that provides information about some of the processor
features, such as cache and TLB (Translation Look-aside Buffer) [1]. Another way of extracting
the required information is to perform a series of microbenchmarks that experimentally explore
the architectural properties. For instance, a program can automatically determine memory hierarchy
parameters [2,3]. This kind of program can be incorporated into future compilers: the compiler would
first assess any relevant architectural parameters of a processor and then optimize the code according to
the obtained parameter values. The information about the underlying architecture can also be applied to
manual code optimizations, such as a blocking transformation that improves code spatial locality [4].

The successful resolution of conditional branches is a crucial performance issue in modern
superscalar processors. When a conditional branch enters the execution pipeline, all instructions
following the branch must wait for branch resolution. A common solution to this problem is speculative
execution: the branch outcome and/or its target are dynamically or statically predicted, so the execution
can go on without stalling. If a branch is mispredicted, speculatively executed instructions must
be flushed and their results discarded, thus wasting a significant number of processor clock cycles.
For example, the Pentium 4 has a misprediction penalty of 20 clock cycles [5], and future processors
may have even higher penalties, up to 50 clock cycles [6], since deep pipelines are necessary for
achieving very high clock frequencies.

With static branch prediction, a branch outcome is predicted statically at compile time using the
branch type, branch direction, and/or profiling information. Although static prediction may work well
for some applications, dynamic prediction solves more general cases, since it is able to automatically
adapt to changes in branch behavior during program execution. Predictor size and organization may
limit its ability to give a correct prediction. If the compiler/developer is aware of the intricacies of the
branch predictor, the code can be optimized to overcome some limitations, and consequently overall
program performance increases.

Modern processors, such as the Intel Pentium III (P6 architecture) and the Pentium 4 (NetBurst
architecture), include some form of dynamic branch prediction mechanisms, but information about
exact predictor organization is rather scarce. On the other hand, almost all modern processors include
performance-monitoring registers that can count several branch-related events, and quite powerful tools
for easy access to these registers are available [7,8].

This paper presents an experiment flow that uncovers branch predictor organization using
performance-monitoring registers and illustrates how such knowledge can improve code optimization.
A set of ‘spy’ microbenchmarks tests the existence and/or value of particular branch predictor
parameters: the use of global and/or local branch history, the number of history bits, and
the predictor size and organization (http://www.ece.uah.edu/∼lacasa/). Another application of the
proposed experimental flow is for testing and validation of the branch predictor design during
processor implementation. The microbenchmarks can also be used in research looking for better branch
predictors.

The proposed experimental flow is illustrated on Pentium III and Pentium 4 processors, though
only minor modifications are necessary to adapt the proposed microbenchmarks to other processor

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; (in press)

MICROBENCHMARKS

BTB

...

Outcome Predictor

Figure 1. General branch predictor scheme.

architectures. The results indicate that Pentium III has a local branch predictor with four branch history
bits, and the Pentium 4 uses a global branch predictor with 16 history bits. The experiments also
determine the organization of the branch target buffer (BTB) and the address bits used to access it.

The next section provides an overview of dynamic branch prediction, followed by examples of
predictor-aware code optimizations. A description of the experimental environment sets the stage for
a detailed explanation of the proposed experimental flow. Finally, the results of the experiments for
observed architectures are presented.

DYNAMIC BRANCH PREDICTION

No matter how complex a branch predictor is, it can be described by a variation of the general scheme
(Figure 1); this consists of two major parts: a BTB for the prediction of branch targets, and an outcome
predictor for the prediction of branch outcomes.

The BTB is a cache structure, where a part of the branch address is used as the cache index, and
the cache data is the last target address of that branch. More complex BTBs can hold more than one
possible target address and some type of mechanism to choose which target instructions should be
speculatively executed. Some implementations can also store target instructions, and even whole target
basic blocks [4]. The prediction of branch outcomes can be coupled or decoupled with the BTB: if the
outcome predictor and the BTB are coupled, only branches that hit in the BTB are predicted, while a
static prediction algorithm is used on a BTB miss. If the BTB is decoupled from the outcome predictor,
all branch outcomes are predicted using the outcome predictor.

Dynamic prediction of a branch outcome is based on the state of a finite-state machine, which is
usually a two-bit saturating counter [9], depicted in Figure 2. In the states strongly taken and weakly
taken a branch is predicted as taken, and it is predicted as not taken in the other two states, weakly not
taken and strongly not taken.

This counter is a cell of a branch prediction table (BPT), which could be accessed in different ways.
The simplest BPT index is a portion of the branch address. More complex two-level predictors combine
the branch address or a part of it with a branch history register (BHR). The BHR is a shift register that
keeps the history of N most recent branch outcomes, where N represents the number of bits of the
shift register [10,11]. The BPT index function is usually a concatenation or exclusive OR of the branch

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; (in press)

M. MILENKOVIC, A. MILENKOVIC AND J. KULICK

Strongly NT

00

NT

Weakly NT

01

T

NT

Strongly T

10

T

Weakly T

11

NT

T

TNT

Figure 2. Two-bit saturating counter: T = taken branch; NT = not taken.

address and the corresponding BHR. Based on the type of recorded branch history, the predictors can
be global and local. Global two-level predictors benefit from correlations between subsequent branches
in the program execution flow (Figure 3(a)), while local predictors are based on correlation between
subsequent executions of the same branch (Figure 3(b)).

In order to further reduce the number of branch mispredictions in wide-issue superscalar processors,
more advanced mechanisms have been proposed, for example, hybrid branch predictors. Hybrid branch
predictors can include both global and local prediction mechanisms, as well as some other prediction
schemes, for example, specialized loop predictors [12]. Instead of exploiting the correlation between
outcomes of the last N branches (pattern based), the dynamic branch predictor can use the information
of the path to the current branch (path based) [13]. The path history register stores address bits
from each of the most recently executed P branches, thus making the prediction path dependent.
One predictor can combine both pattern-based and path-based approaches. Specialized predictors can
handle some special branch types, such as returns and loops.

In order to reduce the number of mispredictions, branch predictors are getting larger and more
complex. However, code optimizations are still vital for processor performance, since the large number
of pipeline stages and superscalar fetch/decode make modern processors more sensitive to branch
mispredictions.

EXAMPLES OF BRANCH OPTIMIZATION BY ARCHITECTURE-AWARE COMPILERS

The following three examples illustrate how knowledge about the underlying branch predictor structure
can improve code optimization. The first example deals with processor architectures with global branch
predictors, and it is inspired by the code generation guidelines explained in Sun’s UltraSparc User’s
Manual [14]. The second example shows a possible optimization for local branch predictors, and it
is based on tips given in one of the Intel Pentium III optimization guidelines [15]. Finally, the last

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; (in press)

MICROBENCHMARKS

Branch Address Global BHR

Index Function

Branch Prediction Table

Outcome

Prediction

...

... ...

...

(a)

Branch Address

Index

Function

Branch Prediction Table

Outcome

Prediction

...

... ...

...

BHR

BHR

BHR

... BHR

BHR

... ...

... BHR

Local BHR Table

(b)

Figure 3. Global (a) and local (b) two-level branch predictor.

example shows how knowledge about the size and organization of the branch predictor structure can
reduce branch interference. Actual implementation of an architecture-aware compiler, which is outside
the scope of this paper, must also take into account other performance factors, such as possible cache
miss increases due to changes in the executed code length.

Let us first consider a processor with a global branch predictor that uses N global history bits.
This predictor is able to correctly predict the outcome of a branch correlated with up to N previously
executed branches, while correlations longer than N cannot be detected. If the outcome of a particular

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; (in press)

M. MILENKOVIC, A. MILENKOVIC AND J. KULICK

Branch A

Block 1 Block 2

0 1

Branch B

Block 3 Block 4

0 1
Branch C

Block 5 Block 6

0 1

Block 7

Branch D

0 1

Block 8 Block 9

Branch A

Block 1 Block 2

0 1

Branch B

Block 3 Block 4

0 1

Branch C

Block 5 Block 6

0 1

Block 7-1

Branch D1

0

Block 8 Block 9

Block 7-2

Branch D2

1

1
0

(a) (b)

Figure 4. Original (a) and optimized (b) code structure: branch D depends on two previously executed branches,
and the branch predictor is global with one history bit.

branch depends on more than N previous branches, the compiler can split the code and duplicate
branches as necessary, replacing a long branch correlation with several shorter ones.

Figure 4(a) shows the control flow for one such scenario, where the branch D outcome is the AND
function of the outcomes of two previously executed branches: A and B, or A and C (Table I). In this
example the branch predictor uses only one bit of global history (N = 1). Since the predictor is able to
‘remember’ only one previous branch, it cannot distinguish between the branch histories 01, when D is
not taken, and 11, when D is taken. The BPT index function takes as arguments the branch D address
and one history bit, so the same BPT cell is accessed in both cases. Assuming a two-bit saturating
counter, one or both corresponding branch D outcomes are mispredicted, depending on the counter
start state (Table I(a)). In the other two cases—that is, branch histories 00 and 10—one history bit is
enough for a correct prediction, since the outcome of branch D is equal to the outcome of the previous
branch. Figure 4(b) shows the code modified by an architecture-aware compiler. Block 7 code and
branch D are duplicated to blocks 7-1 and 7-2 and branches D1 and D2, respectively, where branch
D1 is on the not taken path of branch A, and branch D2 is on the taken path. Now the outcome of
branch D1 is always 0, and the outcome of branch D2 is equal to the branch C outcome (Table I(b)).

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; (in press)

MICROBENCHMARKS

Table I. Branch outcome scenarios for original (a) and
optimized code structure (b). In the branch predictor with
one global history bit, a 2-bit saturation counter with starting
state WT (weakly taken) mispredicts both bold outcomes

and with other starting states, mispredicts one of them.

(a)

Branch A Branch B/C Branch D

0 0 0
0 1 0
1 0 0
1 1 1

(b)

Branch A Branch B Branch D1

0 0 0
0 1 0

Branch A Branch C Branch D2

1 0 0
1 1 1

Since branches D1 and D2 are located at different addresses, they have separate predictor entries for
the same branch histories, so both are correctly predicted by separate two-bit counters. In all cases we
assume that this control flow is a part of a loop, and the predictor can be dynamically ‘trained’.

A similar optimization can be done for processors with a local branch predictor. Let us consider
a processor with a local branch predictor using N bits of local branch history. The outcome of a
loop condition branch can be correctly predicted if the loop does not have more than N iterations.
Loops with more than N iterations can be unrolled, so the existing predictor can predict each unrolled
loop. The compiler should perform loop unrolling if one such loop belongs to a critical portion of the
code that executes frequently, and if it should be unrolled relatively few times. Figure 5(a) shows an
example of code where the inner loop executes eight times and then exits, while the outer loop executes
1 million times. If this code executes on a processor with a local branch predictor using four bits of
local history and two-bit saturation counters, the inner loop condition branch is mispredicted once
every nine goes, thus having 1 million branch mispredictions. After eight loop iterations, the two-bit
counter for the 1111 history will be in the strong taken state. At the loop exit, four bits of local history
are the same as in the previous four iterations (1111); hence the exit case uses the same BPT cell as
others, and cannot be predicted correctly. An architecture-aware compiler can unroll the inner loop, and
in this example twice is enough (Figure 5(b)). Both new loop branches can be correctly predicted with
four bits of local history: now the four-bit branch history at the exit is unique with pattern 1111, so the
exit case is mapped to the separate BPT entry. The number of lost execution cycles due to mispredicted
branches is significantly reduced.

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; (in press)

M. MILENKOVIC, A. MILENKOVIC AND J. KULICK

for (i=0;i<1000000;++i){
...
//original inner loop
for (j=0;j<8;++j){
...
}

...
}

for (i=0;i<100000;++i){
...

//inner loop unrolled twice
for (j=0;j<4;++j){ ...
...
}
for (j=0;j<4;++j){
...
}

...
}

(a) (b)

Figure 5. Original (a) and optimized (b) C code: original inner loop depends on its eight previous executions.

... ...
addr512: jle l1 addr512: jle l1

... ...
l1: ... l1: ...

... ...
addr1024: jle l2 noop

... addr1025: jle l2
...

(a) (b)

Figure 6. Original (a) and optimized (b) assembly code: branches mapping to the same predictor entry.

If the compiler is aware of predictor size and organization (i.e. the number of ways and sets and
function used for the index), it can prevent branch interference in the critical portions of the code.
For example, inserting a required number of noop instructions in the code can separate branches that
map to the same predictor entry. Figure 6(a) shows an example of two branches mapping to the same
BTB entry, where it is assumed that branches at a distance of 512 bytes access the same BTB cell.
If the BTB is always updated, both branch targets will be mispredicted, one always replacing the other.
If both branches belong to a frequently executed portion of the code, an architecture-aware compiler
can insert a noop instruction before one of the branches, thus preventing interference in the BTB
(Figure 6(b)).

An architecture-aware compiler can encompass these mechanisms and other similar techniques.
If applied to critical portions of the code, these optimizations can significantly increase performance.
However, to be able to do so, the compiler needs to know the details about the branch predictor
organization: the use of global, local, or both types of branch history; the number of history bits;
and the BTB size and organization.

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; (in press)

MICROBENCHMARKS

EXPERIMENTAL ENVIRONMENT

This paper focuses on the widely used Intel P6 (Pentium III) and NetBurst (Pentium 4) architectures,
although the proposed microbenchmarks can be applied, with some modifications, to other
microprocessor architectures. For both P6 and NetBurst architectures, Intel sources [1,5,15] do not
provide exact descriptions of the implemented branch predictors. Rather, they provide the exact number
of BTB entries and several hints on program optimization that indicate some outcome predictor
parameters. If a branch is not in the BTB, a static branch prediction is used, which means that the BTB
and outcome predictor are coupled. The static prediction mechanism predicts backward conditional
branches as taken, and forward branches as not taken. A return address stack of a known size predicts
return addresses.

The P6 optimization reference manual states that the prediction algorithm includes pattern matching
and can track up to the last four branch directions per branch address [15], most probably meaning
that the P6 branch predictor has a local history component with four history bits. The P6 BTB has 512
entries.

In the NetBurst architecture implemented in the Pentium 4, Intel claims to use a new prediction
algorithm, 33% better than in the P6. One of the assembly/compiler coding rules for the Pentium 4
states that frequently executed loops with a predictable number of iterations should be unrolled to
reduce the number of iterations to 16 or fewer, and if the loop has N conditional branches, it should
be unrolled so that the number of iterations is 16/N [1]. This rule indicates that the Pentium 4 uses a
global outcome history, with probably 16 history bits, but the Intel sources never specifically say so.

Another interesting characteristic of the NetBurst architecture, tightly coupled with the branch
prediction mechanism, is an execution trace cache [5], which stores and delivers sequences of traces,
built from decoded instructions according to the execution flow. Intel sources explain that the trace
cache and front-end translation engine have cooperating branch prediction hardware, so branch targets
can be fetched from the trace cache, or in the case of a trace cache miss, from the second-level cache
or memory. The trace cache BTB is smaller (512 entries) compared to the front-end BTB (4K entries).
It seems that both the trace cache and front-end share the same outcome predictor mechanism [15],
but apart from trace cache size (12K micro-ops), and the trace cache line size (6 micro-ops), Intel does
not disclose many details about its implementation. This work considers only the front-end BTB, and
more experiments with the trace cache component can be found in [16].

Both P6 and NetBurst architectures have several performance counters, that are able to measure var-
ious branch-related events, such as the number of retired branches, including unconditional branches,
and the number of mispredicted branches, using event-based sampling. Since the number of branches
depends on a particular microbenchmark and the number of times it executes, throughout the paper the
MPR (misprediction ratio) is often used instead of the number of mispredicted branches. The MPR is
the number of mispredicted branches divided by the total number of conditional branch instructions.

Although event-based sampling is not precise, it gives a good estimation of the number of events.
A performance counter is configured to count one or more types of events and to generate an interrupt
when it overflows. The counter is preset to a modulus value that will cause the overflow after a specific
number of events have been counted. In this research the Intel VTune Performance Analyzer version 5.0
was used for the configuration and access of performance counters. Performance counters on most non-
Intel architectures, as well as Intel processors, can be accessed using the freeware PAPI (performance
application programming interface) tool, developed at the University of Tennessee [8].

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; (in press)

M. MILENKOVIC, A. MILENKOVIC AND J. KULICK

DM_Index_T

Distance

.........

DM_Index

DM_Index_T

DM_Index_T

...

DM_Index_T

D=2

D=4

D=2i-1

01i-1ii+j-1

D=2i

j = log
2
N

BTB

Figure 7. BTB size and organization: varying the distance.

All test benchmarks are compiled using a Microsoft Visual Studio 6.0 C compiler, with disabled
optimization, preventing the compiler optimizations from changing the order and number of
conditional branches. For experiments with a relatively large number of branches, we have also
developed programs to generate benchmarks to our assembly specifications. In order to get reliable
values for the performance counters, the execution time of the monitored code must be significantly
larger than that of the interrupt service routine. Therefore, the test code is placed within a loop that
executes a relatively large number of times.

EXPERIMENTAL FLOW

The experimental flow consists of two groups of experiments targeting the BTB and the outcome
predictor. BTB experiments uncover the BTB organization and address bits used as an index, and
outcome predictor experiments determine the existence of local and global prediction components, and
the length of the corresponding history registers.

BTB experiments

The Intel documentation for P6 does not describe its BTB organization (i.e. whether it is direct mapped
or set associative), and the degree of associativity. One way to determine the number of ways and the
address bits used as the BTB index is to run a set of microbenchmarks varying the address distance D
between the branch instructions (Figure 7). Each microbenchmark has NBTB − 1 conditional branches
in a loop, which makes a total of NBTB conditional branches, where NBTB is the number of BTB
entries. These conditional branches are always taken, so they are mispredicted by the static algorithm
if not present in the BTB. Figure 8 shows the fragment of the microbenchmark code.

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; (in press)

MICROBENCHMARKS

...
for (i=0; i < liter; i++) {
 _asm {
 noop
 ...
 noop
 mov eax, 10

 cmp eax, 15
 jle l0
 noop
 ...
 noop
 l0: jle l1
 noop
 ...
 noop
 l1: jle l2

distance D

distance D

multiple of distance D

 ...

 l510: noop
 }

}

Figure 8. Benchmark for testing BTB organization.

For a ‘fitting’ distance DF, when all branches under consideration can fit in the BTB, the number
of mispredictions is close to zero, i.e. the performance counter counts only a negligible number of
mispredictions. If there is only one distance DF, then the BTB is direct mapped, and the address bits
used as the BTB index are Addr[i + j − 1 : i] (Figure 7). If there are exactly two distances DF, the
BTB is two-way set associative, and bits used as the index are Addr[i + j − 2 : i]. Similarly, if there
are exactly three distances DF, the BTB is four-way set associative. In general, if there are m ‘fitting’
distances, the BTB is 2m−1-way set associative, and the index bits are Addr[i + j − m : i].

There is one exception to this experiment, and that is the unlikely border case in which low-order
address bits are used as the index, i.e. Addr[j − 1 : 0]. For any degree of associativity, this BTB will
have only one ‘fitting’ distance DF = 1. In this case, an additional experiment is necessary to establish
the number of BTB ways. Instead of finding the number of branches that would fill the whole BTB,
this additional experiment finds the number of branches that fill a BTB set, and a distance DS such
that those branches map into the same set. If there are more branches than ways mapping into the same
set, the MPR will be high. The same number of branches at some other distance might also produce
a high MPR, if there are sets where the number of competing branches is larger than the number of

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; (in press)

M. MILENKOVIC, A. MILENKOVIC AND J. KULICK

Pick arbitrarily large number of branches B

and smallest possible distance D, perform experiment

High MPR for B at D?

D reached maximum?

Was MPR ever high

in the experiment?

Yes

No

Yes

Yes

Number of ways is B

Decrease B

Increase D

No

Reset D,

increase B

No

Figure 9. Searching the number of branches that fill a cache set.

the BTB ways. For example, 16 branches mapping into a four-way set will have a high MPR, as well
as 16 branches mapping into two four-way sets. If the number of branches is equal or less than the
number of ways, they do not collide at any distance. The corresponding microbenchmark is similar to
the one described for the previous experiment (Figure 8), but in general, it requires a larger number
of runs to establish correct BTB organization since both the number of branches fitting in the set and
the branch distance must be varied. Figure 9 shows the search process for the correct number of BTB
ways. The algorithm first picks an arbitrarily large number of branches and sets them at the smallest
possible distance D. If the MPR is low, the distance is increased and the experiment is repeated. When
a high MPR is reached, it means that B branches collide in the same set, and the number of branches is
decreased. The process stops when the maximum distance is reached, unless the number of branches
picked at the beginning is smaller than the number of ways. In this case, the MPR is low throughout
the series of experiments, and the number of branches B should be increased.

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; (in press)

MICROBENCHMARKS

A variation in the microbenchmark shown in Figure 8 can be used to verify the assumption about the
number of BTB entries, by increasing the number of branches for the ‘fitting’ distances. For example, if
the actual number of BTB entries is twice as large as the assumed value, and the previous experiments
have found m distances DF, the set of experiments with the actual number of entries should find m − 1
such distances; i.e. the BTB would be 2m−2-way set associative. In general, if the actual number of BTB
entries is 2n times greater than the assumed value, the experiments should find m−n ‘fitting’ distances.
If the experiments with a larger number of conditional branches do not find any such distances, the
assumption about the size is correct.

Outcome predictor experiments

The set of experiments for uncovering the characteristics of outcome predictor component (Figure 10)
is devised in such a way that most of the branches are easily predictable; i.e. a few ‘spy’ branches
generate the misprediction rate for the whole microbenchmark. The microbenchmarks should be
carefully tuned to avoid any interference between different branches in the branch predictor. Since the
BTB organization is known from the previous set of experiments, it is possible to check the assembly
code for branch interference and insert dummy instructions if necessary.

Step 1

This step determines the maximum length of a local history pattern that the predictor can correctly
predict, for just one branch in the loop, i.e. the ‘spy’ branch. The loop condition branch has just one
outcome not taken, when it exits; otherwise it is taken. After enough iterations, misprediction due
to this branch is negligible. For the ‘spy’ branch, different repeating local history patterns of length
LSpy can be used; however, the simplest pattern has all its outcomes the same except for the last one.
If ‘1’ means that the branch is taken, and ‘0’ not taken, the local history patterns are 1111. . .110 and
0000. . .001.

Figure 11(a) shows the code for the Step 1 experiment, and Figure 11(b) shows a fragment of
the corresponding assembly code for Intel ×86 architecture, when the pattern length LSpy = 4.
Note that the ‘spy’ branch if ((i%4) == 0) is compiled as jne (jump short if not equal), so the
local history pattern for this branch is 1110. The fragment does not show the loop, which is compiled
as the combination of instructions jae (jump short if above or equal) at the beginning of the loop and
unconditional jmp at the end, so the jae outcome is 0 until the loop exit.

The MPR is low for all LSpy pattern lengths up to a certain number L, and then the outcome predictor
is not able to predict the last outcome of the ‘spy’ branch. That is, for each pattern of length LSpy > L,
the ‘spy’ branch is mispredicted once in LSpy times. However, this experiment does not tell whether the
predictor has a local prediction component with history registers of length L − 1, or a global predictor
component with a history register of length 2∗(L − 1). Two cases must be considered, as depicted in
Figure 12.

(i) The outcome predictor has a local history component, so any local pattern of the length L can
be correctly predicted, including the ‘spy’ pattern.

(ii) The outcome predictor has a global history component, so the local history pattern 11. . . 10
of the ‘spy’ branch with L − 1 1s is correctly predicted, but by using the global history of

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; (in press)

M. MILENKOVIC, A. MILENKOVIC AND J. KULICK

Pattern length = L

local global

Yes No

Step 1: What is maximum length of the "spy" branch
pattern that would be correctly predicted when the spy
branch is the only branch in a loop?

Step 2: Are there (L - 1) bits of local component or
2*(L - 1) bits of global component?

Step 3: Is there a global
component that uses at
least 2 bits of global
history?

Step 4: How many
bits in global history
register?

Step 5: 0 or 1 bit in
global history
register?

Step 6: Is there a local
component that uses at
least n bits of local
history?

Figure 10. Experimental flow for the outcome predictor.

void main(void) {
int long unsigned i;
int a=1;
int long unsigned liter = 10000000;

for (i=0; i<liter; ++i){
if ((i%LSpy) ==0) a=0; //spy branch

}
}

(a)

; Line 6
0002e mov eax,DWORD PTR _i$[ebp]
00031 xor edx, edx
00033 mov ecx, 4
00038 div ecx
0003a test edx, edx
0003c jne SHORT $L38
0003e mov DWORD PTR _a$[ebp], 0

$L38:
(b)

Figure 11. Step 1 microbenchmark and the assembly fragment, when LSpy = 4.

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; (in press)

MICROBENCHMARKS

111...10 L-1

local history: 111...1 � 0

L
global history: 110110110...0110 � 0

2(L-1) loop

spy branchspy branch

(b)

(a)

111...10 L-1

local history: 111...1 � 0

LL
global history: 110110110...0110 � 0

2(L-1) loop

spy branchspy branch

(b)

(a)

Figure 12. Two possible cases for the maximum predictable pattern length L in Step 1.

void main(void) {
int long unsigned i;
int a=1;
int long unsigned liter = 10000000;
for (i=0; i<liter; ++i){

if (i<0) a=1; //dummy branch #1
...
if (i<0) a=1; //dummy branch #2*(L-1)
if ((i%L) ==0) a=0; //spy branch

}
}

Figure 13. Step 2 microbenchmark.

previous 2∗(L − 1) branches. Since the microbenchmark has just the loop condition and the
‘spy’ branch, all predictions are correct if all relevant local history fits into the global history
register. For example, just before execution of the ‘spy’ branch with 0 outcome, the content of
the global history register is 10 1010. . . 10, where the underlined and bold 1s are outcomes of
the ‘spy’ branch, and the 0s are the outcomes of the loop condition branch.

Step 2

Step 2 verifies which one of these two hypotheses matches the predictor under test. If the conditional
branch in the loop is preceded by 2∗(L − 1) ‘dummy’ conditional branches, having always the same
outcome, then no local ‘spy’ history is present in the global history register when the ‘spy’ branch
prediction is generated. One example for the ‘dummy’ branch is if (i < 0) a = 1 (Figure 13). If the
MPR still stays low, the correct hypothesis is (i); i.e. the predictor has a local history component.
The experiment flow proceeds to Step 3, which determines whether the outcome predictor also has a
global history component. If the MPR increases, the correct hypothesis is (ii); i.e. the predictor has a
global history component. In this case, the experiment flow proceeds to Step 6 to determine whether
the outcome predictor also has a local history component.

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; (in press)

M. MILENKOVIC, A. MILENKOVIC AND J. KULICK

void main(void){
int a,b,c;
int long unsigned i;

for (i=1;i<=10000000;++i){
if ((i%L1) == 0) a=1;
else a=0;
if ((i%L2) == 0) b=1;
else b=0;
if ((a*b) == 1) c=1; // spy branch

}
}

Figure 14. Step 3 microbenchmark.

Step 3

The Step 3 microbenchmark has three conditional branches in a loop, where the first two have
predictable patterns 11. . . 10 of different pattern lengths L1 and L2, such that L1, L2 ≤ L, and the
smallest common denominator for (L1, L2) is greater than L. For example, if L = 4, the values for
L1, L2 may be L1 = 3 and L2 = 2. The third branch, the ‘spy’, is correlated with the first two, and
is not taken when both previous branches are not taken (Figure 14). The pattern of the third branch is
11. . . 10, and its length is greater than L, so it cannot be predicted by the local component, while both
the first and second branch will be correctly predicted. That is, the local predictor can correctly predict
all 1 outcomes of the ‘spy’ branch, but a global predictor with at least two history bits is needed for a
correct prediction of the ‘spy’ 0 outcome. Hence, if the MPR is low, the number of global history bits
is equal to or greater than 2, and the next step is Step 4. Otherwise, there is no global component or
there is just one bit of global history, and the next step is Step 5.

Step 4

This step determines the length of the global history register. The simplest way is to insert ‘dummy’
conditional branches (e.g. pattern 111. . .11) before the ‘spy’ conditional branch. The ‘spy’ branch is
not predicted correctly if the number of ‘dummy’ branches is greater than the number of global history
bits−2, so the number of global history bits is determined by varying the number of ‘dummy’ branches
(Figure 15).

Step 5

The Step 5 microbenchmark has just two conditional branches in the loop, where the first one has the
local history pattern 111. . .110 of length L3 > L, and the second one has the same outcome as the
first, as shown in Figure 16. Since it is known from Step 3 that the predictor does not use more than

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; (in press)

MICROBENCHMARKS

void main(void){
int a,b,c;
int long unsigned i;

for (i=1;i<=10000000;++i){
if ((i%L1) == 0) a=1;
else a=0;
if ((i%L2) == 0) b=1;
else b=0;
if (i<0) a=1; //dummy branch
...
if (i<0) a=1; //dummy branch
if ((a*b) == 1) c=1;

}
}

Figure 15. Step 4 microbenchmark.

void main(void){
int a;
int long unsigned i;
int long unsigned liter = 10000000;
for (i=1;i<=liter;++i){

if ((i%L3) == 0) a=1; //L3 > L
if ((i%L3) == 0) a=1; //spy branch

}
}

Figure 16. Step 5 microbenchmark.

one global history bit, the first conditional branch is mispredicted once every L3 times. If there is no
global component at all, the second branch is also mispredicted once every L3 times, while it is always
predicted correctly if there is a one-bit global history component. The number of mispredictions in this
experiment determines the existence of a one-bit global history predictor.

Step 6

The presence of a global component with 2∗(L−1) history bits is proved in the previous steps, and this
step probes for the presence of a local component. The Step 6 microbenchmark has 2∗(L−1) ‘dummy’
branches (Figure 17) and varies the pattern length LSpy of the ‘spy’ branch. If the MPR is low for
some LSpy, there is an equivalent local component with at least LSpy − 1 history bits. Depending on
the decision mechanism involved, there could be more local history bits, so further experiments might
be needed. This, however, is outside the scope of this paper.

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; (in press)

M. MILENKOVIC, A. MILENKOVIC AND J. KULICK

void main(void){
int long unsigned i;
int a=1;
int long unsigned liter = 10000000;
for (i=0; i<liter; ++i){

if (i<0) a=1;//dummy branch #1
...
if (i<0) a=1;//dummy branch #2*(L-1)
if ((i%LSpy) == 0) a=0; //spy branch

}
}

Figure 17. Step 6 microbenchmark.

0%

50%

100%

2 4 8 16 32 64

Distance

Misprediction rate

Figure 18. Misprediction rate for NBTB conditional branches with varying distances.

RESULTS

BTB results

For the P6 architecture (NBTB = 512) the MPR is close to 0% when the distance between addresses of
subsequent branches is 4, 8, or 16; and it is close to 100% for other distances (Figure 18). Since three
different distances produce the low MPR, the P6 architecture has the BTB organized in four ways, 128
sets. Address bits 4–10 are used as the set index.

This result can also be obtained by trying to map B branches in the same set, varying the distance
between them, and the number of branches (Table II). It can be seen that 16 branches collide in the
same set when at a distance of 16, and eight branches collide at a distance of 2048, while four branches
do not collide at any distance. Hence, the conclusion is the same: the P6 architecture has four cache
ways (Figure 19).

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; (in press)

MICROBENCHMARKS

Table II. P6 branch mispredictions when trying to
map B branches in the same set.

Iterations: Distance Mispredicted branches

1M, B = 16 512 1953
1024 14 938 664

1M, B = 8 1024 2520
2048 6 927 480

1M, B = 4 2048 2400
4096 4097

0

127

...

Distance

......

Index
013410

P6 Address

21131
P6 BTB

7

0

1023

...

Distance

......

Index
013413

NetBurst Address

21431
NetBurst BTB

10

Figure 19. P6 and NetBurst BTB size and organization.

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; (in press)

M. MILENKOVIC, A. MILENKOVIC AND J. KULICK

Table III. P6 branch mispredictions when
the total number of branches is 2 ∗ NBTB.

Iterations: 1M, B = 1024.

Distance Mispredicted branches

4 1 017 750 000
8 1 016 900 000

16 1 020 700 000

Table IV. Results of the Step 1 experiment. Iterations: 10M.

Architecture Pattern length Mispredicted branches

P6
4 420
5 432
6 1 545 480

Netburst
5 987
6 973
7 957
8 1256
9 918

10 964 830

Finally, to verify the correctness of the assumption about BTB size, the different distance experiment
is performed with twice as many branches. Table III shows the results for the P6 architecture for
1024 branches. The distances that produced the low MPR when the number of branches was 512 now
produce an MPR close to 100%. Hence, the actual number of BTB entries is 512.

The results are similar for the NetBurst architecture (NBTB−FE = 4096); i.e. the MPR is close to 0%
when the distance between addresses of subsequent branches is 4, 8, or 16; and it is close to 100% for
other distances. Therefore, the front-end BTB has four ways and 1024 sets, with bits 4–13 being used
as the set index (Figure 19).

Outcome predictor results—P6 architecture

Step 1

Table IV shows the results of the Step 1 experiment (Figure 11). The maximum length of a correctly
predicted pattern is 5, since the spy branch with a pattern of length 6 is mispredicted once every six
times (10 000 000/6 = 1 666 666), which is close to the number of mispredicted branches shown in
Table IV. This result can be caused by a local predictor component that uses four bits of local history,
or a global component that uses eight global history bits.

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; (in press)

MICROBENCHMARKS

Step 2

The microbenchmark has eight ‘dummy’ conditional branches before the ‘spy’ branch. Since the MPR
is still close to 0 for longer global history pattern, the P6 architecture uses a local branch history of
length 4.

Step 3

The microbenchmark has three conditional branches in a loop, where the first two have patterns
11. . . 10 of length 5 and 2, and hence are predictable by the local predictor component. The outcome of
the third branch is correlated with the previous two. Since it has a pattern 11. . . 10 of length 10, it is not
predictable by the local component with four history bits. The MPR is about 10%, which means that
the third branch is mispredicted once every 10 times, when its outcome is 0. Hence, the P6 architecture
does not use a global history pattern of length greater than or equal to 2.

Step 4

The Step 4 experiment is a 10 million iteration loop, with two conditional branches. The first branch
has a pattern 111110 of length 6, so it is not predictable by the local component, and the second branch
is correlated with it by having the same outcome. The result is about 3 million mispredicted branches,
so both conditional branches are mispredicted once every six times. Therefore, the P6 architecture does
not include global prediction component.

Outcome predictor results—NetBurst architecture

Step 1

Table IV shows the results of the Step 1 experiment: the maximum length of a correctly predicted
pattern is 9, since the ‘spy’ branch with a pattern of length 10 is mispredicted once every 10 times—
about 1 million mispredictions. These results can be explained by either an eight-bit local history
register or a 16-bit global history register.

Step 2

The microbenchmark has 16 ‘dummy’ branches before the ‘spy’ branch with a local pattern of length
9. The measured MPR is about 10%; i.e. the ‘spy’ branch is mispredicted once every nine times.
Therefore, the Step 1 result is caused by a global component that uses 16 global history bits.

Step 6

After several runs of different Step 6 experiments, the first conclusion might be that the NetBurst
architecture uses one local history bit for predictions, since a pattern length 2 is predicted correctly
(Table V). As this architecture includes the trace cache, an additional experiment is needed, with the
structure from the Step 6 experiment repeated 10 times in sequence: 16 ‘dummy’ branches, and one

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; (in press)

M. MILENKOVIC, A. MILENKOVIC AND J. KULICK

Table V. Results of the Step 6 experiment.

Iteration Pattern length Mispredicted spy branches (%)

10M 2 0
3 33
4 25
5 20

‘spy’ branch with a local history pattern of length 2. The ‘spy’ branches have an MPR of about 50%,
which is expected for the outcome predictor without any local component. Hence, the low MPR in
Step 6 with pattern length 2 is due to the trace cache, since it is able to store the sequence ‘loop,
16 dummy branches, spy taken, loop, 16 dummy branches, spy not taken’ as one continuous trace.

CONCLUSION

The continual growth in complexity of processor features, such as wide issue, deep pipelining, branch
predictor, multiple levels of cache hierarchy, etc., puts more demand on code optimizations to achieve
optimal performance. While current compilers depend on a programmer to specify which architecture
to optimize the code for, and to manually adjust the code to a specific architecture, future compilers
should be more architecture aware and be able to discover the relevant characteristics of the underlying
architecture without a programmer’s input. Consequently, the burden of optimization for different
architectures will shift from a program developer to the compiler, and optimization will become more
automated. Unfortunately, not all architecture details are publicly available, so the optimization process
cannot rely solely on the information given in manufacturers’ manuals. To determine architecture
intricacies, an architecture-aware compiler should run a set of carefully tuned microbenchmarks.

This paper presents a systematic approach to uncovering the basic characteristics of branch
predictors. The proposed experiment flow encompasses microbenchmarks aimed at determining
relevant branch predictor parameters—namely, BTB associativity and address bits used as the index,
the existence of local and global branch history components, and the number of corresponding
history bits. These parameters can be used for automatic or manual code optimization. The proposed
experiments can also be applied during the verification phase of processor design, and used as a starting
point for comparison in future predictor research. Lastly, the experiments are of educational value,
providing better understanding of branch predictor mechanisms. Although the proposed approach is
demonstrated for Intel P6 and NetBurst architectures, with minor modifications it can also be used for
other architectures.

ACKNOWLEDGEMENTS

The authors are grateful to the anonymous referees for their insights and suggestions for strengthening this paper.
This work has been partially supported by the SED of the AMCOM.

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; (in press)

MICROBENCHMARKS

REFERENCES

1. Intel R© architecture optimization—reference manual, IA-32. Intel.
http://www.intel.com/design/pentium4/manuals/248966.htm [July 2003].

2. Coleman CL, Davidson JW. Automatic memory hierarchy characterization. Proceedings 2001 IEEE International
Symposium on Performance Analysis of Systems and Software, Tucson, AZ, 4–6 November 2001. IEEE, 2001; 103–110.

3. Saavedra-Barrera R. CPU performance evaluation and execution time prediction using narrow spectrum benchmarking.
PhD Thesis, Computer Science Division, U.C. Berkeley, 1992.

4. Hennessy J, Patterson D. Computer Architecture: A Quantitative Approach. Morgan Kaufmann: San Mateo, CA, 2003.
5. Hinton G, Sager D, Upton M, Boggs D, Carmean D, Kyker A, Roussel P. The microarchitecture of the Pentium R© 4

processor. Intel Technology Journal. http://www.intel.com/technology/itj/q12001.htm [July 2003].
6. Sprangle E, Carmean D. Increasing processor performance by implementing deeper pipelines. Proceedings of the 29th

Annual International Symposium on Computer Architecture, Anchorage, AK, 25–29 May 2002. ACM Press, 2002; 25–34.
7. IntelVTuneTM performance analyzer. Intel. www.intel.com/software/products/vtune/ [August 2002].
8. London K, Dongarra J, Moore S, Mucci P, Seymour K, Spencer T. End-user tools for application performance analysis

using hardware counters. Proceedings of the ISCA 4th International Conference on Parallel and Distributed Computing
Systems, Richardson, TX, 8–10 August 2001.

9. Smith JE. A study of branch prediction strategies. Proceedings of the 8th Annual International Symposium on Computer
Architecture, Minneapolis, MN, 12–14 May 1981. ACM Press, 1981; 135–148.

10. Yeh TY, Patt YN. Two level adaptive training branch prediction. Proceedings of the 24th Annual International Symposium
on Microarchitecture, Albuquerque, NM, 1991. ACM Press, 1991; 51–61.

11. Pan ST, So K, Rahmeh JT. Improving the accuracy of dynamic branch prediction using branch correlation. Proceedings of
the 5th International Conference on Architectural Support for Programming Languages and Operating Systems, Boston,
MA, 12–15 October 1992. ACM Press, 1992; 76–84.

12. Evers M, Chang PY, Patt YN. Using hybrid branch prediction to improve branch prediction accuracy in the presence of
context switches. Proceedings of the 23rd Annual International Symposium on Computer Architecture, Philadelphia, PA,
22–24 May 1996. ACM Press, 1996; 3–10.

13. Nair R. Dynamic path-based branch correlation. Proceedings of the 28th Annual International Symposium on
Microarchitecture, Ann Arbor, MI, 29 November–1 December 1995. ACM Press, 1995; 15–23.

14. Sun Microelectronics. UltraSPARC user’s manual. http://www.sun.com/processors/manuals/802-7220-02.pdf [July 2003].
15. Intel. Intel R© architecture software optimization reference manual.

http://www.intel.com/design/PentiumIII/manuals/ [December 2001].
16. Milenkovic M, Milenkovic A, Kulick J. Demystifying Intel branch predictors. Proceedings of the Workshop on Duplicating,

Deconstructing, and Debunking, Anchorage, AK, 26 May 2002; 52–61.

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; (in press)

	INTRODUCTION
	DYNAMIC BRANCH PREDICTION
	EXAMPLES OF BRANCH OPTIMIZATION BY ARCHITECTURE-AWARE COMPILERS
	EXPERIMENTAL ENVIRONMENT
	EXPERIMENTAL FLOW
	BTB experiments
	Outcome predictor experiments
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5
	Step 6

	RESULTS
	BTB results
	Outcome predictor results-P6 architecture
	Step 1
	Step 2
	Step 3
	Step 4

	Outcome predictor results-NetBurst architecture
	Step 1
	Step 2
	Step 6

	CONCLUSION

