
IEEE TRANSACTIONS ON COMPUTERS, TC-2009-10-0520.R1 1

Caches and Predictors for Real-time,
Unobtrusive, and Cost-Effective Program

Tracing in Embedded Systems
Aleksandar Milenković, Vladimir Uzelac, Milena Milenković, Martin Burtscher

Abstract—The increasing complexity of modern embedded computer systems makes software development and system
verification the most critical steps in the system development. To expedite verification and program debugging, chip
manufacturers increasingly consider hardware infrastructure for program debugging and tracing, including logic to capture and
filter traces, buffers to store traces, and a trace port through which the trace is read by the debug tools. In this paper, we
introduce a new approach to capture and compress program execution traces in hardware. The proposed trace compressor
encompasses two cost-effective structures, a stream descriptor cache and a last stream predictor. Information about the
program flow is translated into a sequence of hit and miss events in these structures, thus dramatically reducing the number of
bits that need to be sent out of the chip. We evaluate the efficiency of the proposed mechanism by measuring the trace port
bandwidth on a set of benchmark programs. Our mechanism requires only 0.15 bits/instruction/CPU on average on the trace
port, which is a six-fold improvement over state-of-the-art commercial solutions. The trace compressor requires an on-chip area
that is equivalent to one third of a 1 kilobyte cache and it allows for continual and unobtrusive program tracing in real-time.

Index Terms—Compression Technologies, Real-time and Embedded Systems, Testing and Debugging, Tracing.

—————————— ——————————

1 INTRODUCTION

ODAY’S society relies more than ever upon embed-
ded computing, which drives modern communica-
tion, transportation, medicine, entertainment, and

national security. The number of embedded processors by
far surpasses the number of processors used for desktop
and server computing. For example, a 2009 smartphone
typically includes several processor cores [1], [2]; a 2009
luxury car may have over 70 different processors and mi-
crocontrollers [3]. The emerging ubiquitous computing
and wireless sensor networks will lead to even higher
proliferation and diversification of embedded processors.
Current economic and technology trends present unique
challenges to the design and the operation of embedded
computer systems. Ever-increasing hardware complexity,
limited visibility of internal signals due to increased inte-
gration, and reduced component reliability due to aggres-
sive semiconductor technologies are only some of the
most important challenges system designers of embedded
computing platforms face. The time spent in post-silicon
debug and verification has grown steadily as we move

from one technology generation to the next [4]. Software
designers of embedded systems face a number of chal-
lenging issues too, since increased hardware complexity
enables more sophisticated applications. The software
stack includes many layers, from hardware bring-up,
low-level software, OS/RTOS porting, and application
developing to system integration and performance tuning
and optimization, production tests, in-field maintenance,
and failure analysis. Growing software complexity often
leads to lost revenue or even project failures if very tight
time-to-market goals are not met. Software developers
typically spend 50%-75% of their development time in
program debugging [5]. This time is likely to grow with
the shift from single- to multi-threaded applications.
Hence, debugging and testing is already recognized as
one of the most critical steps in the design and operation
of modern embedded computer systems.

Ideally, system designers would like to be able to an-
swer the simple question “What is my system doing?” at
any point in the design and test cycle. However, achiev-
ing complete visibility of all signals in real time in mod-
ern embedded platforms is not feasible due to limited I/O
bandwidth and high internal complexity. Moreover, even
limited hardware support for tracing and debugging is
associated with extra cost in on-chip area for capturing
and buffering traces, for integration of these modules into
the rest of the system, and for getting out the information
through dedicated trace ports [6].

Debugging and testing of embedded processors is tra-
ditionally done through a JTAG port that supports two

————————————————
• A. Milenković is with the Department of Electrical and Computer Engi-

neering, the University of Alabama in Huntsville, Huntsville, AL 35899.
E-mail: milenka@uah.edu.

• V. Uzelac is with the Department of Electrical and Computer Engineering,
the University of Alabama in Huntsville, Huntsville, AL 35899. E-mail:
uzelacv@eng.uah.edu.

• M. Milenković is with IBM, Austin, Texas. E-mail:
mmilenko@us.ibm.com.

• M. Burtscher is with the ICES, the University of Texas at Austin, Austin,
TX 78712. E-mail: burtscher@ices.utexas.edu

Manuscript received 14-Oct-2009; revised 15-Feb-2010; accepted 30-Apr-2010.
xxxx-xxxx/0x/$xx.00 © 200x IEEE

T

2 IEEE TRANSACTIONS ON COMPUTERS, TC-2009-10-0520.R1

basic functions: stopping the processor at any instruction
or data access and examining the system state or chang-
ing it from outside. The problem with this approach is
that it is obtrusive – the order of events during debugging
may deviate from the order of events during “native”
program execution when no interference from debugging
operations is present. These deviations can cause the
original problem to disappear in the debug run. For ex-
ample, debugging operations may interfere with program
execution in such a way that the data races we are trying
to locate disappear. Moreover, stepping through the pro-
gram is time-consuming for programmers and is simply
not an option for debugging real-time embedded systems.
For example, setting a breakpoint may be impossible or
harmful in real-time systems such as a hard drive or a
vehicle engine controller. A number of even more chal-
lenging issues arise in multi-core systems. They may have
multiple clock and power domains, and we must be able
to support debugging of each core, regardless of what the
other cores are doing. Debugging through a JTAG port is
not well suited to meet these challenges.

Recognizing these issues, many vendors have devel-
oped modules with tracing capabilities and have inte-
grated them into their embedded platforms, e.g., ARM’s
Embedded Trace Macrocell [7], MIPS’s PDTrace [8], and
OCDS from Infineon [9] with a corresponding trace mod-
ule from Freescale [10]. The IEEE’s Industry Standard and
Technology Organization has proposed a standard for a
global embedded processor debug interface (Nexus 5001)
[11]. Nexus defines four classes of operation: Class 1,
Class 2, Class 3, and Class 4. Higher numbered classes
progressively support more complex debug operations
but require more on-chip resources. Class 1 provides ba-
sic debug features for run-control debugging (single
stepping, breakpoints, watchpoints, and access to regis-
ters and memory while the processor is halted), typically
implemented over IEEE 1149.1 (JTAG). Class 2 provides
debug support for capturing program execution traces in
real-time. Class 3 provides debug support for memory
and I/O read/write traces. Class 4 provides resources for
direct control of the processor over the trace port, where
the instructions and data are supplied through the trace
port rather than by the memory. The trace and debug
infrastructure on a chip typically includes logic that cap-
tures the trace information, logic to filter and compress
the captured information, buffers to store the traces, and
logic that emits the content of the trace buffer through a
trace port to an external trace unit or host machine. In this
paper we focus on the capturing and compression of pro-
gram execution traces (Class 2 operation in Nexus). Pro-
gram execution traces consist of the addresses of all exe-
cuted instructions. Such traces are crucial for both hard-
ware and software debugging as well as for program op-
timization and tuning.

Many existing trace modules employ program trace
compression and buffering to achieve a bandwidth of
about one bit/instruction/CPU on the trace port at the
cost of roughly 7,000 gates [12]. They rely on large on-

chip buffers to store execution traces of sufficiently large
program segments and/or on relatively wide trace ports
that can transfer a large amount of trace data in real-time.
However, large trace buffers and wide trace ports signifi-
cantly increase the system complexity and cost. More-
over, they do not scale well (the I/O bandwidth does not
increase at the same pace as the on-chip logic), which is a
significant problem in the era of multicore chips. Whereas
commercially available trace modules typically imple-
ment only rudimentary forms of hardware compression,
several recent research efforts in academia propose com-
pression techniques tailored to program execution traces
that can achieve much higher compression ratios. For
example, Kao et al. [13] propose an LZ-based program
trace compressor that achieves a good compression ratio
for a selected set of programs. However, the proposed
module has a relatively high complexity (51,678 gates),
and it is unclear how effective it would be in tracing more
diverse programs. Milenkovic et al. [14] propose new
hardware structures to compress program execution
traces that achieve 0.35 bits/instruction/CPU at a rela-
tively modest hardware cost of two kilobytes of state.

In this paper, we introduce a very cost-effective
mechanism for capturing and compressing program exe-
cution traces unobtrusively in real-time. The proposed
trace compressor relies on two new structures, called
stream cache and last stream predictor, to translate a se-
quence of program streams into a sequence of encoded hit
and miss events in these structures. We also introduce
several enhancements that reduce trace port bandwidth
or compressor complexity and size. We explore trade-offs
in the design of the proposed trace compressor and
evaluate its overall effectiveness by measuring the aver-
age trace port bandwidth. Our experimental evaluation
based on a set of representative benchmarks from the
MiBench suite [15] shows that our best-performing trace
compressor configuration with complexity equivalent to
one third of a 1 kilobyte cache achieves a trace port band-
width of 0.15 bits/instruction/CPU -- over six times
lower than state-of-the-art commercial solutions. The
proposed compression mechanism is orthogonal to data
tracing required by Nexus’ Class 3 operation. In fact, a
good compressor for program execution traces benefits
data tracing. First, reducing the trace port bandwidth
consumed by program execution traces allows more
bandwidth for data traces. Second, the internal trace buff-
ers that would be used for storing of program execution
traces compressed with a less sophisticated approach
than ours can instead be devoted to storing data traces.

The reminder of the paper is organized as follows. Sec-
tion 2 gives a system view of the proposed tracing
mechanism and describes the trace compressor structures
and their operation. Section 3 presents the results of the
experimental evaluation, which includes a design space
exploration and trace port bandwidth analysis. In addi-
tion, we describe several low-cost enhancements and ex-
plore their effectiveness. Section 4 compares the proposed
schemes with existing solutions by analyzing the required

MILENKOVIĆ ET AL.: CACHES AND PREDICTORS ... 3

trace port bandwidth and hardware complexity. Section 5
concludes the paper.

2 TRACE COMPRESSION USING A STREAM
DESCRIPTOR CACHE AND A LAST STREAM
PREDICTOR

Program execution traces are created by recording the
addresses of executed instructions. However, to replay a
program flow offline we do not need to record each in-
struction address. Instead, we only have to record pro-
gram flow changes, which can be caused by either con-
trol-flow instructions or exceptions. When a change in the
program flow occurs, we need to know the address of the
next instruction in the sequence; it is either the target ad-
dress of the current branch1 instruction or the starting
address of an exception handler. Consequently, the pro-
gram execution can be recreated from the recorded in-
formation about program streams, also known as dy-
namic basic blocks. An instruction stream is defined as a
sequential run of instructions, from the target of a taken
branch to the first taken branch in the sequence. Each in-
struction stream can be uniquely represented by its start-
ing address (SA) and its length (SL). The pair (SA, SL) is
called stream descriptor and replaces the complete trace
of instruction addresses in the corresponding stream.
Hence, the program execution can be replayed offline
using the sequence of stream descriptors recorded during
program execution.

A sequence of trace records with complete stream de-
scriptors (SA, SL) includes some redundant information
that can be directly inferred from the program binary
during program replay. For example, if an instruction
stream ends with a direct conditional branch, the next
stream’s starting address can be inferred from the binary
and does not need to be traced out; instead, the next
stream descriptor can include only information about its
length (-, SL). Next, if an instruction stream ends with a
direct unconditional branch, we can infer both the out-
come and target from the binary. Thus, we do not need to
terminate the current stream at such an instruction;
rather, the current stream continues at the branch target.
We use these two modifications to further reduce the size
and the number of the trace records that need to be com-
municated through the trace port. Let us first examine
characteristics of program streams as defined here by pro-
filing a set of representative benchmarks targeting em-
bedded computer systems.

Most programs have only a small number of unique
program streams, with just a fraction of them responsible
for the majority of program execution [16], [17], [18]. Ta-
ble 1 shows some important characteristics of MiBench
[15] benchmarks collected using SimpleScalar [19] run-
ning ARM binaries. The columns (a-d) show the number
of executed instructions in millions (IC - instruction count),
the number of unique streams (USC – unique stream

1 For simplicity, we refer to all control-flow changing instructions as
branch instructions.

count), and the
maximum
(maxSL) and the
average stream
length (avgSL),
respectively. The
total number of
unique streams
traversed during
program execu-
tion is fairly lim-
ited – it ranges
from 341
(adpcm_c) to 6871
(ghostscript), and
the average dy-
namic stream
length is between
5.9 (bf_e) and 54.7
instructions
(adpcm_c). The
fifth column (e) shows the number of unique program
streams that constitute 90% of the dynamically executed
streams. This number ranges between 1 (adpcm_c) and 235
(lame), and is 78 on average. Note that all averages
throughout the paper use a weighted average. A bench-
mark weight is directly proportional to the number of
executed instructions in that benchmark divided by the
total number of executed instructions in all benchmarks.
We use 8 bits to represent the stream length, SL, because
program streams in our benchmarks never exceed 256
instructions. However, the streams may be longer than
256 instructions for other programs. In this case we would
use the maximum stream length as an additional condi-
tion for terminating a stream – when the SL reaches the
limit, the stream is automatically terminated and a new
stream started.

The proposed tracing mechanism, illustrated in Fig. 1,
is designed to exploit the observed program characteris-
tics. The target platform executes a program on a proces-
sor core. The trace module is coupled with the processor
core through a simple interface including the program
counter (PC), branch type information (direct/indirect,
conditional/unconditional), and an exception control sig-
nal. The trace module consists of relatively simple hard-
ware structures and logic dedicated to capturing, com-
pressing, and buffering program traces. The recorded
trace is read out of the chip through a trace port. The trace
records can be collected on an external trace unit for later
analysis or forwarded to a host machine running a soft-
ware debugger.

The software debugger on the host machine reads, de-
codes, and decompresses the trace records. To decom-
press the trace records, the debugger maintains exact
software copies of the state in the trace module structures.
They are updated during program replay by emulating
the operation of the hardware trace module. Decompres-
sion produces a sequence of stream descriptors that, in

TABLE 1
MIBENCH PROGRAM CHARACTERISTICS

IC USC max avg CDF
(mil.) SL SL 90%

adpcm_c 732.5 341 71 54.7 1
bf_e 543.9 403 70 5.9 22
cjpeg 104.6 1590 239 12.3 47
djpeg 23.4 1261 206 25.1 31
fft 631.0 846 94 10.5 209
ghostscript 707.9 6871 251 10.0 67
gsm_d 1299.3 711 165 19.5 33
lame 1285.0 3229 237 32.4 235
mad 286.9 1528 206 20.7 42
rijndael_e 319.7 513 77 21.0 45
rsynth 824.9 1238 180 17.6 49
stringsearch 3.7 436 65 6.0 48
sha 140.9 519 65 15.4 10
tiff2bw 143.3 1038 43 12.8 2
tiff2rgba 151.7 1131 75 27.7 2
tiffmedian 541.3 1335 92 22.3 5
tiffdither 833.0 1777 67 14.3 63
Average 816.3 1791 145 21.6 77.8

(a) (b) (c) (d) (e)

4 IEEE TRANSACTIONS ON COMPUTERS, TC-2009-10-0520.R1

conjunction with the program binary, provides enough
information for a complete program replay off-line. The
software debugger can control the trace module operation
by initializing its configuration registers appropriately;
for example, these registers determine how to handle in-
terrupt service routines – tracing can continue if the soft-
ware debugger is able to replay the code.

The proposed mechanism performs the capture and
compression of program execution traces in three stages
[20]. In the first stage, a stream detector module captures
program streams. Instead of sending stream descriptors
directly to the trace port, they are forwarded to compres-
sor structures in the second and third stage. The second
stage performs a stream cache transformation using a
structure called stream descriptor cache (SDC). This trans-
formation translates a stream descriptor into a stream
index (SI). The stream index is used as an input to a pre-
dictor structure called a last stream predictor (LSP) in the
third stage. Consequently, a sequence of stream descrip-
tors coming from the stream detector is translated into a
sequence of hit and miss events at the output of the SDC
and LSP compressor structures. These events are effi-
ciently encoded, thus significantly reducing the size of
trace records that are stored in the trace buffer before they
are sent to the trace port (Fig. 1). The following subsec-
tions describe the operations carried out in the stream
detector, the stream descriptor cache, and the last stream
predictor, respectively.

2.1 Stream Detector
The stream detector detects the end of the current stream
and captures it by storing its descriptor (SA, SL) into a
buffer whenever the new stream signal is asserted. To
perform this task, the stream descriptor consists of an SA
register that holds the starting address of the current
stream, an SL register that tracks the current stream

length, and a stream descriptor buffer (SDB). The SDB
serves to amortize bursts of short program streams, and
its depth should be large enough to prevent loss of stream
descriptors when the compressor structures cannot keep
up with the arrival rate of incoming program streams.
Fig. 2 describes the steps performed by the stream detec-
tor and Fig. 3 (top, right) shows its organization.

The stream detector tracks the current program execu-
tion by monitoring the program counter and control sig-
nals coming from the CPU core. The SL register is incre-
mented for each new instruction. The new stream signal
is asserted when one of the following conditions is met:
(a) the processor executes a control-flow instruction of a
particular type, namely direct conditional, indirect condi-
tional, indirect unconditional, or return; (b) an exception
signal is asserted causing the program flow to depart
from sequential execution, or (c) the maximum stream
length has been reached. After forwarding the stream
descriptor into the stream descriptor buffer, the stream
detector prepares itself for the beginning of a new pro-
gram stream by recording the starting address in the SA
register and zeroing out the SL register.

Target CPU

Program
Binary

Software
Debugger

Debug HOST

External
Trace Unit

PC

Trace Buffer

(SA/‐,SL)

Trace
Storage

Trace Decoder

I/O Interface

Stream
Cache

Last
Stream

Predictor

Hit/MissHit/Miss SI

SI

(SA, SL)

CPU
Core

Trace Port

Stream Detector

Exce‐
ption

(SA, SL)

Trace Buffer

Branch
Type

Stream
 Cache

Last
Stream

Predictor

Trace Record Encoder

Hit/Miss SI Hit/Miss

SI

HW Trace
Module

SW
Trace
Module

Fig. 1. System view of the proposed tracing mechanism.

// Stream detector operation; for each retired inst.
1. if (NewStream) {
2. SA = PC; SL = 0;
3. NewStream = False;
4. }
5. if ((not ControlFlowChange) or (ControlFlowChange
 && (BranchType==DirectUncond))) {
6. SL++;
7. if (SL == MaxSL) {
8. Terminate Stream;
9. Place (SA, SL) into the Stream Descr. Buffer;
10. NewStream = True; }
11. } else {
12. SL++;
13. Terminate Stream;
14. Place (SA, SL) into the Stream Descr. Buffer;
15. NewStream = True;
16. }

// Stream descriptor cache (SDC) operation
1. Get the next stream descriptor, (SA, SL), from the

Stream Descriptor Buffer;
2. Lookup in the SDC with iSet = F(SA, SL);
3. if (SDC hit)
4. SI = (iSet concatenate iWay);
5. else {
6. SI = 0;
7. if (SA is reached via an indirect branch)
8. Prepare stream descriptor (SA, SL) for output;
9. else
10. Prepare stream descriptor (-, SL) for output;
11. Select an entry (iWay) in the iSet to be replaced;
12. Update stream descriptor cache entry:

 SDC[iSet][iWay].Valid = 1; SDC[iSet][iWay].SA = SA;
 SDC[iSet][iWay].SL = SL;

13. }
14. Update replacement indicators in the selected set;

// Last stream predictor (LSP) operation
1. Get the incoming index, SI;
2. Calculate the LSP index:

pIndex = G(indices in the History Buffer);
3. Perform lookup in the LSP with pIndex;
4. if(LSP[pIndex] == SI)
5. Emit(’1’);
6. else {
7. Emit(’0’ + SI);
8. LSP[pIndex] = SI;
9. }
10. Shift SI into the History Buffer;

Fig. 2. Stream detector, stream descriptor cache, and last stream
predictor operation.

MILENKOVIĆ ET AL.: CACHES AND PREDICTORS ... 5

2.2 Stream Descriptor
Cache

The second stage consists of a
cache-like structure called
stream descriptor cache (SDC)
that translates a stream descrip-
tor into a relatively short stream
index (SI). The stream cache is
organized into NWAY ways and
NSET sets as shown in Fig. 3. An
entry in the stream descriptor
cache holds a complete stream
descriptor (SA, SL). Fig. 2 de-
scribes the sequence of steps
carried out during the stream
cache transformation by the
SDC controller. The next stream
descriptor is read from the
stream descriptor buffer and an
SDC lookup is performed. A set
in the stream descriptor cache is calculated as a simple
function of the stream descriptor, e.g., bit-wise XOR of
selected bits from the SA and SL fields. If the incoming
stream descriptor matches an entry in the selected set, we
have an SDC hit event; otherwise we have an SDC miss
event. In case of an SDC hit, the corresponding stream
index, determined by concatenating the set and way indi-
ces (SI = {iSet, iWay}), is forwarded to the LSP. In case of
an SDC miss, the reserved index zero is forwarded (SI =
0). If all entries of the selected set are occupied, an entry is
evicted based on the replacement policy (e.g., LRU, FIFO),
and it is updated with the incoming stream descriptor.

The compression ratio achieved by our stream detector
and stream descriptor cache, CR(SDC), is defined as the
ratio of the raw instruction address trace size, calculated
as the number of instructions multiplied by the address
size in bytes (IC*4), and the size of the SDC output (1).
The SDC output size is a function of the number of exe-
cuted program streams (calculated as IC/avgSL, where
avgSL is the average dynamic stream length), the SDC hit
rate (hrSDC), the SDC size (NSET*NWAY), and the probabil-
ity that a stream starts with a target of an indirect branch
(pIND). For each program stream, 0.125*log2(NSET*NWAY)
bytes are emitted to the SI output. On each SDC miss, a 5-
byte (SA, SL) or 1-byte (-, SL) stream descriptor is output,
depending on whether the corresponding stream starts
with the target of an indirect or direct branch, respec-
tively. The parameters avgSL and pIND are benchmark
dependent and cannot be changed except maybe through
program optimization – e.g., favoring longer streams us-
ing loop unrolling or trace scheduling. Smaller stream
caches require shorter indices but likely have a lower hit
rate, which negatively affects the compression ratio. Thus,
a detailed exploration of the SDC design space is neces-
sary to determine a good hash function as well as a good
size and organization (NSET and NWAY).

[]1)1(5)1()(log125.0
4

)(
4)(

2 ⋅−+⋅⋅−+⋅⋅
⋅

=
⋅

=

INDINDWAYSSET pphrSDCNN
avgSL

OutputSDCSize
ICSDCCR

 (1)

2.3 Last Stream Predictor
The third stage uses a simple last value predictor as
shown in Fig. 3 to exploit redundancy in the SI trace
component caused by repeating sequences of stream indi-
ces. A linear predictor table with NP entries is indexed by
a hash function that is based on the history of previous
stream indices. If the selected predictor entry matches the
incoming stream index, we have an LSP hit. Otherwise,
we have an LSP miss, and the selected predictor entry is
updated with the incoming stream index. The hit/miss
information (one bit, a ‘0’ for a miss and a ‘1’ for a hit)
and, in case of an LSP miss, SI (log2(NSET*NWAYS) bits) are
forwarded to the trace encoder.

The compression ratio achievable by the LSP stage
alone, CR(LSP), can be calculated as shown in (2). It de-
pends on the stream index size and the LSP hit rate,
hrLSP. The maximum compression ratio that can be
achieved by this stage is log2(NSET*NWAY). The design
space exploration for the last stream predictor includes
determining a good hash function and a number of en-
tries in the predictor NP.

)(log/1)1(
1

)(
)()(

2 WAYSSET NNhrLSPOutputLSPSize
SISizeLSPCR

⋅+−
==

 (2)

2.4 Trace Record Encoder
The trace encoder assembles output trace messages based
on the events in SDC and LSP as shown in Table 2. We
distinguish three combinations of events in the compres-
sor structures: (a) an LSP hit with an SDC hit, (b) an LSP
miss with an SDC hit, and (c) an LSP miss with an SDC
miss. The LSP cannot hit if the SDC misses. In case of an
LSP hit with an SDC hit, the single-bit trace record ′1′ is
placed into the trace buffer. In case of an LSP miss with

Fig. 3. Trace module structures: stream detector, stream descriptor cache, and last stream predictor.

6 IEEE TRANSACTIONS ON COMPUTERS, TC-2009-10-0520.R1

an SDC hit, the trace record starts with a ′0′ single-bit
header and is followed by the value of the stream index
that missed in the LSP. Finally, in case of an LSP miss
with an SDC miss, the trace record consists of a ′0′ single-
bit header, followed by a zero stream index that indicates
a miss in the SDC, and a 40-bit (SA, SL) or 8-bit (-, SL)
stream descriptor, depending on the type of branch that
led to the beginning of the stream.

2.5 A Compression/Decompression Example
Let us consider the code snippet in Fig. 4 that includes a
simple loop executing 100 iterations. The loop body con-
sists of only one instruction stream. When the first itera-
tion completes on the target platform, the stream detector
captures the stream descriptor (SA, SL) = (0x020001f4, 9).
Let us assume a 64-entry 4-way associative stream de-
scriptor cache (NSET=16, NWAYS=4). The SDC indices
are calculated as a function of certain bits of the stream
descriptor; let us assume we calculate the iSet as follows:
iSet = SA[7:4] xor SL[3:0]; in our case iSet=0x6. A lookup
in the SDC set with index iSet=0x6 results in an SDC miss
because the SDC entries are initially invalid. The least
recently used entry in the selected SDC set is updated by
the stream descriptor information (let us assume it is
iWay=0), and the reserved 6-bit index 0 is output to the
next stage (SI=′000000′). A lookup in the LSP entry with
index pIndex=0 results in an LSP miss because the LSP
entries are also initially invalid. The LSP entry with index
0 is updated with the SI value. A complete trace record
for the first occurrence of the stream includes a header bit
′0′ followed by the 6-bit index ′000000′ and the 40-bit
stream descriptor (47 bits in total; here we assume that we
need to output the starting address of the stream in spite
of the fact that it can be inferred from the program bi-
nary). When we encounter the second iteration of the
loop, the stream descriptor is found in the selected SDC
set (an SDC hit). The SI is iSet concatenated with iWay,
resulting in SI=′011000′ (iSet=′0110′ and iWay=′00′). If we
assume that the LSP predictor access is solely based on
the previous SI (0 in our case), we will have another LSP
miss. A trace record ′0.011000′ (h=′0′, SI=′011000′) is out-
put to the trace buffer, and LSP’s entry 0 is now updated
with the value ′011000′. The third loop iteration results in
an SDC hit, and SI=′011000′ is forwarded to the LSP stage.

The LSP will again miss (the entry pointed to by the pre-
vious SI is not initialized yet), and another trace record
′0.011000′ is sent to the trace buffer. The LSP entry with
index ′011000′ is updated with the value ′011000′. The
fourth iteration hits in both the SDC and the LSP and only
a single bit ′1′ is sent to the trace buffer. The next 95 itera-
tions will also have only a single bit trace record to indi-
cate both SDC and LSP hits. The final iteration does not
hit because the loop end branch falls through and the
stream length will therefore be larger than that of the pre-
vious streams.

The de-compressor on the debugger side reads the in-
coming bit stream from its trace buffer. The first bit in the
trace is h=′0′, indicating an LSP miss event. The de-
compressor then reads the next 6 bits from the trace that
carry the SI=′000000′. This index is reserved to indicate an
SDC miss, and the de-compressor reads the next 40 bits
from the trace to obtain the stream descriptor. The de-
bugger updates the software copies of the SDC and LSP
accordingly and replays 9 instructions starting at address
0x020001f4. The next step is to read the next trace record.
It also starts with h=′0′, indicating an LSP miss. The next 6
bits are non-zero, which means that we have an SDC hit.
The debugger retrieves the next stream descriptor from
the SDC’s entry SI=′011000′ and updates the SDC and LSP
structures accordingly. The second iteration of the loop is
replayed. Similarly, the debugger replays the third loop
iteration. The fourth trace record starts with a header
h=′1′. This single-bit message is sufficient to replay the
current stream. The software debugger retrieves the
stream index from the LSP maintained in software
(SI=′011000′) and, using this stream index, it retrieves the
stream descriptor from the software copy of the stream
cache. The debugger maintains its software copies of the
compressor structures by updating the LSP’s history
buffer and SDC’s replacement bits using the same policies
as the hardware trace module does. The process contin-
ues until all iterations of the loop have been replayed.

TABLE 2
TRACE RECORD ENCODINGS.

 Trace Record Bit Width

 H SI Stream
Descriptor

LSP hit, SDC hit
 1 - - 1
LSP miss, SDC hit
 0 SI - 1 + log2(NSET*NWAY)
LSP miss, SDC miss (SA is the target of a direct br.)
 0 0 (-, SL) 1 + log2(NSET*NWAY) + 8
LSP miss, SDC miss (SA is the target of an indirect br.)
 0 0 (SA, SL) 1 + log2(NSET*NWAY) + 40

// Code Snippet
1. for(i=0; i<100; i++) {
2. c[i] = s*a[i] + b[i];
3. sum = sum + c[i];
4. }
// Assembly listing of the code snippet for the ARM ISA
1. @ 0x020001f4: mov r1,r12, lsl #2
2. @ 0x020001f8: ldr r2,[r4, r1]
3. @ 0x020001fc: ldr r3,[r14, r1]
4. @ 0x02000200: mla r0,r2,r8,r3
5. @ 0x02000204: add r12,r12,#1 (1 >>> 0)
6. @ 0x02000208: cmp r12,#99 (99 >>> 0)
7. @ 0x0200020c: add r6,r6,r0
8. @ 0x02000210: str r0,[r5, r1]
9. @ 0x02000214: ble 0x20001f4
// Trace records emitted per loop iteration
1. h=′0′; SI=′000000′; (SA,SL)=(0x020001f4, 9)
2. h=′0′; SI=′011000′;
3. h=′0′; SI=′011000′;
4. h=′1′;
5. h=′1′;
6. . . .
99. h=′1′;
100. h=′0′; SI=′000000′; (SA,SL)=(0x020001f4, ?)

Fig. 4. An example.

MILENKOVIĆ ET AL.: CACHES AND PREDICTORS ... 7

3 EXPERIMENTAL EVALUATION
The goal of the experimental evaluation is twofold. First,
we explore the design space to find good parameters for
the proposed compressor structures and access functions
(Section 3.1). As a measure of performance we use the
average number of bits emitted per instruction on the
trace port, which is equivalent to 32/(Compression Ra-
tio), assuming 4-byte addresses. We also report the hit
rates of the stream descriptor cache and the last stream
predictor, hrSDC and hrLSP, because they directly influ-
ence the size of the output trace as explained in (1) and
(2). Second, we introduce several enhancements to the
original mechanism and explore their effectiveness in
further improving the compression ratio at minimal
added complexity (Section 3.2) or in reducing the trace
module complexity (Section 3.3).

3.1 Design Space Exploration
SDC Access Function. A good hash access function should
minimize the number of collisions in the SDC. Its efficacy
depends on the program characteristics and SDC organi-
zation. We have evaluated a number of access functions
while varying the SDC size and organization. We have
found that access functions that combine the SA and SL
portions of the stream descriptor in general outperform
those based solely on the SA, because multiple streams
can have the same starting address. Our experiments in-
dicate that the hash function shown in (3) performs the
best for different SDC sizes and configurations. The SA is
shifted by shift bits and then the result is XOR-ed with the
SL. The lower log2NSET bits of the result are used as the set
index, iSet. The optimal value for shift was found to be 4
for our benchmark suite. NSET has to be a power of two.

)1())((−>>= SETNANDSLXORshiftSAiSet (3)

SDC Size and Organization. Fig. 5 shows the SDC hit
rate and the average trace port bandwidth required by the
SDC alone and by the SDC in combination with LSP
(SDC-LSP), when varying the number of entries and the
number of ways (NWAYS = 1, 2, 4, 8). The results reflect the
weighted average for the whole benchmark suite. For
SDC-LSP, the trace port bandwidth is calculated assum-
ing an LSP with the same number of entries as the SDC
and a simple hash ac-
cess function that uses
the previous stream
index to access the LSP.

Let us first consider
the SDC hit rate. The
results show that in-
creasing the SDC asso-
ciativity improves the
hit rate; for example, a
2-way SDC with 32
entries achieves the
same hit rate as the
direct-mapped SDC
with 64-entries. How-

ever, increasing the associativity beyond 4 ways yields
little or no benefit.

The results for the trace port bandwidth of the SDC-
only method indicate that even relatively small stream
descriptor caches with as few as 32 entries (8 x 4ways)
perform well, achieving 0.49 bits/instruction (bits/ins).
However, increasing the size of the SDC beyond 128 en-
tries increases the trace port bandwidth, in spite of an
increased hit rate. From (1) we can see that larger SDCs
require longer stream indices, which outweigh the bene-
fits of an increased hit rate. Thus, the compression ratio of
SDC alone is fairly limited: the minimum trace port
bandwidth (maximum compression) is ~0.45 bits/ins on
our benchmarks. The SDC-LSP outperforms the SDC-only
scheme for almost all sizes and organizations (except for a
32-entry direct-mapped SDC). Unlike SDC-only, it bene-
fits from larger structures. Increasing the SDC and conse-
quently the LSP size beyond 256 entries is not beneficial,
as it only yields diminishing returns. Based on these re-
sults, we choose a 128-entry 4-way associative SDC and a
128-entry LSP as a good configuration for our trace com-
pressor. This configuration represents a sweet spot in the
trade-off between trace port bandwidth and design com-
plexity; with our benchmarks, it yields under 0.2 bits/ins
at a modest cost. We have also evaluated several SDC
replacement policies, including pseudo-Random, First-In
First-Out (FIFO), Least Recently Used (LRU), and several
pseudo-LRU implementations. The results indicate that a
pseudo-LRU replacement policy based on using Most
Recently Used (MRU) bits performs best, outperforming
even the full LRU policy.

Last Stream Predictor. We have considered several LSP
organizations. The number of entries in the LSP may ex-
ceed the number of entries in the stream descriptor cache.
In such a case, the LSP access function should be based on
the program path taken to a particular stream. The path
information may be maintained in a history buffer as a
function of previous stream cache indices. However, our
experimental analysis indicates that such an approach
yields fairly limited improvements in trace port band-
width. The reason is that our workload has a relatively
small number of indirect branches, and those branches
mostly have a very limited number of targets taken dur-

SDC Hit Rate

0.70

0.75

0.80

0.85

0.90

0.95

1.00

32 64 128 256 512 1024

SDC Size (entries)

1‐way

2‐way

4‐way

8‐way

Trace Port Bandwidth

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

32 64 12
8

25
6

51
2

10
24 32 64 12

8

25
6

51
2

10
24 32 64 12

8

25
6

51
2

10
24 32 64 12

8

25
6

51
2

10
24

1‐way 2‐way 4‐way 8‐way

bi
ts

/i
ns

SDC

SDC+LSP

Fig. 5. SDC hit rate and trace port bandwidth as functions of SDC size and organization.

8 IEEE TRANSACTIONS ON COMPUTERS, TC-2009-10-0520.R1

ing program execution. Consequently, we chose the sim-
pler solution of always having the same number of entries
in the LSP and the SDC. The LSP access function is based
solely on the previous stream cache index. We call this
basic implementation of the proposed tracing mechanism
bSDC-LSP.

Table 3 shows the stream descriptor cache hit rate
(hrSDC), the last stream predictor hit rate (hrLSP), and
the trace port bandwidth for individual benchmarks and
for different sizes of the SDC and LSP. The average hit
rate varies from 81.9% for 32-entry LSP to 89.9% for 1K-
entry LSP. For some benchmarks (e.g., fft), capacity
misses in the LSP limit the hit rate and they can benefit
from larger structures. Another limitation comes from
indirect branches with multiple targets that frequently
change. The LSP predictor with its simple index function
is not well-suited to handle them, but the number of such
branches is typically small. The trace port bandwidth for
the trace module configuration [32x4, 128] (4-way set-
associative 128-entry SDC and 128-entry LSP) varies be-
tween 0.019 bits/ins for adpcm_c and 0.616 bits/ins for fft,
and is 0.174 bits/ins on average for the whole benchmark
suite. The fft benchmark significantly benefits from an
increase in the SDC size and requires 0.354 bits/ins with
the [64x4, 256] configuration. Many of the remaining
benchmarks perform well even with very small configu-
rations, e.g., adpcm_c, tiffmedian, and tiff2rgba.

3.2 Enhancements for Reducing Trace Port
Bandwidth

The output trace records still contain a lot of redundant
information that can be eliminated with low-cost en-
hancements. The three components of the output trace, as
described in Table 2, are (i) LSP-hit records (hLSPt), (ii)
LSP-miss with SDC-hit records (hSDCt), and (iii) LSP-
miss and SDC-miss records (mSDCt). Table 4 shows dis-
tributions of the individual trace components for two
trace module configurations: [16x4, 64] and [64x4, 256].
The mSDCt component dominates the output trace in

smaller configuration; e.g., it is responsible for 41.3% of
the total output for the [16x4, 64] configuration. By ana-
lyzing the sequence of mSDCt records, we observe that
the upper address bits of the starting address (SA) field
rarely change. We can use this property to reduce the
number of bits that needs to be traced out. Moreover,
with larger configurations, the hLSPt component domi-
nates the output trace with long runs of consecutive ones;
e.g., the hSLPt represents 48.5% of the total output trace
for the [64x4, 256] configuration. We can use counters to
encode these long runs of consecutive ones.

To take advantage of the redundancy in the mSDCt,
we slightly modify our bSDC-LSP compressor as follows.
An additional u-bit register called LVSA (Last Value
Starting Address) is added to record the u upper bits of
the SA field from the last miss trace record. The upper u-
bit field of the SA of the incoming miss trace record is
compared to the LVSA. If there is a match, the new miss
trace record will include only the lower (32-u) address
bits. Otherwise, the whole address is emitted and the

TABLE 3
HIT RATES AND TRACE PORT BANDWIDTH FOR THE BSDC+LSP SCHEME.

hrSDC hrLSP bits/ins
Program/Size 32 64 128 256 512 1024 32 64 128 256 512 1024 32 64 128 256 512 1024
adpcm_c 1.000 1.000 1.000 1.000 1.000 1.000 0.997 0.997 0.997 0.997 0.997 0.997 0.019 0.019 0.019 0.019 0.019 0.019
bf_e 0.985 0.996 1.000 1.000 1.000 1.000 0.824 0.838 0.843 0.843 0.843 0.843 0.405 0.359 0.357 0.384 0.410 0.437
cjpeg 0.952 0.991 0.998 0.999 1.000 1.000 0.894 0.916 0.921 0.922 0.922 0.922 0.204 0.138 0.131 0.134 0.140 0.146
djpeg 0.935 0.971 0.991 0.997 0.998 0.999 0.887 0.896 0.909 0.915 0.916 0.917 0.125 0.093 0.075 0.070 0.072 0.075
fft 0.482 0.685 0.859 0.952 0.985 1.000 0.522 0.674 0.762 0.827 0.850 0.870 1.492 1.007 0.616 0.354 0.256 0.219
ghostscript 0.456 0.778 0.987 0.993 0.997 0.999 0.518 0.696 0.865 0.868 0.869 0.870 1.585 0.823 0.232 0.227 0.229 0.234
gsm_d 0.972 0.980 0.989 0.996 0.999 1.000 0.946 0.946 0.947 0.951 0.952 0.954 0.103 0.094 0.086 0.077 0.076 0.075
lame 0.903 0.938 0.954 0.964 0.972 0.987 0.807 0.820 0.823 0.827 0.829 0.833 0.129 0.108 0.102 0.101 0.100 0.093
mad 0.833 0.972 0.984 0.993 0.998 1.000 0.715 0.825 0.830 0.832 0.835 0.836 0.295 0.136 0.129 0.124 0.124 0.128
rijndael_e 0.542 0.866 0.929 1.000 1.000 1.000 0.697 0.846 0.809 0.867 0.867 0.867 0.743 0.284 0.192 0.099 0.105 0.111
rsynth 0.848 0.923 0.966 0.997 1.000 1.000 0.843 0.843 0.860 0.883 0.887 0.887 0.382 0.245 0.175 0.116 0.115 0.122
sha 0.952 0.999 1.000 1.000 1.000 1.000 0.893 0.922 0.922 0.922 0.922 0.922 0.178 0.097 0.101 0.106 0.111 0.116
stringsearch 0.759 0.868 0.971 0.991 0.993 0.999 0.829 0.807 0.857 0.870 0.872 0.872 1.369 0.938 0.472 0.387 0.401 0.382
tiff2bw 0.971 0.979 0.992 0.998 1.000 1.000 0.996 0.993 0.992 0.992 0.994 0.994 0.151 0.135 0.104 0.087 0.083 0.084
tiff2rgba 0.935 0.969 0.996 1.000 1.000 1.000 0.991 0.978 0.989 0.989 0.989 0.989 0.114 0.077 0.045 0.040 0.040 0.040
tiffdither 0.824 0.904 0.963 0.988 0.997 1.000 0.834 0.823 0.848 0.864 0.870 0.873 0.332 0.249 0.190 0.164 0.157 0.160
tiffmedian 0.975 0.983 0.992 0.997 1.000 1.000 0.976 0.973 0.971 0.973 0.976 0.976 0.085 0.077 0.066 0.058 0.055 0.056
Average 0.838 0.921 0.969 0.988 0.994 0.998 0.819 0.856 0.881 0.893 0.897 0.899 0.426 0.272 0.174 0.142 0.136 0.135

TABLE 4
DISTRIBUTION OF INDIVIDUAL TRACE COMPONENTS FOR TWO

TRACE MODULE CONFIGURATIONS.
[SDC, LSP] Size [16x4, 64] [64x4, 256]
Program mSDCt hSDCt hLSPt mSDCt hSDCt hLSPt
adpcm_c 0.1% 1.9% 98.1% 0.1% 2.4% 97.5%
bf_e 6.9% 53.6% 39.6% 0.0% 62.7% 37.3%
cjpeg 12.0% 34.5% 53.5% 1.2% 42.9% 55.9%
djpeg 32.2% 30.4% 37.5% 4.8% 43.3% 51.9%
fft 80.8% 14.8% 4.4% 39.0% 39.8% 21.2%
ghostscript 73.2% 20.2% 6.6% 9.5% 52.3% 38.1%
gsm_d 29.4% 20.1% 50.5% 8.2% 29.0% 62.7%
lame 44.4% 33.7% 21.9% 29.5% 46.0% 24.4%
mad 29.1% 42.4% 28.5% 9.4% 58.4% 32.2%
rijndael_e 72.0% 15.7% 12.3% 0.1% 58.0% 41.9%
rsynth 58.3% 23.6% 18.1% 5.3% 51.5% 43.3%
sha 1.6% 36.6% 61.8% 0.1% 43.1% 56.7%
stringsearch 66.9% 20.7% 12.4% 13.4% 49.7% 36.9%
tiff2bw 41.2% 2.8% 56.1% 5.3% 6.1% 88.6%
tiff2rgba 48.5% 7.1% 44.4% 0.8% 8.7% 90.5%
tiffdither 47.4% 31.6% 21.0% 11.6% 51.9% 36.6%
tiffmedian 33.1% 10.8% 56.0% 6.6% 18.4% 74.9%
Average 41.3% 23.7% 34.9% 11.9% 39.6% 48.5%

MILENKOVIĆ ET AL.: CACHES AND PREDICTORS ... 9

LVSA register is updated. To distinguish between these
two cases, an additional bit in the trace record is needed
to indicate whether all (SA[31:0]) or only the lower ad-
dress bits (SA[31-u:0]) are emitted. The format of the trace
record for an LSP miss with SDC miss event is modified
to include this additional bit that precedes the stream de-
scriptor field. Note that SA[1:0] is always '00' for the ARM
ISA and is omitted from the mSDCt. For the ARM Thumb
ISA only SA[0] can be omitted. These two bits do not
need to be kept in the stream descriptor cache. In addition,
we can also omit the address bits that can be inferred
from the SDC index (this enhancement will be discussed
further down).

Increasing the width of the LVSA register reduces the
number of bits in the miss trace in case of LVSA hits;
however, it also reduces the number of LVSA hit events.
Table 5 shows the fraction of the original miss trace com-
ponent for various values of the parameter u for the [32x4,
128] configuration. For example, we find that the LVSA
enhancement reduces the miss trace component by 18%
when u=14. It should be noted that the reduction in the
total output trace is more significant for smaller trace
module configurations and relatively insignificant for
larger configurations, because the miss trace component
is relatively small in the latter case.

The redundancy in the hLSPt component can be re-
duced using a counter that counts the number of consecu-
tive bits with value '1'. The counter is called one length
counter (OLC). Long runs of ones are replaced by the
counter value preceded by a new header. The number of
bits used to encode this trace component is determined by
the counter size. Longer counters can capture longer runs
of ones, but too long a counter results in wasted bits. Our
analysis of the hLSPt components shows a fairly large
variation in the average number of consecutive ones,
ranging from 5 in ghostscript and fft to hundreds in
adpcm_c and tiff2bw. In addition, these sequences of con-
secutive ones may vary across different program phases,
meaning that an adaptive OLC length method would
yield better results.

The adaptive one-length counter (AOLC) dynamically
adjusts the OLC size to the program flow characteristics.
An additional 4-bit saturating counter monitors the hLSPt
entries and is updated as follows. It is incremented by 3
when the number of consecutive ones in the hLSPt trace
exceeds the current size of the OLC. The monitoring
counter is decremented by 1 whenever the number of
consecutive ones is smaller than half of the maximum
OLC counter value. When the monitoring counter reaches
its maximum (15) or minimum (0), a change in the OLC
size occurs. If the maximum is reached, the OLC size is
increased by one bit (if possible). If the minimum is
reached, the OLC size is decreased by one bit (if possible).

Using an AOLC necessitates a slight modification of
the trace output format. We use a header bit '1' that is
followed by log2(AOLC Size) bits. The counter size is
automatically adjusted as described above. Of course, the
software de-compressor needs to implement the same

adaptive algorithm. We call this scheme, which includes
the LVSA and AOLC optimizations, eSDC-LSP.

Table 6 shows the trace port bandwidth of the eSDC-
LSP scheme for individual benchmarks and for different
sizes of the SDC and LSP. We observe relatively high im-
provements for small trace module configurations,
mainly due to a reduction in the mSDCt size; for example,
the average trace port bandwidth for the [8x4, 32] con-
figuration is 0.35 bits/ins, down from 0.43 bits/ins in the
bSDC-LSP scheme (18% lower). Similarly, for large trace
module configurations the hLSPt size is significantly re-
duced; for example, the trace port bandwidth for the
[64x4, 256] configuration is 0.12 bits/ins, versus 0.142
bits/ins in the bSDC-LSP scheme (a 15% reduction). Some
benchmarks benefit significantly from this enhancement,
especially those with a high LSP hit rate, such as adpcm_c
(over 14 times lower bandwidth), tiff2bw (3.45), and
tiff2rgba (3.67).

TABLE 5
FRACTION OF THE ORIGINAL MISS TRACE COMPONENT USING

LVSA.

Program/u 21 20 19 18 17 16 15 14 13 12
adpcm_c 0.83 0.82 0.83 0.83 0.83 0.82 0.79 0.79 0.81 0.82
bf_e 0.87 0.85 0.74 0.72 0.73 0.75 0.76 0.77 0.79 0.81
cjpeg 0.87 0.86 0.86 0.86 0.85 0.82 0.81 0.82 0.84 0.85
djpeg 0.87 0.84 0.84 0.84 0.84 0.81 0.81 0.82 0.83 0.84
fft 0.89 0.89 0.87 0.86 0.86 0.85 0.83 0.81 0.83 0.84
ghostscript 0.87 0.86 0.86 0.85 0.86 0.85 0.84 0.85 0.84 0.84
gsm_d 0.87 0.86 0.86 0.82 0.82 0.81 0.81 0.82 0.83 0.85
lame 0.87 0.86 0.85 0.85 0.86 0.87 0.86 0.86 0.87 0.88
mad 0.82 0.81 0.81 0.81 0.79 0.78 0.78 0.79 0.81 0.82
rijndael_e 0.96 0.96 0.83 0.84 0.85 0.82 0.83 0.84 0.86 0.87
rsynth 0.88 0.89 0.87 0.83 0.83 0.75 0.77 0.78 0.80 0.82
sha 0.87 0.88 0.79 0.71 0.72 0.74 0.75 0.76 0.78 0.80
stringsearch 0.83 0.84 0.84 0.85 0.78 0.77 0.79 0.80 0.82 0.83
tiff2bw 0.88 0.85 0.83 0.84 0.83 0.80 0.82 0.78 0.80 0.82
tiff2rgba 0.96 0.96 0.96 0.90 0.85 0.86 0.82 0.77 0.79 0.80
tiffdither 0.95 0.94 0.93 0.93 0.93 0.92 0.93 0.93 0.93 0.94
tiffmedian 0.88 0.88 0.83 0.83 0.83 0.81 0.81 0.78 0.80 0.82
Average 0.88 0.87 0.85 0.84 0.84 0.83 0.82 0.82 0.84 0.85

TABLE 6
TRACE PORT BANDWIDTH OF THE ESDC-LSP SCHEME.

eSDC‐LSP bits/ins
Program/Size 32 64 128 256 512 1024
adpcm_c 0.001 0.001 0.001 0.001 0.001 0.001
bf_e 0.378 0.342 0.345 0.372 0.398 0.425
cjpeg 0.154 0.095 0.088 0.092 0.098 0.104
djpeg 0.092 0.068 0.053 0.048 0.050 0.053
fft 1.235 0.851 0.542 0.327 0.237 0.196
ghostscript 1.358 0.760 0.216 0.214 0.217 0.224
gsm_d 0.062 0.057 0.051 0.045 0.043 0.042
lame 0.110 0.094 0.090 0.090 0.090 0.085
mad 0.254 0.120 0.116 0.114 0.115 0.120
rijndael_e 0.599 0.239 0.183 0.090 0.096 0.103
rsynth 0.297 0.200 0.147 0.097 0.097 0.103
sha 0.141 0.070 0.074 0.079 0.084 0.089
stringsearch 1.082 0.789 0.412 0.344 0.358 0.345
tiff2bw 0.062 0.052 0.030 0.016 0.011 0.012
tiff2rgba 0.066 0.041 0.012 0.007 0.008 0.008
tiffdither 0.279 0.213 0.158 0.135 0.129 0.133
tiffmedian 0.039 0.035 0.027 0.021 0.017 0.018
Average 0.349 0.230 0.146 0.120 0.114 0.114

10 IEEE TRANSACTIONS ON COMPUTERS, TC-2009-10-0520.R1

3.3 Enhancements for Reducing Hardware
Complexity

The LVSA enhancement could be slightly modified to
reduce the overall cost of the trace module implementa-
tion. For example, the uppermost 12 bits of the stream
starting address do not change with a probability of 0.99
in our benchmarks. Consequently, we may opt not to
keep the upper address bits SA[31:20] in the stream de-
scriptor cache, thus reducing its size. Instead, the upper
address bits are handled entirely by a last value predictor
in a manner similar to the LVSA enhancement discussed
above. The mechanism used in the eSDC-LSP scheme can
be modified as follows. In the eSDC-LSP scheme, we only
considered trace records in the miss trace (mSDCt), up-
dating the LVSA register only when an LSP miss with
SDC miss event occurs. Here we need to continuously
update the LVSA register, regardless of whether we have
a hit or a miss in the SDC and LSP structures. Moreover, a
miss in the LVSA register results in sending a stream de-
scriptor to the output trace; the SDC and LSP are updated
accordingly. To determine the optimal number of upper
bits that should be handled by the LVSA predictor, we
need to consider the SDC performance. Reducing the
number of address bits that are stored in the SDC reduces
its size, but may result in an increased miss rate and thus
increase the trace port bandwidth. A modified eSDC-LSP
with the uppermost 12 address bits handled by the LVSA
appears optimal for our benchmarks.

We can further reduce the number of bits kept in the
stream descriptor cache without any negative impact on
the trace module performance. The bits of the starting
address SA[shift+log2(NSET)-1:shift] that are used in the
calculation of the SDC index function (3) do not need to
be kept in the SDC. This information can be inferred
based on the known index function and SL bits that are
stored in the SDC. (Alternatively, we can keep all address
bits in the stream cache and eliminate the portion of the
SL bits that are used for the SDC index.) For example, in
the [32x4, 128] configuration, the iSet is calculated as the
XOR result of SA[8:4] and SL[4:0]. Consequently, we can
infer the value of SA[8:4] as SA[8:4] = iSet XOR SL[4:0].
The eSDC-LSP scheme with the modified LVSA en-
hancement and the reduced complexity SDC is called
rSDC-LSP scheme.

Table 7 shows the trace port bandwidth of the rSDC-
LSP scheme for different sizes of the SDC and LSP. The
upper twelve address bits SA[31:20] are predicted using
the last value predictor and an entry in the stream cache
consists of the lower 13 address bits SA[19:9] and SA[3:2]
and the stream length field SL[7:0]. The rSDC-LSP scheme
requires slightly higher bandwidth at the trace port than
eSDC-LSP. For example, the trace module configuration
[32x4, 128] achieves 0.15 bits/ins at the trace port versus
0.146 bits/ins for the eSDC-LSP scheme. However, this
degradation due to aliasing in the SDC is less than 3%,
which is probably an acceptable loss for a significant re-
duction in the size of the stream descriptor cache (we
keep 13 instead of 30 bits for stream starting addresses).

4 PUTTING IT ALL TOGETHER
In this section we evaluate the performance of the pro-
posed schemes bSDC-LSP, eSDC-LSP, and rSDC-LSP
relative to several alternative approaches. We measure
the average trace port bandwidth requirements for our
benchmark suite. While the average trace port bandwidth
is a useful metric for comparison of different approaches
to program tracing, it is important to determine the size
of the trace buffer and the stream descriptor buffer so that
the program tracing can be performed unobtrusively in
real-time. We extend the SimpleScalar sim-outorder proc-
essor simulator with a model of the proposed trace mod-
ule and use it to determine the minimum size of each
buffer needed to guarantee unobtrusive tracing. Finally,
we estimate the complexity of the proposed scheme and
compare it to similar solutions available in the literature.

4.1 Trace Port Bandwidth Analysis
Fig. 6 shows the average, minimum, and maximum trace
port bandwidths for the proposed schemes and alterna-
tive approaches, including base implementations of the
trace module (fBASE and BASE), a Nexus-like implemen-
tation (NEXS) [11], and two recently proposed hardware-
based trace compression schemes [13], [14]. For reference,
we also show the results obtained by gzip, a widely used
software compression utility (SW-GZIP). Table 8 shows
the average trace port bandwidth for each scheme and
each individual benchmark.

The fBASE scheme assumes sending a sequence of full
stream descriptors (SA, SL) directly to the trace port, re-
gardless whether the SA field can be inferred by the soft-
ware debugger, whereas the BASE assumes the SA field is
traced out only when it cannot be inferred (SA/-, SL). The
sequence of stream descriptors is equivalent to the one
captured at the output of our stream detector unit. The
required average trace port bandwidth for fBASE is 2.51
bits/ins, ranging from 0.73 for adpcm_c to 6.80 bits/ins for

TABLE 7
TRACE PORT BANDWIDTH OF THE RSDC-LSP SCHEME.

rSDC‐LSP bits/ins
Program/Size 32 64 128 256 512 1024
adpcm_c 0.001 0.001 0.001 0.001 0.001 0.001
bf_e 0.381 0.343 0.345 0.372 0.398 0.425
cjpeg 0.156 0.096 0.088 0.092 0.098 0.104
djpeg 0.094 0.068 0.054 0.048 0.050 0.053
fft 1.276 0.874 0.554 0.331 0.237 0.196
ghostscript 1.377 0.758 0.216 0.214 0.217 0.224
gsm_d 0.064 0.058 0.052 0.045 0.043 0.042
lame 0.128 0.113 0.109 0.109 0.110 0.106
mad 0.259 0.121 0.117 0.114 0.115 0.120
rijndael_e 0.623 0.246 0.185 0.090 0.096 0.103
rsynth 0.308 0.205 0.149 0.097 0.097 0.103
sha 0.143 0.070 0.074 0.079 0.084 0.089
stringsearch 1.118 0.807 0.416 0.346 0.359 0.345
tiff2bw 0.064 0.054 0.031 0.016 0.011 0.012
tiff2rgba 0.069 0.042 0.012 0.007 0.008 0.008
tiffdither 0.282 0.214 0.159 0.135 0.129 0.133
tiffmedian 0.040 0.035 0.028 0.021 0.017 0.018
Average 0.359 0.235 0.150 0.123 0.117 0.117

MILENKOVIĆ ET AL.: CACHES AND PREDICTORS ... 11

bf_e. The trace port bandwidth for
BASE is 1.06 bits/ins, ranging from
0.15 bits/ins for adpcm_c to 4.91
bits/ins for bf_e. These results indi-
cate that using partial stream de-
scriptors in the BASE scheme is
indeed highly beneficial. Still, as-
suming a processor core that can
execute one instruction per clock
cycle (IPC=1) and a trace port
working at the processor clock
speed, we would need at least 5
data pins on the trace port to trace
the program execution unobtru-
sively in the worst case (for bench-
mark bf_e). However, having wide
trace ports significantly increases system cost, especially
in the presence of multiple processor cores because I/O
bandwidth does not scale at the same pace as the on-chip
resources. This result further underscores the need to
have a trace module that supports effective compression.

The NEXS approach implements a simple trace reduc-
tion technique inspired by the NEXUS standard [11]. The
starting address from the incoming stream descriptor is
XORed with the starting address from the previous
stream descriptor, producing DiffSA = Incoming.SA[31:0]
xor Previous.SA[31:0]. The difference is split into groups
of 6 bits, DiffSA[5:0], DiffSA[11:6], DiffSA[17:12], etc. The
leading zeros in the DiffSA are not sent to the trace port,
thus reducing the trace port bandwidth. For example, if
the DiffSA[31:6] consists only of zeros, then only the
DiffSA[5:0] is sent to the trace port, together with a 2-bit
header indicating that this is the terminating byte for the
stream address field. The SL field is always sent to the
trace port without further reduction. The average trace
port bandwidth required for the NEXS scheme is 0.907
bits/ins, ranging from 0.149 bits/ins for adpmc_c to 4.01
bits/ins for bf_e. This relatively small improvement com-
pared to the BASE scheme is due to the fact that the num-
ber of indirect branches is small,
so we have a small number of
trace records that include a full
stream descriptor. Another rea-
son is the relatively high over-
head in header bits.

Next, we analyze a recent ad-
aptation of the Lempel-Ziv com-
pression algorithm by Kao et al.
that is specifically tailored to
program execution traces [13].
The compressor encompasses
three stages: filtering of branch
and target addresses, then differ-
ence-based encoding, and finally
hardware-based LZ compression.
We implemented this compres-
sor and analyzed its performance
on our set of benchmarks. The

average trace port bandwidth is 0.446 bits/ins for a com-
pressor with a sliding window of 256 12-bit entries
(TSLZ-256) with a maximum pattern length of 128. The
compressor’s complexity is estimated to be 51,678 logic
gates [13]. For this configuration the worst performing
benchmark (stringsearch) requires more than 1.9 bits/ins
of trace port bandwidth. The compressor can recognize
long repeating patterns, but it relies on relatively long
fixed 27-bit trace records that consist of a 12-bit word, a 7-
bit pattern length, and an 8-bit index in the sliding win-
dow. With even larger sliding windows of 1024 or 8192
12-bit entries, it requires 0.233 bits/ins and 0.1 bits/ins on
the trace port, respectively. However, the implementation
cost of such large sliding windows would be prohibitive.

We also evaluate one of our earlier compression meth-
ods [14]. This technique relies on the stream descriptor
cache in the first stage and a tuple history table (THT) in
the second stage. The tuple history table is a fully-
associative structure that keeps the m most recent n-tuples
of stream indices. An incoming n-tuple is searched in the
THT; in case of a hit, the incoming n-tuple is replaced by
a single index in the THT. In case of a THT miss, a re-
served index 0 followed by the whole n-tuple is traced out;
in case of an SDC miss, the full stream descriptor is traced

TABLE 8
TRACE PORT BANDWIDTH EVALUATION: A COMPARATIVE ANALYSIS.

fBASE BASE NEXS TSLZ‐256 TSLZ‐1K SC‐T8HT bSDC‐LSP eSDC‐LSP rSDC‐LSP SW‐GZIP
adpcm_c 0.731 0.150 0.149 0.024 0.025 0.021 0.019 0.001 0.001 0.001
bf_e 6.798 4.913 4.010 0.354 0.367 0.325 0.357 0.345 0.345 0.038
cjpeg 3.261 0.790 0.752 0.431 0.138 0.219 0.131 0.088 0.088 0.050
djpeg 1.605 0.390 0.366 0.230 0.176 0.173 0.075 0.053 0.054 0.019
fft 3.810 1.895 1.554 1.921 1.036 1.590 0.616 0.542 0.554 0.065
ghostscript 4.018 1.814 1.578 1.394 0.187 0.629 0.232 0.216 0.216 0.038
gsm_d 2.052 0.621 0.567 0.152 0.151 0.183 0.086 0.051 0.052 0.009
lame 1.234 0.452 0.391 0.171 0.148 0.203 0.102 0.090 0.109 0.040
mad 1.931 0.785 0.668 0.268 0.144 0.180 0.129 0.116 0.117 0.042
rijndael_e 1.911 1.013 0.840 0.043 0.038 0.071 0.192 0.183 0.185 0.013
rsynth 2.278 0.883 0.747 0.271 0.247 0.349 0.175 0.147 0.149 0.018
sha 2.597 0.602 0.567 0.441 0.036 0.073 0.101 0.074 0.074 0.005
stringsearch 6.644 2.157 1.932 1.962 1.135 1.402 0.472 0.412 0.416 0.104
tiff2bw 3.124 0.668 0.654 0.146 0.137 0.137 0.104 0.030 0.031 0.006
tiff2rgba 1.447 0.349 0.330 0.160 0.095 0.079 0.045 0.012 0.012 0.005
tiffdither 2.804 0.692 0.659 0.573 0.073 0.489 0.190 0.158 0.159 0.080
tiffmedian 1.795 0.380 0.374 0.081 0.301 0.078 0.066 0.027 0.028 0.007
Average 2.510 1.055 0.907 0.446 0.233 0.353 0.174 0.146 0.150 0.031

Trace Port Bandwidth

0.001

0.010

0.100

1.000

10.000

fBASE BASE NEXS TSLZ‐256 TSLZ‐1K SC‐T8HT bSDC‐LSP eSDC‐LSP rSDC‐LSP SW‐GZIP

bi
ts

/i
ns

Fig. 6. Trace port bandwidth evaluation for all proposed and some related schemes.

12 IEEE TRANSACTIONS ON COMPUTERS, TC-2009-10-0520.R1

out. We evaluate a configuration with
a 128x4 SDC and a 255-entry 8-tuple
history table (m=255, n=8) on our
benchmark suite (which differs
slightly from the one we used previ-
ously [14]). This approach requires
0.353 bits/ins, which is over two times
more than for any of the schemes pro-
posed in this article.

Our most cost-effective scheme,
rSDC-LSP, yields an average trace
port bandwidth of 0.15 bits/ins, rang-
ing from 0.001 bits/ins for adpcm_c to
0.554 bits/ins for fft. Consequently,
the worst performing benchmark re-
quires less than one bit per instruction,
allowing us to trace the program execution through just a
single bit on the trace port, i.e., a JTAG port would be
sufficient. Finally, to underline the effectiveness of the
proposed mechanism, we compare it with the software
compression utility gzip that implements the Lempel-Ziv
compression algorithm. This algorithm uses large mem-
ory buffers and its implementation in a hardware trace
module would be cost-prohibitive. If we supply a se-
quence of filtered stream descriptors as an input to gzip
with small buffers (gzip -1), it achieves 0.031 bits/ins,
which is about 5 times better than the proposed schemes.
While the result indicates that there is still room for im-
proving the trace compression algorithm, we believe that
the proposed mechanism achieves an excellent compres-
sion at minimal hardware cost.

4.2 Complexity Estimation
To estimate the size of the proposed trace module, we
need to estimate the size of all structures, including the
SDC, the LSP, the stream detector, the stream descriptor
buffer, the LVSA register, the AOLC register with the
training register, and the output trace buffer. Let us first
discuss the complexity of the hardware structures using
the number of storage bits as complexity metric. We focus
on our most cost-effective scheme rSDC-LSP. The stream
detector requires two registers, a 30-bit SA and an 8-bit
SL. The SDC is a simple cache-like structure; for example
our best performing configuration has 127 entries (32 sets
x 4 ways). Entry 0 is non-existing since it is reserved to
indicate a miss in the SDC. An entry in the SDC requires
13 bits for the SA (see Section 3.3), 8 bits for the SL, a valid
bit, and one replacement bit (for the MRU-based replace-
ment policy), so the total number of storage bits in the
SDC is 2921. The LSP is a direct-mapped structure with
128 7-bit entries. The LSP is indexed by the previous
stream index (also 7 bits), so the total number of storage
bits is 903. The AOLC is an 8-bit counter and we also need
a 4-bit training counter. Finally, we need to determine the
minimum sizes of the stream descriptor buffer (Fig. 3)
and the trace output buffer (Fig. 1). The size of these
structures should be such that the processor is never
stalled due to the finite capacity of the trace structures. To
determine the size of these structures, we use a cycle-

accurate processor model similar to Intel’s XScale proces-
sor [21]. The trace module is modeled as follows. We as-
sume that it requires one clock cycle to service an LSP
with SDC hit or an LSP miss with SDC hit event and two
clock cycles for an SDC miss event. The SDC and LSP
work in parallel because the LSP is indexed by the previ-
ous stream index, so their access latencies are not addi-
tive. The trace records are stored in the trace output
buffer. If the output buffer is not empty, a single bit is
sent out through the trace data port each clock cycle. The
processor is never stalled and no trace records are lost if
the following conditions are met for our benchmarks: the
number of entries in the stream descriptor buffer is at
least two (2*38 = 76 bits), and the minimum trace output
buffer size is 80 bits. Thus, the complexity of our rSDC-
LSP scheme is estimated to be 4,042 storage bits.

The implementation complexity of the proposed
schemes is predominantly determined by the size of the
SDC and LSP structures. To quantitatively estimate their
size, we use the Cacti tools (versions 4.0 and 6.0) [22] that
report the area occupied by the cache tags and the data
memory portions of the cache structures. To enable a
comparative analysis with the complexity of known struc-
tures, we compare the total area of the SDC and LSP to-
gether with the total area occupied by a 1 kilobyte cache
(including both the tags and the data portion) with the
following parameters: a single read/write port, an 8-byte
block size, 4 ways, and 32-bit addresses. Fig. 7 shows the
normalized on-chip area for different compressor con-
figurations assuming 90 nm technology. We find that our
rSDC-LSP scheme (32x4 SDC, 128-entry LSP) requires an
on-chip area of 15,640 μm2 for 90 nm technology and
63,250 μm2 for 180 nm technology. For 90 nm technology,
the combined area for the SDC and the LSP is only 33.9%
of the area required by the 1 kilobyte cache. The base
scheme (bSDC-LSP) with the same configuration requires
51.7% of the area. This confirms our expectations that en-
hancements for reducing complexity are indeed beneficial.
We also used the CACTI tools to estimate the access times
of the SDC and LSP; the 128-entry (32x4) SDC requires
0.77 ns and the 128-entry LSP requires 0.86 ns assuming
90 nm technology. The estimated complexity of the com-
pression method SC-T8HT [14] is 1.9 times the area of the

Normalized On‐Chip Area

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

32 64 128 256 512 1024

SDC and LSP size

rSDC‐LSP (Cacti)

eSDC‐LSP (Cacti)

bSDC‐LSP (Cacti)

Trace Port Bandwidth vs. Complexity

0.1

0.2

0.3

0.4

0.5

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Area(xSDC‐LSP)/Area(1KB Cache)

TP
B

(b
its

/i
ns

)

rSDC‐LSP

eSDC‐LSP

bSDC‐LSP

Fig. 7. Normalized on-chip area (left) and trace reduction ratio vs. complexity (right).

MILENKOVIĆ ET AL.: CACHES AND PREDICTORS ... 13

1 kilobyte cache. Kao et al. reported the on-chip area of
their TSLZ-256 compressor to be 511,616 μm2 using 180
nm technology, which is over 8 times larger than the
rSDC-LSP using 180 nm technology.

Fig. 7, right, shows the trace port bandwidth as a func-
tion of the trace module complexity. The area represented
on the x axis is normalized to the area of a 1 kilobyte
cache. Different points represent different trace module
configurations, varied from 32 entries [8x4, 32] to 1024
entries [256x4, 1024]. For example, rSDC-LSP [32x4, 128]
requires only 0.15 bits/ins at the cost of 0.33*Area(1 KB
Cache); rSDC-LSP [64x4, 256] requires only 0.123 bits/ins
at the cost of 0.56*Area(1 KB cache). At the low end of
complexity, which is what we are interested in, rSDC-LSP
emerges as the best solution and is therefore our recom-
mended implementation.

5 CONCLUSIONS
This paper describes a new low-cost mechanism for real-
time tracing and compression of program executions. The
mechanism exploits temporal and spatial locality of pro-
gram streams using two new structures called stream
descriptor cache and last stream predictor to achieve
compression ratios that are over six times higher than
commercial state-of-the-art solutions.

We have explored the design space of the proposed
hardware structures including their access functions, size,
and organization. We have introduced several low-cost
enhancements to the initial scheme and demonstrated
their effectiveness by analyzing the required trace port
bandwidth and hardware complexity. Our best perform-
ing approach requires an average trace port bandwidth of
only 0.15 bits/instruction on the MiBench programs. This
enables very cost-effective tracing through a single-pin
trace port at a cost in on-chip area that is equivalent to
one third of a 1KB cache for the trace compression struc-
tures.

GLOSSARY
Abbreviation Definition
AOLC Adaptive One-Length Counter
avgSL Average Stream Length
hrLSP Hit rate in Last Stream Predictor
hrSDC Hit rate in Stream Descriptor Cache
IC Instruction Count
LSP Last Stream Predictor
LVSA Last Value Starting Address
NEXS Nexus-like Compressor
SA Starting Address
SDB Stream Descriptor Buffer
SDC Stream Descriptor Cache
SI Stream Index
SL Stream Length
THT Tuple History Table
TPB Trace Port Bandwidth
TSLZ Trace-Specific LZ Compressor

ACKNOWLEDGMENT
The authors would like to thank the anonymous review-
ers for their valuable suggestions. This work was sup-
ported in part by a National Science Foundation grant
CNS-0855237.

REFERENCES
[1] B. Dipert, ʺInside Appleʹs iPhone: More Than Just a Dial Tone,ʺ
<http://www.edn.com/article/CA6457065.html?nid=2551> (Available
September 2009).
[2] J. Messina, ʺMulti‐Core ARM Chips Slated for Smartphones Next
Year,ʺ <http://www.physorg.com/news164386074.html> (Available
September 2009).
[3] C. J. Murray, ʺAutomakers Aim to Simplify Electrical Architec‐
tures,ʺ <http://www.designnews.com/article/316784‐Automakers_
Aim_to_Simplify_Electrical_Architectures.php> (Available Septem‐
ber 2009).
[4] M. Abramovici, P. Bradley, K. Dwarakanath, P. Levin, G. Memmi,
and D. Miller, ʺA Reconfigurable Design‐for‐Debug Infrastructure
for SoCs,ʺ in 43rd Design Automation Conference, 2006, pp. 7 ‐ 12.
[5] RTI‐International, ʺThe Economic Impacts of Inadequate Infra‐
structure for Software Testing,ʺ <http://www.nist.gov/director/prog‐
ofc/report02‐3.pdf> (Available July 2009).
[6] A. B. T. Hopkins and K. D. McDonald‐Maier, ʺDebug Support
Strategy for Systems‐on‐Chips with Multiple Processor Cores,ʺ IEEE
Transactions on Computers, vol. 55, February 2006, pp. 174‐184.
[7] ARM, ʺEmbedded Trace Macrocell Architecture Specification,ʺ
<http://infocenter.arm.com/help/topic/com.arm.doc.ihi0014o/IHI0014
O_etm_v3_4_architecture_spec.pdf> (Available November 2009).
[8] MIPS, ʺThe PDTrace™ Interface and Trace Control Block Specifi‐
cationʺ <http://www.mips.com/products/product‐materials/
processor/mips‐architecture/> (Available November 2009).
[9] Infineon, ʺTC1775 System Units 32‐Bit Single‐Chip Microcontrol‐
ler,ʺ <http://www.infineon.com/cms/en/product/channel.html?
channel=ff80808112ab681d0112ab6b7535083b> (Available November
2009).
[10] Freescale, ʺMPC555 / MPC556 User’s Manual,ʺ
<http://www.freescale.com/files/microcontrollers/doc/user_guide/M
PC555UM.pdf> (Available November 2009).
[11] IEEE‐ISTO, ʺThe Nexus 5001 Forum Standard for a Global Em‐
bedded Processor Debug Interface,ʺ <http://www.nexus5001.org>
(Available November 2009).
[12] W. Orme, ʺDebug and Trace for Multicore SoCs,ʺ ARM White
Paper, 2008.
[13] C.‐F. Kao, S.‐M. Huang, and I.‐J. Huang, ʺA Hardware Approach
to Real‐Time Program Trace Compression for Embedded Proces‐
sors,ʺ IEEE Transactions on Circuits and Systems, vol. 54, 2007, pp. 530 ‐
543.
[14] M. Milenković, A. Milenković, and M. Burtscher, ʺAlgorithms
and Hardware Structures for Unobtrusive Real‐Time Compression
of Instruction and Data Address Traces,ʺ in Proceedings of the 2007
Data Compression Conference, Snowbird, UT, 2007, pp. 55‐65.
[15] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T.
Mudge, and R. B. Brown, ʺMiBench: A Free, Commercially Represen‐
tative Embedded Benchmark Suite,ʺ in Proceedings of the IEEE 4th
Workshop on Workload Characterization, 2001.
[16] A. R. Pleszkun, ʺTechniques for Compressing Program Address

14 IEEE TRANSACTIONS ON COMPUTERS, TC-2009-10-0520.R1

Traces,ʺ in Proceedings of the 27th Annual International Symposium on
Microarchitecture, San Jose, CA, 1994, pp. 32‐39.
[17] A. Milenković and M. Milenković, ʺExploiting Streams in In‐
struction and Data Address Trace Compression,ʺ in Proceedings of
IEEE 6th Annual Workshop on Workload Characterization, Austin, TX,
2003, pp. 99‐107.
[18] A. Milenković and M. Milenković, ʺAn Efficient Single‐Pass
Trace Compression Technique Utilizing Instruction Streams,ʺ ACM
Transactions on Modeling and Computer Simulation, vol. 17, 2007, pp. 1‐
27.
[19] T. Austin, E. Larson, and D. Ernst, ʺSimplescalar: An Infrastruc‐
ture for Computer System Modeling,ʺ Computer, vol. 35, 2002, pp. 59‐
67.
[20] V. Uzelac, A. Milenković, M. Milenković, and M. Burtscher,
ʺReal‐Time, Unobtrusive, and Efficient Program Execution Tracing
with Stream Caches and Last Stream Predictors,ʺ in XXVII IEEE
International Conference on Computer Design, Resort at Squaw Creek,
Lake Tahoe, CA, 2009, pp. 173‐178.
[21] Intel, ʺIntel Xscale® Core Developer’s Manual,ʺ 2004.
[22] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, ʺCacti
6.0: A Tool to Model Large Caches,ʺ HP Laboratories, 2009.

Aleksandar Milenković received the Dipl. Ing., M.S., and Ph.D.
degrees in computer engineering and science from the University of
Belgrade, Serbia, in 1994, 1997, and 1999. He is currently an Asso-
ciate Professor of Electrical and Computer Engineering at the Uni-
versity of Alabama in Huntsville, where he leads the LaCASA Labo-
ratory (http://www.ece.uah.edu/~lacasa). His research interests in-
clude computer architecture, embedded systems, VLSI, and wireless
sensor networks. Prior to joining the University of Alabama he held

academic positions at the University of Belgrade in Serbia and the
Dublin City University in Ireland. He is a member of the IEEE, its
Computer Society, the ACM, and Eta Kappa Nu.

Vladimir Uzelac received his B.S. degree in electrical engineering
from the University of Belgrade in 2002 and his M.S. and Ph.D de-
gree in computer engineering from the University of Alabama in
Huntsville in 2008 and 2010. In the meantime he worked as a hard-
ware design engineer for several years. He has recently joined Ten-
silica, Santa Clara, where he works as an R&D engineer for embed-
ded software and debugging architecture and tools.

Milena Milenković Milena Milenkovic received her B.S. and M.S.
degrees from the University of Belgrade and her Ph.D. degree from
the University of Alabama in Huntsville. Her research interests in-
clude performance evaluation, secure computer architectures, data
compression, and architecture-aware compilers. Milena joined IBM
in June 2005 as an advisory software engineer. She is a member of
the IEEE, its Computer and Women in Engineering Societies, and
the ACM.

Martin Burtscher received the combined BS/MS degree in com-
puter science from the Swiss Federal Institute of Technology (ETH)
Zurich in 1996 and the Ph.D. degree in computer science from the
University of Colorado at Boulder in 2000. Since then, he has been
an assistant professor in the School of Electrical and Computer En-
gineering at Cornell University and a Research Scientist in the Insti-
tute for Computational Engineering and Sciences at the University of
Texas at Austin. His current research focuses on automatic paralleli-
zation of irregular programs for multicore and GPU architectures as
well as on automatic performance assessment and optimization of
HPC applications. He is an associate editor of the Journal of Instruc-
tion-Level Parallelism and a senior member of the IEEE, its Com-
puter Society, and the ACM.

