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Abstract—The increasing complexity of modern embedded computer systems makes software development and system 
verification the most critical steps in the system development. To expedite verification and program debugging, chip 
manufacturers increasingly consider hardware infrastructure for program debugging and tracing, including logic to capture and 
filter traces, buffers to store traces, and a trace port through which the trace is read by the debug tools. In this paper, we 
introduce a new approach to capture and compress program execution traces in hardware. The proposed trace compressor 
encompasses two cost-effective structures, a stream descriptor cache and a last stream predictor. Information about the 
program flow is translated into a sequence of hit and miss events in these structures, thus dramatically reducing the number of 
bits that need to be sent out of the chip. We evaluate the efficiency of the proposed mechanism by measuring the trace port 
bandwidth on a set of benchmark programs. Our mechanism requires only 0.15 bits/instruction/CPU on average on the trace 
port, which is a six-fold improvement over state-of-the-art commercial solutions. The trace compressor requires an on-chip area 
that is equivalent to one third of a 1 kilobyte cache and it allows for continual and unobtrusive program tracing in real-time. 

Index Terms—Compression Technologies, Real-time and Embedded Systems, Testing and Debugging, Tracing.  
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1 INTRODUCTION 
 

ODAY’S society relies more than ever upon embed-
ded computing, which drives modern communica-
tion, transportation, medicine, entertainment, and 

national security. The number of embedded processors by 
far surpasses the number of processors used for desktop 
and server computing. For example, a 2009 smartphone 
typically includes several processor cores [1], [2]; a 2009 
luxury car may have over 70 different processors and mi-
crocontrollers [3]. The emerging ubiquitous computing 
and wireless sensor networks will lead to even higher 
proliferation and diversification of embedded processors. 
Current economic and technology trends present unique 
challenges to the design and the operation of embedded 
computer systems. Ever-increasing hardware complexity, 
limited visibility of internal signals due to increased inte-
gration, and reduced component reliability due to aggres-
sive semiconductor technologies are only some of the 
most important challenges system designers of embedded 
computing platforms face. The time spent in post-silicon 
debug and verification has grown steadily as we move 

from one technology generation to the next [4]. Software 
designers of embedded systems face a number of chal-
lenging issues too, since increased hardware complexity 
enables more sophisticated applications. The software 
stack includes many layers, from hardware bring-up, 
low-level software, OS/RTOS porting, and application 
developing to system integration and performance tuning 
and optimization, production tests, in-field maintenance, 
and failure analysis. Growing software complexity often 
leads to lost revenue or even project failures if very tight 
time-to-market goals are not met. Software developers 
typically spend 50%-75% of their development time in 
program debugging [5]. This time is likely to grow with 
the shift from single- to multi-threaded applications. 
Hence, debugging and testing is already recognized as 
one of the most critical steps in the design and operation 
of modern embedded computer systems.  

Ideally, system designers would like to be able to an-
swer the simple question “What is my system doing?” at 
any point in the design and test cycle. However, achiev-
ing complete visibility of all signals in real time in mod-
ern embedded platforms is not feasible due to limited I/O 
bandwidth and high internal complexity. Moreover, even 
limited hardware support for tracing and debugging is 
associated with extra cost in on-chip area for capturing 
and buffering traces, for integration of these modules into 
the rest of the system, and for getting out the information 
through dedicated trace ports [6]. 

Debugging and testing of embedded processors is tra-
ditionally done through a JTAG port that supports two 
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basic functions: stopping the processor at any instruction 
or data access and examining the system state or chang-
ing it from outside. The problem with this approach is 
that it is obtrusive – the order of events during debugging 
may deviate from the order of events during “native” 
program execution when no interference from debugging 
operations is present. These deviations can cause the 
original problem to disappear in the debug run. For ex-
ample, debugging operations may interfere with program 
execution in such a way that the data races we are trying 
to locate disappear. Moreover, stepping through the pro-
gram is time-consuming for programmers and is simply 
not an option for debugging real-time embedded systems. 
For example, setting a breakpoint may be impossible or 
harmful in real-time systems such as a hard drive or a 
vehicle engine controller. A number of even more chal-
lenging issues arise in multi-core systems. They may have 
multiple clock and power domains, and we must be able 
to support debugging of each core, regardless of what the 
other cores are doing. Debugging through a JTAG port is 
not well suited to meet these challenges. 

Recognizing these issues, many vendors have devel-
oped modules with tracing capabilities and have inte-
grated them into their embedded platforms, e.g., ARM’s 
Embedded Trace Macrocell [7], MIPS’s PDTrace [8], and 
OCDS from Infineon [9] with a corresponding trace mod-
ule from Freescale [10]. The IEEE’s Industry Standard and 
Technology Organization has proposed a standard for a 
global embedded processor debug interface (Nexus 5001) 
[11]. Nexus defines four classes of operation: Class 1, 
Class 2, Class 3, and Class 4. Higher numbered classes 
progressively support more complex debug operations 
but require more on-chip resources. Class 1 provides ba-
sic debug features for run-control debugging (single 
stepping, breakpoints, watchpoints, and access to regis-
ters and memory while the processor is halted), typically 
implemented over IEEE 1149.1 (JTAG). Class 2 provides 
debug support for capturing program execution traces in 
real-time. Class 3 provides debug support for memory 
and I/O read/write traces. Class 4 provides resources for 
direct control of the processor over the trace port, where 
the instructions and data are supplied through the trace 
port rather than by the memory. The trace and debug 
infrastructure on a chip typically includes logic that cap-
tures the trace information, logic to filter and compress 
the captured information, buffers to store the traces, and 
logic that emits the content of the trace buffer through a 
trace port to an external trace unit or host machine. In this 
paper we focus on the capturing and compression of pro-
gram execution traces (Class 2 operation in Nexus). Pro-
gram execution traces consist of the addresses of all exe-
cuted instructions. Such traces are crucial for both hard-
ware and software debugging as well as for program op-
timization and tuning.  

Many existing trace modules employ program trace 
compression and buffering to achieve a bandwidth of 
about one bit/instruction/CPU on the trace port at the 
cost of roughly 7,000 gates [12]. They rely on large on-

chip buffers to store execution traces of sufficiently large 
program segments and/or on relatively wide trace ports 
that can transfer a large amount of trace data in real-time. 
However, large trace buffers and wide trace ports signifi-
cantly increase the system complexity and cost. More-
over, they do not scale well (the I/O bandwidth does not 
increase at the same pace as the on-chip logic), which is a 
significant problem in the era of multicore chips. Whereas 
commercially available trace modules typically imple-
ment only rudimentary forms of hardware compression, 
several recent research efforts in academia propose com-
pression techniques tailored to program execution traces 
that can achieve much higher compression ratios. For 
example, Kao et al. [13] propose an LZ-based program 
trace compressor that achieves a good compression ratio 
for a selected set of programs. However, the proposed 
module has a relatively high complexity (51,678 gates), 
and it is unclear how effective it would be in tracing more 
diverse programs. Milenkovic et al. [14] propose new 
hardware structures to compress program execution 
traces that achieve 0.35 bits/instruction/CPU at a rela-
tively modest hardware cost of two kilobytes of state. 

In this paper, we introduce a very cost-effective 
mechanism for capturing and compressing program exe-
cution traces unobtrusively in real-time. The proposed 
trace compressor relies on two new structures, called 
stream cache and last stream predictor, to translate a se-
quence of program streams into a sequence of encoded hit 
and miss events in these structures. We also introduce 
several enhancements that reduce trace port bandwidth 
or compressor complexity and size. We explore trade-offs 
in the design of the proposed trace compressor and 
evaluate its overall effectiveness by measuring the aver-
age trace port bandwidth. Our experimental evaluation 
based on a set of representative benchmarks from the 
MiBench suite [15] shows that our best-performing trace 
compressor configuration with complexity equivalent to 
one third of a 1 kilobyte cache achieves a trace port band-
width of 0.15 bits/instruction/CPU -- over six times 
lower than state-of-the-art commercial solutions. The 
proposed compression mechanism is orthogonal to data 
tracing required by Nexus’ Class 3 operation. In fact, a 
good compressor for program execution traces benefits 
data tracing. First, reducing the trace port bandwidth 
consumed by program execution traces allows more 
bandwidth for data traces. Second, the internal trace buff-
ers that would be used for storing of program execution 
traces compressed with a less sophisticated approach 
than ours can instead be devoted to storing data traces. 

The reminder of the paper is organized as follows. Sec-
tion 2 gives a system view of the proposed tracing 
mechanism and describes the trace compressor structures 
and their operation. Section 3 presents the results of the 
experimental evaluation, which includes a design space 
exploration and trace port bandwidth analysis. In addi-
tion, we describe several low-cost enhancements and ex-
plore their effectiveness. Section 4 compares the proposed 
schemes with existing solutions by analyzing the required 
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trace port bandwidth and hardware complexity. Section 5 
concludes the paper. 

2 TRACE COMPRESSION USING A STREAM 
DESCRIPTOR CACHE AND A LAST STREAM 
PREDICTOR 

Program execution traces are created by recording the 
addresses of executed instructions. However, to replay a 
program flow offline we do not need to record each in-
struction address. Instead, we only have to record pro-
gram flow changes, which can be caused by either con-
trol-flow instructions or exceptions. When a change in the 
program flow occurs, we need to know the address of the 
next instruction in the sequence; it is either the target ad-
dress of the current branch1 instruction or the starting 
address of an exception handler. Consequently, the pro-
gram execution can be recreated from the recorded in-
formation about program streams, also known as dy-
namic basic blocks. An instruction stream is defined as a 
sequential run of instructions, from the target of a taken 
branch to the first taken branch in the sequence. Each in-
struction stream can be uniquely represented by its start-
ing address (SA) and its length (SL). The pair (SA, SL) is 
called stream descriptor and replaces the complete trace 
of instruction addresses in the corresponding stream. 
Hence, the program execution can be replayed offline 
using the sequence of stream descriptors recorded during 
program execution. 

A sequence of trace records with complete stream de-
scriptors (SA, SL) includes some redundant information 
that can be directly inferred from the program binary 
during program replay. For example, if an instruction 
stream ends with a direct conditional branch, the next 
stream’s starting address can be inferred from the binary 
and does not need to be traced out; instead, the next 
stream descriptor can include only information about its 
length (-, SL). Next, if an instruction stream ends with a 
direct unconditional branch, we can infer both the out-
come and target from the binary. Thus, we do not need to 
terminate the current stream at such an instruction; 
rather, the current stream continues at the branch target. 
We use these two modifications to further reduce the size 
and the number of the trace records that need to be com-
municated through the trace port. Let us first examine 
characteristics of program streams as defined here by pro-
filing a set of representative benchmarks targeting em-
bedded computer systems. 

Most programs have only a small number of unique 
program streams, with just a fraction of them responsible 
for the majority of program execution [16], [17], [18]. Ta-
ble 1 shows some important characteristics of MiBench 
[15] benchmarks collected using SimpleScalar [19] run-
ning ARM binaries. The columns (a-d) show the number 
of executed instructions in millions (IC - instruction count), 
the number of unique streams (USC – unique stream 
                                                             

1 For simplicity, we refer to all control-flow changing instructions as 
branch instructions. 

count), and the 
maximum 
(maxSL) and the 
average stream 
length (avgSL), 
respectively. The 
total number of 
unique streams 
traversed during 
program execu-
tion is fairly lim-
ited – it ranges 
from 341 
(adpcm_c) to 6871 
(ghostscript), and 
the average dy-
namic stream 
length is between 
5.9 (bf_e) and 54.7 
instructions 
(adpcm_c). The 
fifth column (e) shows the number of unique program 
streams that constitute 90% of the dynamically executed 
streams. This number ranges between 1 (adpcm_c) and 235 
(lame), and is 78 on average. Note that all averages 
throughout the paper use a weighted average. A bench-
mark weight is directly proportional to the number of 
executed instructions in that benchmark divided by the 
total number of executed instructions in all benchmarks. 
We use 8 bits to represent the stream length, SL, because 
program streams in our benchmarks never exceed 256 
instructions. However, the streams may be longer than 
256 instructions for other programs. In this case we would 
use the maximum stream length as an additional condi-
tion for terminating a stream – when the SL reaches the 
limit, the stream is automatically terminated and a new 
stream started. 

The proposed tracing mechanism, illustrated in Fig. 1, 
is designed to exploit the observed program characteris-
tics. The target platform executes a program on a proces-
sor core. The trace module is coupled with the processor 
core through a simple interface including the program 
counter (PC), branch type information (direct/indirect, 
conditional/unconditional), and an exception control sig-
nal. The trace module consists of relatively simple hard-
ware structures and logic dedicated to capturing, com-
pressing, and buffering program traces. The recorded 
trace is read out of the chip through a trace port. The trace 
records can be collected on an external trace unit for later 
analysis or forwarded to a host machine running a soft-
ware debugger. 

The software debugger on the host machine reads, de-
codes, and decompresses the trace records. To decom-
press the trace records, the debugger maintains exact 
software copies of the state in the trace module structures. 
They are updated during program replay by emulating 
the operation of the hardware trace module. Decompres-
sion produces a sequence of stream descriptors that, in 

TABLE 1 
MIBENCH PROGRAM CHARACTERISTICS

IC USC max avg CDF
(mil.) SL SL 90%

adpcm_c 732.5 341 71 54.7 1
bf_e 543.9 403 70 5.9 22
cjpeg 104.6 1590 239 12.3 47
djpeg 23.4 1261 206 25.1 31
fft 631.0 846 94 10.5 209
ghostscript 707.9 6871 251 10.0 67
gsm_d 1299.3 711 165 19.5 33
lame 1285.0 3229 237 32.4 235
mad 286.9 1528 206 20.7 42
rijndael_e 319.7 513 77 21.0 45
rsynth 824.9 1238 180 17.6 49
stringsearch 3.7 436 65 6.0 48
sha 140.9 519 65 15.4 10
tiff2bw 143.3 1038 43 12.8 2
tiff2rgba 151.7 1131 75 27.7 2
tiffmedian 541.3 1335 92 22.3 5
tiffdither 833.0 1777 67 14.3 63
Average 816.3 1791 145 21.6 77.8

(a) (b) (c) (d) (e)  
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conjunction with the program binary, provides enough 
information for a complete program replay off-line. The 
software debugger can control the trace module operation 
by initializing its configuration registers appropriately; 
for example, these registers determine how to handle in-
terrupt service routines – tracing can continue if the soft-
ware debugger is able to replay the code.  

The proposed mechanism performs the capture and 
compression of program execution traces in three stages 
[20]. In the first stage, a stream detector module captures 
program streams. Instead of sending stream descriptors 
directly to the trace port, they are forwarded to compres-
sor structures in the second and third stage. The second 
stage performs a stream cache transformation using a 
structure called stream descriptor cache (SDC). This trans-
formation translates a stream descriptor into a stream 
index (SI). The stream index is used as an input to a pre-
dictor structure called a last stream predictor (LSP) in the 
third stage. Consequently, a sequence of stream descrip-
tors coming from the stream detector is translated into a 
sequence of hit and miss events at the output of the SDC 
and LSP compressor structures. These events are effi-
ciently encoded, thus significantly reducing the size of 
trace records that are stored in the trace buffer before they 
are sent to the trace port (Fig. 1). The following subsec-
tions describe the operations carried out in the stream 
detector, the stream descriptor cache, and the last stream 
predictor, respectively. 

2.1 Stream Detector 
The stream detector detects the end of the current stream 
and captures it by storing its descriptor (SA, SL) into a 
buffer whenever the new stream signal is asserted. To 
perform this task, the stream descriptor consists of an SA 
register that holds the starting address of the current 
stream, an SL register that tracks the current stream 

length, and a stream descriptor buffer (SDB). The SDB 
serves to amortize bursts of short program streams, and 
its depth should be large enough to prevent loss of stream 
descriptors when the compressor structures cannot keep 
up with the arrival rate of incoming program streams. 
Fig. 2 describes the steps performed by the stream detec-
tor and Fig. 3 (top, right) shows its organization.  

The stream detector tracks the current program execu-
tion by monitoring the program counter and control sig-
nals coming from the CPU core. The SL register is incre-
mented for each new instruction. The new stream signal 
is asserted when one of the following conditions is met: 
(a) the processor executes a control-flow instruction of a 
particular type, namely direct conditional, indirect condi-
tional, indirect unconditional, or return; (b) an exception 
signal is asserted causing the program flow to depart 
from sequential execution, or (c) the maximum stream 
length has been reached. After forwarding the stream 
descriptor into the stream descriptor buffer, the stream 
detector prepares itself for the beginning of a new pro-
gram stream by recording the starting address in the SA 
register and zeroing out the SL register. 
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Fig. 1.  System view of the proposed tracing mechanism. 

// Stream detector operation; for each retired inst.
1. if (NewStream) { 
2.  SA = PC; SL = 0; 
3.  NewStream = False;  
4. } 
5. if ((not ControlFlowChange) or (ControlFlowChange  
  && (BranchType==DirectUncond))) { 
6.  SL++; 
7.  if (SL == MaxSL) { 
8.   Terminate Stream;  
9.   Place (SA, SL) into the Stream Descr. Buffer; 
10.   NewStream = True; } 
11. } else { 
12.  SL++; 
13.  Terminate Stream;  
14.  Place (SA, SL) into the Stream Descr. Buffer; 
15.  NewStream = True; 
16. } 
 
// Stream descriptor cache (SDC) operation 
1. Get the next stream descriptor, (SA, SL), from the 

Stream Descriptor Buffer; 
2. Lookup in the SDC with iSet = F(SA, SL); 
3. if (SDC hit) 
4.  SI = (iSet concatenate iWay); 
5. else { 
6.  SI = 0; 
7.  if (SA is reached via an indirect branch) 
8.   Prepare stream descriptor (SA, SL) for output; 
9.  else  
10.   Prepare stream descriptor (-, SL) for output; 
11.  Select an entry (iWay) in the iSet to be replaced; 
12.  Update stream descriptor cache entry:  

 SDC[iSet][iWay].Valid = 1; SDC[iSet][iWay].SA = SA; 
 SDC[iSet][iWay].SL = SL; 

13. } 
14. Update replacement indicators in the selected set; 
 
// Last stream predictor (LSP) operation 
1. Get the incoming index, SI; 
2. Calculate the LSP index:  

pIndex = G(indices in the History Buffer); 
3. Perform lookup in the LSP with pIndex; 
4. if(LSP[pIndex] == SI) 
5.  Emit(’1’); 
6. else { 
7.  Emit(’0’ + SI); 
8.  LSP[pIndex] = SI;  
9. } 
10. Shift SI into the History Buffer; 

Fig. 2. Stream detector, stream descriptor cache, and last stream 
predictor operation. 
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2.2 Stream Descriptor 
Cache  

The second stage consists of a 
cache-like structure called 
stream descriptor cache (SDC) 
that translates a stream descrip-
tor into a relatively short stream 
index (SI). The stream cache is 
organized into NWAY ways and 
NSET sets as shown in Fig. 3. An 
entry in the stream descriptor 
cache holds a complete stream 
descriptor (SA, SL). Fig. 2 de-
scribes the sequence of steps 
carried out during the stream 
cache transformation by the 
SDC controller. The next stream 
descriptor is read from the 
stream descriptor buffer and an 
SDC lookup is performed. A set 
in the stream descriptor cache is calculated as a simple 
function of the stream descriptor, e.g., bit-wise XOR of 
selected bits from the SA and SL fields. If the incoming 
stream descriptor matches an entry in the selected set, we 
have an SDC hit event; otherwise we have an SDC miss 
event. In case of an SDC hit, the corresponding stream 
index, determined by concatenating the set and way indi-
ces (SI = {iSet, iWay}), is forwarded to the LSP. In case of 
an SDC miss, the reserved index zero is forwarded (SI = 
0). If all entries of the selected set are occupied, an entry is 
evicted based on the replacement policy (e.g., LRU, FIFO), 
and it is updated with the incoming stream descriptor.  

The compression ratio achieved by our stream detector 
and stream descriptor cache, CR(SDC), is defined as the 
ratio of the raw instruction address trace size, calculated 
as the number of instructions multiplied by the address 
size in bytes (IC*4), and the size of the SDC output (1). 
The SDC output size is a function of the number of exe-
cuted program streams (calculated as IC/avgSL, where 
avgSL is the average dynamic stream length), the SDC hit 
rate (hrSDC), the SDC size (NSET*NWAY), and the probabil-
ity that a stream starts with a target of an indirect branch 
(pIND). For each program stream, 0.125*log2(NSET*NWAY) 
bytes are emitted to the SI output. On each SDC miss, a 5-
byte (SA, SL) or 1-byte (-, SL) stream descriptor is output, 
depending on whether the corresponding stream starts 
with the target of an indirect or direct branch, respec-
tively. The parameters avgSL and pIND are benchmark 
dependent and cannot be changed except maybe through 
program optimization – e.g., favoring longer streams us-
ing loop unrolling or trace scheduling. Smaller stream 
caches require shorter indices but likely have a lower hit 
rate, which negatively affects the compression ratio. Thus, 
a detailed exploration of the SDC design space is neces-
sary to determine a good hash function as well as a good 
size and organization (NSET and NWAY). 

[ ]1)1(5)1()(log125.0
4

)(
4)(

2 ⋅−+⋅⋅−+⋅⋅
⋅

=
⋅

=

INDINDWAYSSET pphrSDCNN
avgSL

OutputSDCSize
ICSDCCR

 (1) 

2.3 Last Stream Predictor 
The third stage uses a simple last value predictor as 
shown in Fig. 3 to exploit redundancy in the SI trace 
component caused by repeating sequences of stream indi-
ces. A linear predictor table with NP entries is indexed by 
a hash function that is based on the history of previous 
stream indices. If the selected predictor entry matches the 
incoming stream index, we have an LSP hit. Otherwise, 
we have an LSP miss, and the selected predictor entry is 
updated with the incoming stream index. The hit/miss 
information (one bit, a ‘0’ for a miss and a ‘1’ for a hit) 
and, in case of an LSP miss, SI (log2(NSET*NWAYS) bits) are 
forwarded to the trace encoder. 

The compression ratio achievable by the LSP stage 
alone, CR(LSP), can be calculated as shown in (2). It de-
pends on the stream index size and the LSP hit rate, 
hrLSP. The maximum compression ratio that can be 
achieved by this stage is log2(NSET*NWAY). The design 
space exploration for the last stream predictor includes 
determining a good hash function and a number of en-
tries in the predictor NP.  
 

)(log/1)1(
1

)(
)()(

2 WAYSSET NNhrLSPOutputLSPSize
SISizeLSPCR

⋅+−
==

 (2) 

2.4 Trace Record Encoder 
The trace encoder assembles output trace messages based 
on the events in SDC and LSP as shown in Table 2. We 
distinguish three combinations of events in the compres-
sor structures: (a) an LSP hit with an SDC hit, (b) an LSP 
miss with an SDC hit, and (c) an LSP miss with an SDC 
miss. The LSP cannot hit if the SDC misses. In case of an 
LSP hit with an SDC hit, the single-bit trace record ′1′ is 
placed into the trace buffer. In case of an LSP miss with 

 

Fig. 3. Trace module structures: stream detector, stream descriptor cache, and last stream predictor.  
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an SDC hit, the trace record starts with a ′0′ single-bit 
header and is followed by the value of the stream index 
that missed in the LSP. Finally, in case of an LSP miss 
with an SDC miss, the trace record consists of a ′0′ single-
bit header, followed by a zero stream index that indicates 
a miss in the SDC, and a 40-bit (SA, SL) or 8-bit (-, SL) 
stream descriptor, depending on the type of branch that 
led to the beginning of the stream. 

2.5 A Compression/Decompression Example 
Let us consider the code snippet in Fig. 4 that includes a 
simple loop executing 100 iterations. The loop body con-
sists of only one instruction stream. When the first itera-
tion completes on the target platform, the stream detector 
captures the stream descriptor (SA, SL) = (0x020001f4, 9). 
Let us assume a 64-entry 4-way associative stream de-
scriptor cache (NSET=16, NWAYS=4). The SDC indices 
are calculated as a function of certain bits of the stream 
descriptor; let us assume we calculate the iSet as follows: 
iSet = SA[7:4] xor SL[3:0]; in our case iSet=0x6. A lookup 
in the SDC set with index iSet=0x6 results in an SDC miss 
because the SDC entries are initially invalid. The least 
recently used entry in the selected SDC set is updated by 
the stream descriptor information (let us assume it is 
iWay=0), and the reserved 6-bit index 0 is output to the 
next stage (SI=′000000′). A lookup in the LSP entry with 
index pIndex=0 results in an LSP miss because the LSP 
entries are also initially invalid. The LSP entry with index 
0 is updated with the SI value. A complete trace record 
for the first occurrence of the stream includes a header bit 
′0′ followed by the 6-bit index ′000000′ and the 40-bit 
stream descriptor (47 bits in total; here we assume that we 
need to output the starting address of the stream in spite 
of the fact that it can be inferred from the program bi-
nary). When we encounter the second iteration of the 
loop, the stream descriptor is found in the selected SDC 
set (an SDC hit). The SI is iSet concatenated with iWay, 
resulting in SI=′011000′ (iSet=′0110′ and iWay=′00′). If we 
assume that the LSP predictor access is solely based on 
the previous SI (0 in our case), we will have another LSP 
miss. A trace record ′0.011000′ (h=′0′, SI=′011000′) is out-
put to the trace buffer, and LSP’s entry 0 is now updated 
with the value ′011000′. The third loop iteration results in 
an SDC hit, and SI=′011000′ is forwarded to the LSP stage. 

The LSP will again miss (the entry pointed to by the pre-
vious SI is not initialized yet), and another trace record 
′0.011000′ is sent to the trace buffer. The LSP entry with 
index ′011000′ is updated with the value ′011000′. The 
fourth iteration hits in both the SDC and the LSP and only 
a single bit ′1′ is sent to the trace buffer. The next 95 itera-
tions will also have only a single bit trace record to indi-
cate both SDC and LSP hits. The final iteration does not 
hit because the loop end branch falls through and the 
stream length will therefore be larger than that of the pre-
vious streams. 

The de-compressor on the debugger side reads the in-
coming bit stream from its trace buffer. The first bit in the 
trace is h=′0′, indicating an LSP miss event. The de-
compressor then reads the next 6 bits from the trace that 
carry the SI=′000000′. This index is reserved to indicate an 
SDC miss, and the de-compressor reads the next 40 bits 
from the trace to obtain the stream descriptor. The de-
bugger updates the software copies of the SDC and LSP 
accordingly and replays 9 instructions starting at address 
0x020001f4. The next step is to read the next trace record. 
It also starts with h=′0′, indicating an LSP miss. The next 6 
bits are non-zero, which means that we have an SDC hit. 
The debugger retrieves the next stream descriptor from 
the SDC’s entry SI=′011000′ and updates the SDC and LSP 
structures accordingly. The second iteration of the loop is 
replayed. Similarly, the debugger replays the third loop 
iteration. The fourth trace record starts with a header 
h=′1′. This single-bit message is sufficient to replay the 
current stream. The software debugger retrieves the 
stream index from the LSP maintained in software 
(SI=′011000′) and, using this stream index, it retrieves the 
stream descriptor from the software copy of the stream 
cache. The debugger maintains its software copies of the 
compressor structures by updating the LSP’s history 
buffer and SDC’s replacement bits using the same policies 
as the hardware trace module does. The process contin-
ues until all iterations of the loop have been replayed. 

TABLE 2 
TRACE RECORD ENCODINGS. 

  Trace Record Bit Width 

  H SI Stream  
Descriptor 

 

LSP hit, SDC hit 
  1 - - 1 
LSP miss, SDC hit 
  0 SI - 1 + log2(NSET*NWAY) 
LSP miss, SDC miss (SA is the target of a direct br.) 
  0 0 (-, SL) 1 + log2(NSET*NWAY) + 8 
LSP miss, SDC miss (SA is the target of an indirect br.) 
  0 0 (SA, SL) 1 + log2(NSET*NWAY) + 40 

// Code Snippet
1.  for(i=0; i<100; i++) { 
2.       c[i] = s*a[i] + b[i]; 
3.       sum = sum + c[i]; 
4.  } 
// Assembly listing of the code snippet for the ARM ISA 
1.  @ 0x020001f4: mov  r1,r12, lsl #2 
2.  @ 0x020001f8: ldr  r2,[r4, r1] 
3.  @ 0x020001fc: ldr  r3,[r14, r1] 
4.  @ 0x02000200: mla  r0,r2,r8,r3 
5.  @ 0x02000204: add  r12,r12,#1 (1 >>> 0) 
6.  @ 0x02000208: cmp  r12,#99 (99 >>> 0) 
7.  @ 0x0200020c: add  r6,r6,r0 
8.  @ 0x02000210: str  r0,[r5, r1] 
9.  @ 0x02000214: ble  0x20001f4 
// Trace records emitted per loop iteration 
1.  h=′0′; SI=′000000′; (SA,SL)=(0x020001f4, 9) 
2.  h=′0′; SI=′011000′;  
3.  h=′0′; SI=′011000′;  
4.  h=′1′;  
5.  h=′1′; 
6.  . . . 
99. h=′1′; 
100. h=′0′; SI=′000000′; (SA,SL)=(0x020001f4, ?) 

Fig. 4. An example. 
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3 EXPERIMENTAL EVALUATION 
The goal of the experimental evaluation is twofold. First, 
we explore the design space to find good parameters for 
the proposed compressor structures and access functions 
(Section 3.1). As a measure of performance we use the 
average number of bits emitted per instruction on the 
trace port, which is equivalent to 32/(Compression Ra-
tio), assuming 4-byte addresses. We also report the hit 
rates of the stream descriptor cache and the last stream 
predictor, hrSDC and hrLSP, because they directly influ-
ence the size of the output trace as explained in (1) and 
(2). Second, we introduce several enhancements to the 
original mechanism and explore their effectiveness in 
further improving the compression ratio at minimal 
added complexity (Section 3.2) or in reducing the trace 
module complexity (Section 3.3). 

3.1 Design Space Exploration 
SDC Access Function. A good hash access function should 
minimize the number of collisions in the SDC. Its efficacy 
depends on the program characteristics and SDC organi-
zation. We have evaluated a number of access functions 
while varying the SDC size and organization. We have 
found that access functions that combine the SA and SL 
portions of the stream descriptor in general outperform 
those based solely on the SA, because multiple streams 
can have the same starting address. Our experiments in-
dicate that the hash function shown in (3) performs the 
best for different SDC sizes and configurations. The SA is 
shifted by shift bits and then the result is XOR-ed with the 
SL. The lower log2NSET bits of the result are used as the set 
index, iSet. The optimal value for shift was found to be 4 
for our benchmark suite. NSET has to be a power of two. 

)1())(( −>>= SETNANDSLXORshiftSAiSet  (3) 

SDC Size and Organization. Fig. 5 shows the SDC hit 
rate and the average trace port bandwidth required by the 
SDC alone and by the SDC in combination with LSP 
(SDC-LSP), when varying the number of entries and the 
number of ways (NWAYS = 1, 2, 4, 8). The results reflect the 
weighted average for the whole benchmark suite. For 
SDC-LSP, the trace port bandwidth is calculated assum-
ing an LSP with the same number of entries as the SDC 
and a simple hash ac-
cess function that uses 
the previous stream 
index to access the LSP. 

Let us first consider 
the SDC hit rate. The 
results show that in-
creasing the SDC asso-
ciativity improves the 
hit rate; for example, a 
2-way SDC with 32 
entries achieves the 
same hit rate as the 
direct-mapped SDC 
with 64-entries. How-

ever, increasing the associativity beyond 4 ways yields 
little or no benefit.  

The results for the trace port bandwidth of the SDC-
only method indicate that even relatively small stream 
descriptor caches with as few as 32 entries (8 x 4ways) 
perform well, achieving 0.49 bits/instruction (bits/ins). 
However, increasing the size of the SDC beyond 128 en-
tries increases the trace port bandwidth, in spite of an 
increased hit rate. From (1) we can see that larger SDCs 
require longer stream indices, which outweigh the bene-
fits of an increased hit rate. Thus, the compression ratio of 
SDC alone is fairly limited: the minimum trace port 
bandwidth (maximum compression) is ~0.45 bits/ins on 
our benchmarks. The SDC-LSP outperforms the SDC-only 
scheme for almost all sizes and organizations (except for a 
32-entry direct-mapped SDC). Unlike SDC-only, it bene-
fits from larger structures. Increasing the SDC and conse-
quently the LSP size beyond 256 entries is not beneficial, 
as it only yields diminishing returns. Based on these re-
sults, we choose a 128-entry 4-way associative SDC and a 
128-entry LSP as a good configuration for our trace com-
pressor. This configuration represents a sweet spot in the 
trade-off between trace port bandwidth and design com-
plexity; with our benchmarks, it yields under 0.2 bits/ins 
at a modest cost. We have also evaluated several SDC 
replacement policies, including pseudo-Random, First-In 
First-Out (FIFO), Least Recently Used (LRU), and several 
pseudo-LRU implementations. The results indicate that a 
pseudo-LRU replacement policy based on using Most 
Recently Used (MRU) bits performs best, outperforming 
even the full LRU policy.  

Last Stream Predictor. We have considered several LSP 
organizations. The number of entries in the LSP may ex-
ceed the number of entries in the stream descriptor cache. 
In such a case, the LSP access function should be based on 
the program path taken to a particular stream. The path 
information may be maintained in a history buffer as a 
function of previous stream cache indices. However, our 
experimental analysis indicates that such an approach 
yields fairly limited improvements in trace port band-
width. The reason is that our workload has a relatively 
small number of indirect branches, and those branches 
mostly have a very limited number of targets taken dur-
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Fig. 5. SDC hit rate and trace port bandwidth as functions of SDC size and organization. 
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ing program execution. Consequently, we chose the sim-
pler solution of always having the same number of entries 
in the LSP and the SDC. The LSP access function is based 
solely on the previous stream cache index. We call this 
basic implementation of the proposed tracing mechanism 
bSDC-LSP. 

Table 3 shows the stream descriptor cache hit rate 
(hrSDC), the last stream predictor hit rate (hrLSP), and 
the trace port bandwidth for individual benchmarks and 
for different sizes of the SDC and LSP. The average hit 
rate varies from 81.9% for 32-entry LSP to 89.9% for 1K-
entry LSP. For some benchmarks (e.g., fft), capacity 
misses in the LSP limit the hit rate and they can benefit 
from larger structures. Another limitation comes from 
indirect branches with multiple targets that frequently 
change. The LSP predictor with its simple index function 
is not well-suited to handle them, but the number of such 
branches is typically small. The trace port bandwidth for 
the trace module configuration [32x4, 128] (4-way set-
associative 128-entry SDC and 128-entry LSP) varies be-
tween 0.019 bits/ins for adpcm_c and 0.616 bits/ins for fft, 
and is 0.174 bits/ins on average for the whole benchmark 
suite. The fft benchmark significantly benefits from an 
increase in the SDC size and requires 0.354 bits/ins with 
the [64x4, 256] configuration. Many of the remaining 
benchmarks perform well even with very small configu-
rations, e.g., adpcm_c, tiffmedian, and tiff2rgba. 

3.2 Enhancements for Reducing Trace Port 
Bandwidth 

The output trace records still contain a lot of redundant 
information that can be eliminated with low-cost en-
hancements. The three components of the output trace, as 
described in Table 2, are (i) LSP-hit records (hLSPt), (ii) 
LSP-miss with SDC-hit records (hSDCt), and (iii) LSP-
miss and SDC-miss records (mSDCt). Table 4 shows dis-
tributions of the individual trace components for two 
trace module configurations: [16x4, 64] and [64x4, 256]. 
The mSDCt component dominates the output trace in 

smaller configuration; e.g., it is responsible for 41.3% of 
the total output for the [16x4, 64] configuration. By ana-
lyzing the sequence of mSDCt records, we observe that 
the upper address bits of the starting address (SA) field 
rarely change. We can use this property to reduce the 
number of bits that needs to be traced out. Moreover, 
with larger configurations, the hLSPt component domi-
nates the output trace with long runs of consecutive ones; 
e.g., the hSLPt represents 48.5% of the total output trace 
for the [64x4, 256] configuration. We can use counters to 
encode these long runs of consecutive ones.  

To take advantage of the redundancy in the mSDCt, 
we slightly modify our bSDC-LSP compressor as follows. 
An additional u-bit register called LVSA (Last Value 
Starting Address) is added to record the u upper bits of 
the SA field from the last miss trace record. The upper u-
bit field of the SA of the incoming miss trace record is 
compared to the LVSA. If there is a match, the new miss 
trace record will include only the lower (32-u) address 
bits. Otherwise, the whole address is emitted and the 

TABLE 3 
HIT RATES AND TRACE PORT BANDWIDTH FOR THE BSDC+LSP SCHEME. 

hrSDC hrLSP bits/ins
Program/Size 32 64 128 256 512 1024 32 64 128 256 512 1024 32 64 128 256 512 1024
adpcm_c 1.000 1.000 1.000 1.000 1.000 1.000 0.997 0.997 0.997 0.997 0.997 0.997 0.019 0.019 0.019 0.019 0.019 0.019
bf_e 0.985 0.996 1.000 1.000 1.000 1.000 0.824 0.838 0.843 0.843 0.843 0.843 0.405 0.359 0.357 0.384 0.410 0.437
cjpeg 0.952 0.991 0.998 0.999 1.000 1.000 0.894 0.916 0.921 0.922 0.922 0.922 0.204 0.138 0.131 0.134 0.140 0.146
djpeg 0.935 0.971 0.991 0.997 0.998 0.999 0.887 0.896 0.909 0.915 0.916 0.917 0.125 0.093 0.075 0.070 0.072 0.075
fft 0.482 0.685 0.859 0.952 0.985 1.000 0.522 0.674 0.762 0.827 0.850 0.870 1.492 1.007 0.616 0.354 0.256 0.219
ghostscript 0.456 0.778 0.987 0.993 0.997 0.999 0.518 0.696 0.865 0.868 0.869 0.870 1.585 0.823 0.232 0.227 0.229 0.234
gsm_d 0.972 0.980 0.989 0.996 0.999 1.000 0.946 0.946 0.947 0.951 0.952 0.954 0.103 0.094 0.086 0.077 0.076 0.075
lame 0.903 0.938 0.954 0.964 0.972 0.987 0.807 0.820 0.823 0.827 0.829 0.833 0.129 0.108 0.102 0.101 0.100 0.093
mad 0.833 0.972 0.984 0.993 0.998 1.000 0.715 0.825 0.830 0.832 0.835 0.836 0.295 0.136 0.129 0.124 0.124 0.128
rijndael_e 0.542 0.866 0.929 1.000 1.000 1.000 0.697 0.846 0.809 0.867 0.867 0.867 0.743 0.284 0.192 0.099 0.105 0.111
rsynth 0.848 0.923 0.966 0.997 1.000 1.000 0.843 0.843 0.860 0.883 0.887 0.887 0.382 0.245 0.175 0.116 0.115 0.122
sha 0.952 0.999 1.000 1.000 1.000 1.000 0.893 0.922 0.922 0.922 0.922 0.922 0.178 0.097 0.101 0.106 0.111 0.116
stringsearch 0.759 0.868 0.971 0.991 0.993 0.999 0.829 0.807 0.857 0.870 0.872 0.872 1.369 0.938 0.472 0.387 0.401 0.382
tiff2bw 0.971 0.979 0.992 0.998 1.000 1.000 0.996 0.993 0.992 0.992 0.994 0.994 0.151 0.135 0.104 0.087 0.083 0.084
tiff2rgba 0.935 0.969 0.996 1.000 1.000 1.000 0.991 0.978 0.989 0.989 0.989 0.989 0.114 0.077 0.045 0.040 0.040 0.040
tiffdither 0.824 0.904 0.963 0.988 0.997 1.000 0.834 0.823 0.848 0.864 0.870 0.873 0.332 0.249 0.190 0.164 0.157 0.160
tiffmedian 0.975 0.983 0.992 0.997 1.000 1.000 0.976 0.973 0.971 0.973 0.976 0.976 0.085 0.077 0.066 0.058 0.055 0.056
Average 0.838 0.921 0.969 0.988 0.994 0.998 0.819 0.856 0.881 0.893 0.897 0.899 0.426 0.272 0.174 0.142 0.136 0.135  

TABLE 4 
DISTRIBUTION OF INDIVIDUAL TRACE COMPONENTS FOR TWO 

TRACE MODULE CONFIGURATIONS. 
[SDC, LSP] Size [16x4, 64] [64x4, 256]
Program mSDCt hSDCt hLSPt mSDCt hSDCt hLSPt
adpcm_c 0.1% 1.9% 98.1% 0.1% 2.4% 97.5%
bf_e 6.9% 53.6% 39.6% 0.0% 62.7% 37.3%
cjpeg 12.0% 34.5% 53.5% 1.2% 42.9% 55.9%
djpeg 32.2% 30.4% 37.5% 4.8% 43.3% 51.9%
fft 80.8% 14.8% 4.4% 39.0% 39.8% 21.2%
ghostscript 73.2% 20.2% 6.6% 9.5% 52.3% 38.1%
gsm_d 29.4% 20.1% 50.5% 8.2% 29.0% 62.7%
lame 44.4% 33.7% 21.9% 29.5% 46.0% 24.4%
mad 29.1% 42.4% 28.5% 9.4% 58.4% 32.2%
rijndael_e 72.0% 15.7% 12.3% 0.1% 58.0% 41.9%
rsynth 58.3% 23.6% 18.1% 5.3% 51.5% 43.3%
sha 1.6% 36.6% 61.8% 0.1% 43.1% 56.7%
stringsearch 66.9% 20.7% 12.4% 13.4% 49.7% 36.9%
tiff2bw 41.2% 2.8% 56.1% 5.3% 6.1% 88.6%
tiff2rgba 48.5% 7.1% 44.4% 0.8% 8.7% 90.5%
tiffdither 47.4% 31.6% 21.0% 11.6% 51.9% 36.6%
tiffmedian 33.1% 10.8% 56.0% 6.6% 18.4% 74.9%
Average 41.3% 23.7% 34.9% 11.9% 39.6% 48.5%
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LVSA register is updated. To distinguish between these 
two cases, an additional bit in the trace record is needed 
to indicate whether all (SA[31:0]) or only the lower ad-
dress bits (SA[31-u:0]) are emitted. The format of the trace 
record for an LSP miss with SDC miss event is modified 
to include this additional bit that precedes the stream de-
scriptor field. Note that SA[1:0] is always '00' for the ARM 
ISA and is omitted from the mSDCt. For the ARM Thumb 
ISA only SA[0] can be omitted. These two bits do not 
need to be kept in the stream descriptor cache. In addition, 
we can also omit the address bits that can be inferred 
from the SDC index (this enhancement will be discussed 
further down).  

Increasing the width of the LVSA register reduces the 
number of bits in the miss trace in case of LVSA hits; 
however, it also reduces the number of LVSA hit events. 
Table 5 shows the fraction of the original miss trace com-
ponent for various values of the parameter u for the [32x4, 
128] configuration. For example, we find that the LVSA 
enhancement reduces the miss trace component by 18% 
when u=14. It should be noted that the reduction in the 
total output trace is more significant for smaller trace 
module configurations and relatively insignificant for 
larger configurations, because the miss trace component 
is relatively small in the latter case. 

The redundancy in the hLSPt component can be re-
duced using a counter that counts the number of consecu-
tive bits with value '1'. The counter is called one length 
counter (OLC). Long runs of ones are replaced by the 
counter value preceded by a new header. The number of 
bits used to encode this trace component is determined by 
the counter size. Longer counters can capture longer runs 
of ones, but too long a counter results in wasted bits. Our 
analysis of the hLSPt components shows a fairly large 
variation in the average number of consecutive ones, 
ranging from 5 in ghostscript and fft to hundreds in 
adpcm_c and tiff2bw. In addition, these sequences of con-
secutive ones may vary across different program phases, 
meaning that an adaptive OLC length method would 
yield better results. 

The adaptive one-length counter (AOLC) dynamically 
adjusts the OLC size to the program flow characteristics. 
An additional 4-bit saturating counter monitors the hLSPt 
entries and is updated as follows. It is incremented by 3 
when the number of consecutive ones in the hLSPt trace 
exceeds the current size of the OLC. The monitoring 
counter is decremented by 1 whenever the number of 
consecutive ones is smaller than half of the maximum 
OLC counter value. When the monitoring counter reaches 
its maximum (15) or minimum (0), a change in the OLC 
size occurs. If the maximum is reached, the OLC size is 
increased by one bit (if possible). If the minimum is 
reached, the OLC size is decreased by one bit (if possible).  

Using an AOLC necessitates a slight modification of 
the trace output format. We use a header bit '1' that is 
followed by log2(AOLC Size) bits. The counter size is 
automatically adjusted as described above. Of course, the 
software de-compressor needs to implement the same 

adaptive algorithm. We call this scheme, which includes 
the LVSA and AOLC optimizations, eSDC-LSP. 

Table 6 shows the trace port bandwidth of the eSDC-
LSP scheme for individual benchmarks and for different 
sizes of the SDC and LSP. We observe relatively high im-
provements for small trace module configurations, 
mainly due to a reduction in the mSDCt size; for example, 
the average trace port bandwidth for the [8x4, 32] con-
figuration is 0.35 bits/ins, down from 0.43 bits/ins in the 
bSDC-LSP scheme (18% lower). Similarly, for large trace 
module configurations the hLSPt size is significantly re-
duced; for example, the trace port bandwidth for the 
[64x4, 256] configuration is 0.12 bits/ins, versus 0.142 
bits/ins in the bSDC-LSP scheme (a 15% reduction). Some 
benchmarks benefit significantly from this enhancement, 
especially those with a high LSP hit rate, such as adpcm_c 
(over 14 times lower bandwidth), tiff2bw (3.45), and 
tiff2rgba (3.67). 

TABLE 5 
FRACTION OF THE ORIGINAL MISS TRACE COMPONENT USING 

LVSA. 

Program/u 21 20 19 18 17 16 15 14 13 12
adpcm_c 0.83 0.82 0.83 0.83 0.83 0.82 0.79 0.79 0.81 0.82
bf_e 0.87 0.85 0.74 0.72 0.73 0.75 0.76 0.77 0.79 0.81
cjpeg 0.87 0.86 0.86 0.86 0.85 0.82 0.81 0.82 0.84 0.85
djpeg 0.87 0.84 0.84 0.84 0.84 0.81 0.81 0.82 0.83 0.84
fft 0.89 0.89 0.87 0.86 0.86 0.85 0.83 0.81 0.83 0.84
ghostscript 0.87 0.86 0.86 0.85 0.86 0.85 0.84 0.85 0.84 0.84
gsm_d 0.87 0.86 0.86 0.82 0.82 0.81 0.81 0.82 0.83 0.85
lame 0.87 0.86 0.85 0.85 0.86 0.87 0.86 0.86 0.87 0.88
mad 0.82 0.81 0.81 0.81 0.79 0.78 0.78 0.79 0.81 0.82
rijndael_e 0.96 0.96 0.83 0.84 0.85 0.82 0.83 0.84 0.86 0.87
rsynth 0.88 0.89 0.87 0.83 0.83 0.75 0.77 0.78 0.80 0.82
sha 0.87 0.88 0.79 0.71 0.72 0.74 0.75 0.76 0.78 0.80
stringsearch 0.83 0.84 0.84 0.85 0.78 0.77 0.79 0.80 0.82 0.83
tiff2bw 0.88 0.85 0.83 0.84 0.83 0.80 0.82 0.78 0.80 0.82
tiff2rgba 0.96 0.96 0.96 0.90 0.85 0.86 0.82 0.77 0.79 0.80
tiffdither 0.95 0.94 0.93 0.93 0.93 0.92 0.93 0.93 0.93 0.94
tiffmedian 0.88 0.88 0.83 0.83 0.83 0.81 0.81 0.78 0.80 0.82
Average 0.88 0.87 0.85 0.84 0.84 0.83 0.82 0.82 0.84 0.85  

TABLE 6 
TRACE PORT BANDWIDTH OF THE ESDC-LSP SCHEME. 

eSDC‐LSP bits/ins
Program/Size 32 64 128 256 512 1024
adpcm_c 0.001 0.001 0.001 0.001 0.001 0.001
bf_e 0.378 0.342 0.345 0.372 0.398 0.425
cjpeg 0.154 0.095 0.088 0.092 0.098 0.104
djpeg 0.092 0.068 0.053 0.048 0.050 0.053
fft 1.235 0.851 0.542 0.327 0.237 0.196
ghostscript 1.358 0.760 0.216 0.214 0.217 0.224
gsm_d 0.062 0.057 0.051 0.045 0.043 0.042
lame 0.110 0.094 0.090 0.090 0.090 0.085
mad 0.254 0.120 0.116 0.114 0.115 0.120
rijndael_e 0.599 0.239 0.183 0.090 0.096 0.103
rsynth 0.297 0.200 0.147 0.097 0.097 0.103
sha 0.141 0.070 0.074 0.079 0.084 0.089
stringsearch 1.082 0.789 0.412 0.344 0.358 0.345
tiff2bw 0.062 0.052 0.030 0.016 0.011 0.012
tiff2rgba 0.066 0.041 0.012 0.007 0.008 0.008
tiffdither 0.279 0.213 0.158 0.135 0.129 0.133
tiffmedian 0.039 0.035 0.027 0.021 0.017 0.018
Average 0.349 0.230 0.146 0.120 0.114 0.114  
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3.3 Enhancements for Reducing Hardware 
Complexity 

The LVSA enhancement could be slightly modified to 
reduce the overall cost of the trace module implementa-
tion. For example, the uppermost 12 bits of the stream 
starting address do not change with a probability of 0.99 
in our benchmarks. Consequently, we may opt not to 
keep the upper address bits SA[31:20] in the stream de-
scriptor cache, thus reducing its size. Instead, the upper 
address bits are handled entirely by a last value predictor 
in a manner similar to the LVSA enhancement discussed 
above. The mechanism used in the eSDC-LSP scheme can 
be modified as follows. In the eSDC-LSP scheme, we only 
considered trace records in the miss trace (mSDCt), up-
dating the LVSA register only when an LSP miss with 
SDC miss event occurs. Here we need to continuously 
update the LVSA register, regardless of whether we have 
a hit or a miss in the SDC and LSP structures. Moreover, a 
miss in the LVSA register results in sending a stream de-
scriptor to the output trace; the SDC and LSP are updated 
accordingly. To determine the optimal number of upper 
bits that should be handled by the LVSA predictor, we 
need to consider the SDC performance. Reducing the 
number of address bits that are stored in the SDC reduces 
its size, but may result in an increased miss rate and thus 
increase the trace port bandwidth. A modified eSDC-LSP 
with the uppermost 12 address bits handled by the LVSA 
appears optimal for our benchmarks.  

We can further reduce the number of bits kept in the 
stream descriptor cache without any negative impact on 
the trace module performance. The bits of the starting 
address SA[shift+log2(NSET)-1:shift] that are used in the 
calculation of the SDC index function (3) do not need to 
be kept in the SDC. This information can be inferred 
based on the known index function and SL bits that are 
stored in the SDC. (Alternatively, we can keep all address 
bits in the stream cache and eliminate the portion of the 
SL bits that are used for the SDC index.) For example, in 
the [32x4, 128] configuration, the iSet is calculated as the 
XOR result of SA[8:4] and SL[4:0]. Consequently, we can 
infer the value of SA[8:4] as SA[8:4] = iSet XOR SL[4:0]. 
The eSDC-LSP scheme with the modified LVSA en-
hancement and the reduced complexity SDC is called 
rSDC-LSP scheme. 

Table 7 shows the trace port bandwidth of the rSDC-
LSP scheme for different sizes of the SDC and LSP. The 
upper twelve address bits SA[31:20] are predicted using 
the last value predictor and an entry in the stream cache 
consists of the lower 13 address bits SA[19:9] and SA[3:2] 
and the stream length field SL[7:0]. The rSDC-LSP scheme 
requires slightly higher bandwidth at the trace port than 
eSDC-LSP. For example, the trace module configuration 
[32x4, 128] achieves 0.15 bits/ins at the trace port versus 
0.146 bits/ins for the eSDC-LSP scheme. However, this 
degradation due to aliasing in the SDC is less than 3%, 
which is probably an acceptable loss for a significant re-
duction in the size of the stream descriptor cache (we 
keep 13 instead of 30 bits for stream starting addresses). 

4 PUTTING IT ALL TOGETHER 
In this section we evaluate the performance of the pro-
posed schemes bSDC-LSP, eSDC-LSP, and rSDC-LSP 
relative to several alternative approaches. We measure 
the average trace port bandwidth requirements for our 
benchmark suite. While the average trace port bandwidth 
is a useful metric for comparison of different approaches 
to program tracing, it is important to determine the size 
of the trace buffer and the stream descriptor buffer so that 
the program tracing can be performed unobtrusively in 
real-time. We extend the SimpleScalar sim-outorder proc-
essor simulator with a model of the proposed trace mod-
ule and use it to determine the minimum size of each 
buffer needed to guarantee unobtrusive tracing. Finally, 
we estimate the complexity of the proposed scheme and 
compare it to similar solutions available in the literature.  

4.1 Trace Port Bandwidth Analysis 
Fig. 6 shows the average, minimum, and maximum trace 
port bandwidths for the proposed schemes and alterna-
tive approaches, including base implementations of the 
trace module (fBASE and BASE), a Nexus-like implemen-
tation (NEXS) [11], and two recently proposed hardware-
based trace compression schemes [13], [14]. For reference, 
we also show the results obtained by gzip, a widely used 
software compression utility (SW-GZIP). Table 8 shows 
the average trace port bandwidth for each scheme and 
each individual benchmark.  

The fBASE scheme assumes sending a sequence of full 
stream descriptors (SA, SL) directly to the trace port, re-
gardless whether the SA field can be inferred by the soft-
ware debugger, whereas the BASE assumes the SA field is 
traced out only when it cannot be inferred (SA/-, SL). The 
sequence of stream descriptors is equivalent to the one 
captured at the output of our stream detector unit. The 
required average trace port bandwidth for fBASE is 2.51 
bits/ins, ranging from 0.73 for adpcm_c to 6.80 bits/ins for 

TABLE 7 
TRACE PORT BANDWIDTH OF THE RSDC-LSP SCHEME.  

rSDC‐LSP bits/ins
Program/Size 32 64 128 256 512 1024
adpcm_c 0.001 0.001 0.001 0.001 0.001 0.001
bf_e 0.381 0.343 0.345 0.372 0.398 0.425
cjpeg 0.156 0.096 0.088 0.092 0.098 0.104
djpeg 0.094 0.068 0.054 0.048 0.050 0.053
fft 1.276 0.874 0.554 0.331 0.237 0.196
ghostscript 1.377 0.758 0.216 0.214 0.217 0.224
gsm_d 0.064 0.058 0.052 0.045 0.043 0.042
lame 0.128 0.113 0.109 0.109 0.110 0.106
mad 0.259 0.121 0.117 0.114 0.115 0.120
rijndael_e 0.623 0.246 0.185 0.090 0.096 0.103
rsynth 0.308 0.205 0.149 0.097 0.097 0.103
sha 0.143 0.070 0.074 0.079 0.084 0.089
stringsearch 1.118 0.807 0.416 0.346 0.359 0.345
tiff2bw 0.064 0.054 0.031 0.016 0.011 0.012
tiff2rgba 0.069 0.042 0.012 0.007 0.008 0.008
tiffdither 0.282 0.214 0.159 0.135 0.129 0.133
tiffmedian 0.040 0.035 0.028 0.021 0.017 0.018
Average 0.359 0.235 0.150 0.123 0.117 0.117  
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bf_e. The trace port bandwidth for 
BASE is 1.06 bits/ins, ranging from 
0.15 bits/ins for adpcm_c to 4.91 
bits/ins for bf_e. These results indi-
cate that using partial stream de-
scriptors in the BASE scheme is 
indeed highly beneficial. Still, as-
suming a processor core that can 
execute one instruction per clock 
cycle (IPC=1) and a trace port 
working at the processor clock 
speed, we would need at least 5 
data pins on the trace port to trace 
the program execution unobtru-
sively in the worst case (for bench-
mark bf_e). However, having wide 
trace ports significantly increases system cost, especially 
in the presence of multiple processor cores because I/O 
bandwidth does not scale at the same pace as the on-chip 
resources. This result further underscores the need to 
have a trace module that supports effective compression. 

The NEXS approach implements a simple trace reduc-
tion technique inspired by the NEXUS standard [11]. The 
starting address from the incoming stream descriptor is 
XORed with the starting address from the previous 
stream descriptor, producing DiffSA = Incoming.SA[31:0] 
xor Previous.SA[31:0]. The difference is split into groups 
of 6 bits, DiffSA[5:0], DiffSA[11:6], DiffSA[17:12], etc. The 
leading zeros in the DiffSA are not sent to the trace port, 
thus reducing the trace port bandwidth. For example, if 
the DiffSA[31:6] consists only of zeros, then only the 
DiffSA[5:0] is sent to the trace port, together with a 2-bit 
header indicating that this is the terminating byte for the 
stream address field. The SL field is always sent to the 
trace port without further reduction. The average trace 
port bandwidth required for the NEXS scheme is 0.907 
bits/ins, ranging from 0.149 bits/ins for adpmc_c to 4.01 
bits/ins for bf_e. This relatively small improvement com-
pared to the BASE scheme is due to the fact that the num-
ber of indirect branches is small, 
so we have a small number of 
trace records that include a full 
stream descriptor. Another rea-
son is the relatively high over-
head in header bits. 

Next, we analyze a recent ad-
aptation of the Lempel-Ziv com-
pression algorithm by Kao et al. 
that is specifically tailored to 
program execution traces [13]. 
The compressor encompasses 
three stages: filtering of branch 
and target addresses, then differ-
ence-based encoding, and finally 
hardware-based LZ compression. 
We implemented this compres-
sor and analyzed its performance 
on our set of benchmarks. The 

average trace port bandwidth is 0.446 bits/ins for a com-
pressor with a sliding window of 256 12-bit entries 
(TSLZ-256) with a maximum pattern length of 128. The 
compressor’s complexity is estimated to be 51,678 logic 
gates [13]. For this configuration the worst performing 
benchmark (stringsearch) requires more than 1.9 bits/ins 
of trace port bandwidth. The compressor can recognize 
long repeating patterns, but it relies on relatively long 
fixed 27-bit trace records that consist of a 12-bit word, a 7-
bit pattern length, and an 8-bit index in the sliding win-
dow. With even larger sliding windows of 1024 or 8192 
12-bit entries, it requires 0.233 bits/ins and 0.1 bits/ins on 
the trace port, respectively. However, the implementation 
cost of such large sliding windows would be prohibitive.  

We also evaluate one of our earlier compression meth-
ods [14]. This technique relies on the stream descriptor 
cache in the first stage and a tuple history table (THT) in 
the second stage. The tuple history table is a fully-
associative structure that keeps the m most recent n-tuples 
of stream indices. An incoming n-tuple is searched in the 
THT; in case of a hit, the incoming n-tuple is replaced by 
a single index in the THT. In case of a THT miss, a re-
served index 0 followed by the whole n-tuple is traced out; 
in case of an SDC miss, the full stream descriptor is traced 

TABLE 8 
TRACE PORT BANDWIDTH EVALUATION: A COMPARATIVE ANALYSIS.  

fBASE BASE NEXS TSLZ‐256 TSLZ‐1K SC‐T8HT bSDC‐LSP eSDC‐LSP rSDC‐LSP SW‐GZIP
adpcm_c 0.731 0.150 0.149 0.024 0.025 0.021 0.019 0.001 0.001 0.001
bf_e 6.798 4.913 4.010 0.354 0.367 0.325 0.357 0.345 0.345 0.038
cjpeg 3.261 0.790 0.752 0.431 0.138 0.219 0.131 0.088 0.088 0.050
djpeg 1.605 0.390 0.366 0.230 0.176 0.173 0.075 0.053 0.054 0.019
fft 3.810 1.895 1.554 1.921 1.036 1.590 0.616 0.542 0.554 0.065
ghostscript 4.018 1.814 1.578 1.394 0.187 0.629 0.232 0.216 0.216 0.038
gsm_d 2.052 0.621 0.567 0.152 0.151 0.183 0.086 0.051 0.052 0.009
lame 1.234 0.452 0.391 0.171 0.148 0.203 0.102 0.090 0.109 0.040
mad 1.931 0.785 0.668 0.268 0.144 0.180 0.129 0.116 0.117 0.042
rijndael_e 1.911 1.013 0.840 0.043 0.038 0.071 0.192 0.183 0.185 0.013
rsynth 2.278 0.883 0.747 0.271 0.247 0.349 0.175 0.147 0.149 0.018
sha 2.597 0.602 0.567 0.441 0.036 0.073 0.101 0.074 0.074 0.005
stringsearch 6.644 2.157 1.932 1.962 1.135 1.402 0.472 0.412 0.416 0.104
tiff2bw 3.124 0.668 0.654 0.146 0.137 0.137 0.104 0.030 0.031 0.006
tiff2rgba 1.447 0.349 0.330 0.160 0.095 0.079 0.045 0.012 0.012 0.005
tiffdither 2.804 0.692 0.659 0.573 0.073 0.489 0.190 0.158 0.159 0.080
tiffmedian 1.795 0.380 0.374 0.081 0.301 0.078 0.066 0.027 0.028 0.007
Average 2.510 1.055 0.907 0.446 0.233 0.353 0.174 0.146 0.150 0.031  
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Fig. 6. Trace port bandwidth evaluation for all proposed and some related schemes. 
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out. We evaluate a configuration with 
a 128x4 SDC and a 255-entry 8-tuple 
history table (m=255, n=8) on our 
benchmark suite (which differs 
slightly from the one we used previ-
ously [14]). This approach requires 
0.353 bits/ins, which is over two times 
more than for any of the schemes pro-
posed in this article. 

Our most cost-effective scheme, 
rSDC-LSP, yields an average trace 
port bandwidth of 0.15 bits/ins, rang-
ing from 0.001 bits/ins for adpcm_c to 
0.554 bits/ins for fft. Consequently, 
the worst performing benchmark re-
quires less than one bit per instruction, 
allowing us to trace the program execution through just a 
single bit on the trace port, i.e., a JTAG port would be 
sufficient. Finally, to underline the effectiveness of the 
proposed mechanism, we compare it with the software 
compression utility gzip that implements the Lempel-Ziv 
compression algorithm. This algorithm uses large mem-
ory buffers and its implementation in a hardware trace 
module would be cost-prohibitive. If we supply a se-
quence of filtered stream descriptors as an input to gzip 
with small buffers (gzip -1), it achieves 0.031 bits/ins, 
which is about 5 times better than the proposed schemes. 
While the result indicates that there is still room for im-
proving the trace compression algorithm, we believe that 
the proposed mechanism achieves an excellent compres-
sion at minimal hardware cost.  

4.2 Complexity Estimation 
To estimate the size of the proposed trace module, we 
need to estimate the size of all structures, including the 
SDC, the LSP, the stream detector, the stream descriptor 
buffer, the LVSA register, the AOLC register with the 
training register, and the output trace buffer. Let us first 
discuss the complexity of the hardware structures using 
the number of storage bits as complexity metric. We focus 
on our most cost-effective scheme rSDC-LSP. The stream 
detector requires two registers, a 30-bit SA and an 8-bit 
SL. The SDC is a simple cache-like structure; for example 
our best performing configuration has 127 entries (32 sets 
x 4 ways). Entry 0 is non-existing since it is reserved to 
indicate a miss in the SDC. An entry in the SDC requires 
13 bits for the SA (see Section 3.3), 8 bits for the SL, a valid 
bit, and one replacement bit (for the MRU-based replace-
ment policy), so the total number of storage bits in the 
SDC is 2921. The LSP is a direct-mapped structure with 
128 7-bit entries. The LSP is indexed by the previous 
stream index (also 7 bits), so the total number of storage 
bits is 903. The AOLC is an 8-bit counter and we also need 
a 4-bit training counter. Finally, we need to determine the 
minimum sizes of the stream descriptor buffer (Fig. 3) 
and the trace output buffer (Fig. 1). The size of these 
structures should be such that the processor is never 
stalled due to the finite capacity of the trace structures. To 
determine the size of these structures, we use a cycle-

accurate processor model similar to Intel’s XScale proces-
sor [21]. The trace module is modeled as follows. We as-
sume that it requires one clock cycle to service an LSP 
with SDC hit or an LSP miss with SDC hit event and two 
clock cycles for an SDC miss event. The SDC and LSP 
work in parallel because the LSP is indexed by the previ-
ous stream index, so their access latencies are not addi-
tive. The trace records are stored in the trace output 
buffer. If the output buffer is not empty, a single bit is 
sent out through the trace data port each clock cycle. The 
processor is never stalled and no trace records are lost if 
the following conditions are met for our benchmarks: the 
number of entries in the stream descriptor buffer is at 
least two (2*38 = 76 bits), and the minimum trace output 
buffer size is 80 bits. Thus, the complexity of our rSDC-
LSP scheme is estimated to be 4,042 storage bits. 

The implementation complexity of the proposed 
schemes is predominantly determined by the size of the 
SDC and LSP structures. To quantitatively estimate their 
size, we use the Cacti tools (versions 4.0 and 6.0) [22] that 
report the area occupied by the cache tags and the data 
memory portions of the cache structures. To enable a 
comparative analysis with the complexity of known struc-
tures, we compare the total area of the SDC and LSP to-
gether with the total area occupied by a 1 kilobyte cache 
(including both the tags and the data portion) with the 
following parameters: a single read/write port, an 8-byte 
block size, 4 ways, and 32-bit addresses. Fig. 7 shows the 
normalized on-chip area for different compressor con-
figurations assuming 90 nm technology. We find that our 
rSDC-LSP scheme (32x4 SDC, 128-entry LSP) requires an 
on-chip area of 15,640 μm2 for 90 nm technology and 
63,250 μm2 for 180 nm technology. For 90 nm technology, 
the combined area for the SDC and the LSP is only 33.9% 
of the area required by the 1 kilobyte cache. The base 
scheme (bSDC-LSP) with the same configuration requires 
51.7% of the area. This confirms our expectations that en-
hancements for reducing complexity are indeed beneficial. 
We also used the CACTI tools to estimate the access times 
of the SDC and LSP; the 128-entry (32x4) SDC requires 
0.77 ns and the 128-entry LSP requires 0.86 ns assuming 
90 nm technology. The estimated complexity of the com-
pression method SC-T8HT [14] is 1.9 times the area of the 
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Fig. 7. Normalized on-chip area (left) and trace reduction ratio vs. complexity (right). 
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1 kilobyte cache. Kao et al. reported the on-chip area of 
their TSLZ-256 compressor to be 511,616 μm2 using 180 
nm technology, which is over 8 times larger than the 
rSDC-LSP using 180 nm technology. 

Fig. 7, right, shows the trace port bandwidth as a func-
tion of the trace module complexity. The area represented 
on the x axis is normalized to the area of a 1 kilobyte 
cache. Different points represent different trace module 
configurations, varied from 32 entries [8x4, 32] to 1024 
entries [256x4, 1024]. For example, rSDC-LSP [32x4, 128] 
requires only 0.15 bits/ins at the cost of 0.33*Area(1 KB 
Cache); rSDC-LSP [64x4, 256] requires only 0.123 bits/ins 
at the cost of 0.56*Area(1 KB cache). At the low end of 
complexity, which is what we are interested in, rSDC-LSP 
emerges as the best solution and is therefore our recom-
mended implementation. 

5 CONCLUSIONS 
This paper describes a new low-cost mechanism for real-
time tracing and compression of program executions. The 
mechanism exploits temporal and spatial locality of pro-
gram streams using two new structures called stream 
descriptor cache and last stream predictor to achieve 
compression ratios that are over six times higher than 
commercial state-of-the-art solutions.  

We have explored the design space of the proposed 
hardware structures including their access functions, size, 
and organization. We have introduced several low-cost 
enhancements to the initial scheme and demonstrated 
their effectiveness by analyzing the required trace port 
bandwidth and hardware complexity. Our best perform-
ing approach requires an average trace port bandwidth of 
only 0.15 bits/instruction on the MiBench programs. This 
enables very cost-effective tracing through a single-pin 
trace port at a cost in on-chip area that is equivalent to 
one third of a 1KB cache for the trace compression struc-
tures.  

GLOSSARY 
Abbreviation Definition 
AOLC Adaptive One-Length Counter 
avgSL Average Stream Length 
hrLSP Hit rate in Last Stream Predictor 
hrSDC Hit rate in Stream Descriptor Cache 
IC Instruction Count 
LSP Last Stream Predictor 
LVSA Last Value Starting Address 
NEXS Nexus-like Compressor 
SA Starting Address 
SDB Stream Descriptor Buffer 
SDC Stream Descriptor Cache 
SI Stream Index 
SL Stream Length 
THT Tuple History Table 
TPB Trace Port Bandwidth 
TSLZ Trace-Specific LZ Compressor 
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