
0-7803-8808-9/05/$20.00 ©2005 IEEE

Time Synchronization for ZigBee Networks

Dennis Cox, Emil Jovanov, Aleksandar Milenkovic

Electrical and Computer Engineering Department
University of Alabama in Huntsville

Huntsville, AL 35899 USA
jovanov@ece.uah.edu

Key Words: Wireless Sensor Networks, Synchronization, ZigBee.

Abstract—Time synchronization is essential for most
network applications. It is particularly important in a
Wireless Sensor Network (WSN) as a means to correlate
diverse measurements from a set of distributed sensor
elements and synchronize clocks for shared channel
communication protocols. Wireless sensors are typically
designed with very stringent constraints for size, cost, and
especially power consumption. The Flooding Time
Synchronization Protocol (FTSP) was developed explicitly
for time synchronization of mesh-connected wireless
sensor networks. However, ZigBee can also
accommodate master-slave networks that can be more
power-efficient. We optimized the FTSP for master-slave
WSNs and implemented it using TinyOS 1.1.8 and
ZigBee-compliant hardware. Our approach allows better
synchronization and reduced power consumption of
wireless nodes. In this paper we present implementation
and experimental results.

I. INTRODUCTION

 Computing technologies have consistently followed a
general trend of becoming more and more distributed and
deeply embedded into the environment. In keeping with this
trend, the dream of truly ubiquitous computing will be
empowered in part by a vast array of tiny computing
elements wirelessly connected together providing detailed
information about the world around us and acting upon the
environment as well.
 This is the role of a Wireless Sensor Network (WSN) as a
collection of miniature computers designed for an extremely
resource-constrained environment. They must satisfy the
following characteristics:
• small size in order to be unobtrusive or hidden and not

clutter up the landscape
• very cheap so they can be affordably deployed in large

numbers
• extremely power efficient. Power efficiency extends

battery life or allows energy scavenging from the
environment. Typical examples include solar energy,
energy of vibrations, etc.

 ZigBee is an emerging standard for wireless

communication target for use in WSNs. It was specifically
designed with the severely resource-constrained sensor in
mind. Together with the IEEE 802.15.4 [4] standard which
defines the physical and MAC-layer interface, ZigBee has
very low power consumption requirements. 802.15.4
networks can operate in either master-slave or peer-to-peer
configuration. The master-slave would be common in many
sensor-based applications where a number of very limited
slaves are controlled by a master controller, such as home
automation or security systems. 802.15.4 provides a number
of features to help conserve power, such as beacons, long
superframe cycles, and guaranteed time slots with power
efficient idle modes on sensors.
 ZigBee supports both mesh network and a star network
topology in which a node acts as master for a number of other
slave nodes. The master sends periodic beacon messages to
the slaves, providing regular windows of time for the nodes
to communicate. This mode allows the nodes to sleep during
inactive time slots, which is ideal for certain networks where
it is critical to preserve power.
 This paper is organized as follows. We present common
time synchronization mechanisms for wireless sensor
networks in the second section. Our implementation of time
synchronization for Telos platform in ZigBee environment is
given in the third section; experimental results and
conclusions are presented in the last section.

II. TIME SYNCHRONIZATION

 Time synchronization of distributed computing elements is
a common requirement for many distributed applications.
Precise time synchronization can be essential in a WSN to
facilitate group operations, such as sensor localization, data
aggregation, distributed sampling, source localization, etc.
Synchronized time stamps can be critical for proper
correlation of sensor information from the various sources.
In addition, synchronized clocks are essential for shared
channel communication protocols, such as Time Division
Multiplexing.
 Each application that relies on time synchronization has a
different set of requirements. Based on these requirements, a
potential synchronization mechanism should be evaluated

using several metrics [2] by answering questions such as
these: How much precision is needed? Do the network
nodes need to remain synchronized all the time or can they
just achieve synchronization when needed (as when several
nodes need to compare the detection time of a single event)?
Do the nodes occupy a large geographic area, and does that
area need to be completely covered? How much time and
power are available for the node to expend towards
synchronization? What is the cost to implement
synchronization and does it require any special equipment or
infrastructure? In a WSN composed of a vast number of tiny,
battery-powered nodes, the two most important factors would
probably be power efficiency and cost.
 A number of protocols and algorithms exist and have been
implemented to provide time synchronization in computer
networks. The Network Time Protocol (NTP) [7] is perhaps
the most widely used. However it requires a significant
amount of computation and computer resources, and it is not
especially fault-tolerant, making it ill-suited for a WSN.
Other protocols have been developed explicitly for WSNs
such as the RBS [1] and TPSN algorithms [3].
 We chose to implement the Flooding Time
Synchronization Protocol (FTSP) that was developed at
Vanderbilt University [5, 6]. This protocol was developed to
demonstrate a means of providing network-wide time
synchronization to a large network of wireless sensors. The
FTSP was designed to accommodate network topology
changes (which is necessary when the sensors are mobile)
and to be robust despite the failure of individual nodes (a
necessary consideration in a WSN). The two design features
that seem especially valuable for a WSN are MAC layer time
stamping for increased precision and skew compensation
with linear regression to account for clock drift. The FTSP
was demonstrated on a large network of 64 sensors using the
Berkeley Mica2 mote.
 The FTSP generates time synchronization with periodic
time sync messages. The network can dynamically elect a
root node. Whenever a node receives a time sync message, it
rebroadcasts the message, thus flooding the network with
time sync messages. The message itself contains a very
precise timestamp of when the message was sent. The
receiving node takes a timestamp when it gets the message.
To remove sources of error, these timestamps are taken deep
in the radio stack. Comparing with the timestamps from the
last several messages received, the node computes a simple
linear regression to allow it to account for the offset
difference in its clock from global time as well as the relative
difference in frequency (Fig. 1). This enables each node to
maintain an accurate estimate of global time despite the fact
that its local clock may be running slightly faster or slower
than the global clock source.
 The FTSP can provide a WSN with high-precision
synchronization without requiring a lot of resource overhead.
However, in some situations it could be optimized for greater

efficiency. A node in a WSN expends a significant amount
of energy for wireless communications. The radio
transmitter certainly consumes a lot of energy sending each
message, but the receiver does too, even when it is just
listening. Ideally, in a very energy-constrained network, a
node will transmit as little as possible and even turn off its
receiver until it expects to receive something. The ZigBee
star network topology is well suited for this environment
because of its master-slave hierarchy. Periodically, the
master node transmits a beacon message to its slave nodes to
maintain the communication link. Commonly the slave
nodes may be tiny, simple sensors with a very limited power
source. With this in mind, the FTSP could be optimized for a
master-slave network such that only the master nodes
transmit the periodic time sync messages and the slave nodes
simply receive without having to transmit at all. In fact, a
slave node could even disable its radio and enter low-power
mode between messages. And highly accurate time
synchronization could enable a slave node to sleep for a very
long time and still wake up just before the next message was
due, making the most of its limited energy supply.

III. IMPLEMENTATION OF TIME SYNCHRONIZATION

ON TELOS PLATFORMS

 In implementing the FTSP on the Telos platform, we
assumed a master-slave configuration and a star network
topology, taking advantage of the optimizations described
above. Slight modifications to the program could allow a
mote to operate in either a generic mesh network where time
sync messages must be flooded or in a star network topology
where only the master transmits the messages. It could even
switch between the two modes of operation if network
conditions warrant. Thus, the FTSP could be used in its
original robust form or this simplified and optimized form as
needed.
 The Telos platform [9] is designed to serve as a node in a
WSN. It comes equipped with a MSP430 microcontroller
and a ZigBee-compliant ChipCon CC2420 intelligent
wireless controller. It is also one of the platforms supported
by the TinyOS operating system [10]. This is convenient
because the FTSP was first implemented as a part of TinyOS
[11]. However, porting the FTSP to Telos was not trivial,
since the original implementation was based on the Mica2.

200 300 400 500 600 700

100 202 304 406 508 610Local Clock

Global Time

Figure 1. To synchronize to global time, a node must compute the offset
between its local clock and the global time as well as the skew or rate at
which its clock is drifting slower or faster than global time. The numbers
shown are merely illustrative.

 For time synchronization to work, there must be a fixed
point in time from which both sender and receiver can
reference the timestamp in a given message. For a ZigBee
message, this point is at the end of the Start of Frame
Delimiter (SFD), as depicted in Fig. 2. The sender makes a
timestamp immediately after it has transmitted the SFD and
inserts the timestamp into the message (note that the message
has already begun transmission when the timestamp is made
and added to the message). The receiver makes a timestamp
when it receives the SFD and stores it with the message.
Later, the processor will compare the two timestamps to
determine the offset between local time and global time and
the degree to which the local clock is running at a faster or
slower rate than the global clock. On the Telos platform, the
wireless controller provides a signal to the microcontroller to
indicate when the SFD byte has been received or transmitted.
This signal was configured to generate a timer capture and an
interrupt, enabling extremely accurate timestamps of each
message. This is an improvement over even the Mica2
implementation, which creates very accurate timestamps
deep in the radio stack.
 Unlike Mica2 boards where the processor directly controls
the wireless bit-stream, the Telos wireless controller provides
FIFOs for transmit and receive data. The processor
communicates with the controller using a synchronous
peripheral interface (SPI). Generally, when transmitting a
message, the processor loads up the transmit FIFO with the
entire message and then enables transmission. However, the
FTSP messages contain a timestamp that is generated after
the message has begun transmission. To implement this on
the Telos platform, most of the message is placed in the FIFO
and transmission is enabled. When the SFD interrupt occurs,
the captured timer value is retrieved and converted to a global
timestamp. The timestamp is inserted into the message and
the rest of the message is placed in the FIFO. Assuming this
can all be done quickly enough, the entire message is
transmitted properly. If however the process is too slow, the

FIFO will underrun and the message transmission will abort.
This is a real concern since ZigBee specifies a fairly speedy
effective bit rate of 250 kbps.
 Time measurements were taken to ensure adequate margin
and instill confidence that the FTSP could run reliably
without FIFO underrun. The SPI interface between the
microcontroller and the wireless controller on the Telos
platform runs at 500 kbps, twice as fast as the message is
transmitted over the radio, so there seemed to be hope. It
takes about 700 µs to transmit a time sync message and about
150 µs to calculate and insert the timestamp. It takes another
300 µs to send the second part of the message over the SPI
and finish filling the FIFO. This means that the entire
message makes it into the FIFO with about 250 µs to spare,
which ought to be adequate.
 The implementation for the Telos platform includes an
interface that provides applications access to the time
synchronization information. It can give the current global
time, convert a local timestamp to global time, or calculate
how long until a future global time will occur. This last
facility would be useful for an application that wants to do
something at a specific global time. For example, a common
use might be for a node to be able to sleep until the next
communication window. If the next window will occur at a
particular global time, the node can find out how long it will
be until then in local time and then set a timer accordingly so
it can wake up and be ready to listen.
 All timestamps and clocks were based on the 32768 Hz
crystal on the Telos board. The crystal exhibits good short-
term stability, which is essential for the FTSP to work
properly. However, with a period of about 30.5 µs, it does
not support very high-resolution synchronization. An attempt
was made to implement the FTSP based on a nominal 1 MHz
clock derived from the microcontroller’s internal Digitally
Controlled Oscillator (DCO), but its short-term stability was
too poor, and it could not be used for time synchronization.

IV. RESULTS AND CONCLUSION

 Testing of the FTSP implementation indicated very good
time synchronization. The tests consisted of a master node
and slave nodes connected to a common signal. Once the
network was synchronized, the nodes would report the
associated global timestamp every time the signal changed
state. For each event, the master’s timestamp was compared
to the slave’s timestamp to determine the slave’s error. In all
cases, the slave node’s error was never more than ±2 ticks
(61 µs).
 It is expected that the more frequently time sync messages
are sent, the better the network nodes will be able to maintain
synchronization. However, increasing the time between
messages did not significantly degrade performance. Testing
consisted of four scenarios (A-D) defined by the time sync
message frequency and the test duration. Each test ran long

Transmit

Receive

SFD Timestamp

SFD Timestamp

Capture Insert

Capture Compare

Figure 2. Illustrates a time synchronization message being transmitted and
received. The transmitter captures a global timestamp at the end of the
Start of Frame Delimiter (SFD) and inserts it into the message. The
receiver captures a local timestamp at the end of the SFD and compares
that with the timestamp embedded in the message. The messages are not
perfectly aligned due to propagation delays.

enough to provide at least 500 event timestamps for error
comparison; test D provided more than 1400 timestamps.
The results, shown in Table I, are very good and indicate that
highly accurate synchronization could likely be achieved
with a high frequency clock source (i.e. several MHz) of
adequate stability. Our attempts to demonstrate high-
resolution synchronization failed because of the poor quality
DCO clock source available on the Telos board.
 Coupling the strengths of the FTSP and the master-slave
configuration of ZigBee promises to be a profitable means of
implementing time synchronization in a WSN. The FTSP
can be tailored to require even less from slave sensors while
still providing the same degree of reliability and precision.
Other peer-to-peer portions of the ZigBee network could
continue to use the FTSP in its original form. In the master-
slave portions of the network, the master elements can
periodically include the time sync information with their
regular beacon message. The slaves would not be required to
respond and could thus conserve energy. Additionally, they
can even sleep most of the time, ignoring most broadcasts
from the master and only needing to wake up to hear the time
sync broadcast. The precise time synchronization could also
provide the added benefit of beacon messages being required
even less frequently to keep communications synchronized
between the master and slaves. We implemented an
application-specific time synchronization protocol using
specific ZigBee features in master-slave configuration using
the Telos mote platform and the TinyOS development
environment. This paper presents the implementation and
performance measures collected in an experimental setup.

V. REFERENCES

[1] J. Elson, L. Girod and D. Estrin, “Fine-Grained Network

Time Synchronization using Reference Broadcasts,” in
Proceedings of the fifth symposium OSDI ‘02, pp. 147-
163.

[2] J. Elson and D. Estrin. "Time Synchronization for

Wireless Sensor Networks,". in Proceedings of the 2001
International Parallel and Distributed Processing
Symposium (IPDPS ‘01), pp. 1965-1970.

[3] S. Ganeriwal, R. Kumar, M. B. Srivastava, “Timing-Sync

Protocol for Sensor Networks,” in Proceedings of the 1st
International Conference on Embedded Network Sensor
Systems (SenSys ’03), pp. 138-149.

[4] 802.15.4-2003 IEEE Standard for Information

Technology-Part 15.4: Wireless Medium Access Control
(MAC) and Physical Layer (PHY) specifications for Low
Rate Wireless Personal Area Networks (LR-WPANS),
2003.

[5] M Maroti, B. Kusy, G. Simon, and A. Ledeczi, "The

Flooding Time Synchronization Protocol," in Proceedings
of the 2nd International Conference on Embedded
Network Sensor Systems (SenSys ’04), pp. 39-49.

[6] M Maroti, B. Kusy, G. Simon, and A. Ledeczi, "Robust

Multi-Hop Time Synchronization in Sensor Networks," in
Proceedings of the International Conference on Wireless
Networks (ICWN ’04), Volume 1, pp. 454-460.

[7] D. L. Mills, “Internet Time Synchronization: The

Network Time Protocol”, IEEE Transactions on
Communications, COM 39 no. 10, October 1991, pp.
1482-1493.

[8] W. Ye, J. Heidemann, and D. Estrin. “An energy-efficient

MAC protocol for wireless sensor networks,” in
Proceedings of the IEEE Infocom, 2002, pp. 1567-1576.

[9] Telos platform:
 http://www.moteiv.com/products-reva.php

[10] TinyOS, http://webs.cs.berkeley.edu/tos/

[11] Vanderbilt’s implementation of the FTSP in TinyOS:,

http://cvs.sourceforge.net/viewcvs.py/tinyos/minitasks/02/
vu/tos/lib/TimeSync/

TABLE I: TESTING RESULTS
 A B C D

Message Freq. (sec) 2 10 30 30
Test Duration (min) 2 2 2 120
Average Error (ticks) 0.49 0.61 0.81 0.67
Std. Deviation (ticks) 0.56 0.53 0.48 0.59

