
Hardware Support for Code Integrity
in Embedded Processors

 Aleksandar Milenković Emil Jovanov Milena Milenković
WBI Performance II

IBM
Austin, TX 78758

milena@computer.org

Electrical and Computer Engineering Department
The University of Alabama in Huntsville

Huntsville, AL 35899

{milenka, jovanov}@ece.uah.edu

ABSTRACT
Computer security becomes increasingly important with continual
growth of the number of interconnected computing platforms.
Moreover, as capabilities of embedded processors increase, the
applications running on these systems also grow in size and
complexity, and so does the number of security vulnerabilities.
Attacks that impair code integrity by injecting and executing
malicious code are one of the major security issues. This problem
can be addressed at different levels, from more secure software
and operating systems, down to solutions that require hardware
support. Most of the existing techniques tackle the problem of
security flaws at the software level, but this approach lacks
generality and often induces prohibitive overhead in performance
and cost, or generates a significant number of false alarms. On the
other hand, a further increase in the number of transistors on a
single chip enables integrated hardware support for functions that
formerly were restricted to the software domain. Hardware-
supported defense techniques have the potential to be more
general and more efficient than solely software solutions. This
paper proposes four new architectural extensions to ensure
complete run-time code integrity using instruction block signature
verification. The experimental analysis shows that the proposed
techniques have low performance and energy overhead. In
addition, the proposed mechanism has low hardware complexity,
and does not impose either changes to the compiler or changes to
the existing instruction set architecture.

Categories and Subject Descriptors
C.1 [Processor Architectures]: Miscellaneous;
C3. [Special-purpose and application-based Systems]: Real-
time and embedded systems;
K6. [Management of Computing and Information Systems]:
Security and Protection.

General Terms
Performance, Design, Security.

Keywords
Code integrity, code injection attacks.

1. INTRODUCTION
With the exponential growth of the number of interconnected
computing platforms, computer security has become a critical
issue. The utmost importance of system security is further
underscored by the expected proliferation of diverse Internet-
enabled embedded systems — ranging from home appliances,
cars, and sensor networks to personal health monitoring devices.

One of the security issues that have recently drawn attention is
software integrity, which ensures that the executing instructions
have not been changed by either an accident or an attack. The
attacks impairing software integrity are called code injection
attacks, since they inject and execute malicious code instead of
regularly installed programs. The most widely known type of code
injection attacks is so-called stack smashing [31]. Figure 1
illustrates one such attack for an architecture where the stack
grows towards lower memory addresses. A function accepts
untrustworthy values into a local buffer Buf. If the function does
not verify whether the length of the input exceeds the buffer size,
an attacker can easily overflow the buffer. By overflowing the
buffer, any location on the stack in the address space after the
beginning of the buffer can be overwritten, including the return
address of the vulnerable function. Using this mechanism, an
attacker can insert malicious code sequence, and overwrite the
return address to point to the malicious code. Other attacks may
overflow buffers stored on the heap [8] or exploit integer errors
[3], dangling pointers [13], or format string vulnerabilities [30].
Most programs with these vulnerabilities are also susceptible to
so-called return-into-libc attacks, where an attacker changes a
code pointer to point to the existing code, usually the library code.
Return-into-libc attacks are also called arc injection, since they
inject an arc in a control flow graph of a program.

The number of reported software vulnerabilities has grown from
171 in 1995 to 4,129 in 2002, according to the United States
Computer Emergency Readiness Team Coordination Center (US-
CERT/CC) [39]; a large number of these vulnerabilities can be
exploited by code injection attacks. Although most reported
vulnerabilities are found in programs executing on desktop and
server platforms, the increasing complexity of embedded system
applications may result in similar software flaws. For example,
one recent Cyber Security Bulletin from US-CERT reports
multiple buffer overflow vulnerabilities in a Bluetooth
connectivity program for Personal Digital Assistants (PDAs) [40].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CASES’05, September 24–27, 2005, San Francisco, California, USA.
Copyright 2005 ACM 1-59593-149-X/05/0009...$5.00.

55

As the communication and computation capabilities of smart
phones, PDAs, and other embedded systems continue to grow, so
will the number of malicious attacks.

Program
Code

Literal
Pool

Heap

Stack

Arg #n

Buf[0]

...

Buf[n-1]

Attack Code

…

...

Arg #1

Return Address
Previous FP

Local var #1
Local var #2

Arg #n

Buf[0]

...

Buf[n-1]

Attack Code

…

...

Arg #1

Return Address
Previous FP

Local var #1
Local var #2

Stack
growth

Lower
addresses

FPFP

function
arguments

local
variables

Higher
addresses

Bu
ffe

r O
ve

rfl
ow

New
pointer

Old
pointer

Figure 1. An illustration of the stack smashing attack.

The multitude of code injection attacks prompted development of
a large number of predominantly software-based counter-
measures. Static software techniques rely on formal analysis
and/or programmers’ annotations to detect security flaws in the
code, and then leave it to the programmers to correct these flaws
[14, 41]. However, using these techniques has yet to become a
common programming practice. Moreover, they fail to discover
all vulnerabilities, suffer from false alarms, and put an additional
burden on programmers. On the other hand, dynamic software
techniques augment the original code or operating system to
detect malicious attacks and to terminate attacked programs, or to
reduce the attacker’s chances of success [5, 7, 10, 11, 16, 21, 24,
32, 34]. Though effective, these techniques can result in
significant performance overhead and usually require program
recompilation, so they are not readily applicable to legacy
software.

Several recent research efforts propose hardware-supported
techniques to prevent unauthorized changes of program control
flow [9, 12, 15, 18, 20, 23, 28, 29, 33, 35, 37, 38, 43, 45]. These
techniques have potential to offer better protection from code
injection attacks with lower performance and energy overhead
than techniques relying solely on software. However, most of
hardware-supported techniques focus only on stack smashing, or
still have a significant performance overhead, or do not
thoroughly explore the implications of implementation choices.
We believe that there is a need for a new hardware security layer
to prevent the whole class of code injection attacks.

In this paper we propose and evaluate new architectural
extensions to ensure run-time code integrity at minimal cost,
energy overhead, and performance loss. The proposed techniques
share a common mechanism: Instruction blocks are signed using
secret hardware keys during a secure program installation process,
and signatures are stored with the code. During secure program
execution, signatures are recalculated from instructions and
compared to the stored signatures. If the two values do not match,
the program cannot be trusted and should be terminated. The

proposed mechanism does not require significant processor
changes; it is cost-effective and requires no changes in legacy
source code and no compiler support. In addition, encrypted
instruction block signatures protect the code from software
tampering, and enable fault detection in error-prone environments
such as space. Though the proposed mechanism offers protection
from code injection attacks only, it can be easily expanded to
protect from return-into-libc attacks.

The results of detailed cycle-by-cycle simulations indicate that the
signature verification mechanism with hardware support indeed
does have low performance and energy overhead. In an embedded
processor with a 4K-instruction cache (I-cache), the average
performance overhead of the best low-complexity technique is
2.6%, and the average energy overhead is 8%. With additional
hardware investment in a signature cache, the performance and
energy overhead can be reduced to 0.5% and 3%, respectively.

The rest of this paper is organized as follows. Section 2 describes
the proposed architectures for instruction block verification.
Section 3 describes the experimental methodology, and Section 4
discusses the results of the performance and energy analysis.
Section 5 describes the related work and the last section concludes
the paper.

2. ARCHITECTURES FOR INSTRUCTION
BLOCK VERIFICATION
The proposed techniques share a common sign-and-verify
mechanism, where instruction blocks are signed during the secure
installation process, and signatures are verified during secure
program execution for each instruction block fetched from
memory (Figure 2). Four techniques discussed differ in signature
placement (embedded in the code vs. separate code segment) and
in signature handling after verification (discard vs. keep in a
signature cache).

2.1 Secure Installation
The role of the secure installation process is to generate signatures
for programs whose integrity we want to protect, and to store
them together with the program binary. The algorithm for
signature generation should satisfy two opposing requirements:
On the one hand, signatures should be cryptographically secure;
i.e., it should be very hard for an attacker to generate a correct
signature for a given instruction block. On the other hand,
signature verification should not add a significant overhead to
program execution. An additional requirement is that the signature
mechanism should require minimal or no compiler support, so
that any already-compiled code can be securely installed. To
satisfy these requirements, we decided to use a combination of an
extended version of a Multiple Input Shift Register (MISR) and
Advance Encryption Standard (AES), although other algorithms
may also be used.

A signature of an instruction block is obtained in the following
way (Figure 2). First, all instructions in that block pass through a
MISR. The MISR is essentially a shift register with linear
feedback coefficients, so a new value of the MISR is a function of
the current value and incoming instructions. After each instruction
block, the MISR is initialized to a predefined start value. Linear
feedback connections and the start value are determined by secret

56

processor keys hidden in permanent read-only registers. The only
program that can read these registers is the secure installer, which
is protected by password or smart card. This installation process is
similar to the one proposed by Kirovski et al. [20].

An attacker could discover the MISR secret keys if he/she
manages to read the stored signatures, and compare them to the
corresponding instruction blocks. To prevent successful read
attacks, the result of the final MISR calculation is encrypted using
AES, which is proved to be secure. The AES key is also stored in
a read-only protected register and thus is hidden from attackers.
With the signature length of 128 bits, a brute force buffer
overflow attack would need to overflow the buffer up to 2128 times

to find an instruction block that is accepted by the system. With
the possibility of a buffer overflow each second of program
execution, an attacker would need more than 1031 years for a
successful attack.

To achieve signature generation without any compiler support, an
instruction block is defined as a block of k consecutive
instructions, where k is fixed for a given computer system. Hence,
the secure installation simply breaks up executable sections of a
program binary to instruction blocks, and signs each block
separately. If the last block is shorter than k, it is padded with
randomly generated instructions that do not change the state of the
processor.

...

inc r0

st r2,(r3)

mul r3,3

st r2,(r3)

ld r1,(r3)

add r1,r2

jmp (r1)

mov r2, r3

...

...

&-!//+)@

inc r0

st r2,(r3)

mul r3,3

st r2,(r3)

:’-|{]*+)@

ld r1,(r3)

add r1,r2

jmp (r1)

mov r2, r3

...

Secure
Installation Trusted Code

...

inc r0

st r2,(r3)

mul r3,3

st r2,(r3)

...MISRMISR

AES
(Enc)
AES
(Enc)

MISRMISR

Original Code Signed Code

=?

Signature
Match

MISRMISR

AES
(Enc)
AES
(Enc)

AES
(Dec)
AES
(Dec)

&-!//+)@

Signature
Fetch

Instruction
Fetch

Secure
Execution

Figure 2. Mechanism for trusted instruction execution.

2.2 Secure Program Execution
When an instruction is fetched from memory, the integrity of the
corresponding instruction block needs to be verified, so the whole
instruction block must be fetched. Consequently, the most suitable
instruction block size is the size of the lowest level of the
instruction cache (the cache that is the closest to memory), or the
size of the fetch buffer in systems without the cache. Without loss
of generality, in the rest of this paper, we focus on a system with
separated data and instruction first level caches, and no second
level cache. The instruction cache (I-cache) is a read-only
resource, so the integrity is guaranteed for instructions already in
the I-cache. Hence, signatures need to be verified only on I-cache
misses.

Signatures are verified using a dedicated hardware resource called
the Instruction Block Signature Verification Unit (IBSVU, Figure
3). The IBSVU encompasses registers for buffering instructions
and signatures, support for AES decryption, MISR, and control
logic. On an I-cache miss, the corresponding signature is fetched
before instructions and temporarily stored in an IBSVU register
called SIGM. Note that the signatures are not stored in the cache

memory, since they are not needed for blocks already in the I-
cache.

Fetched instructions pass through the MISR register with the
linear coefficients that are equal to those used during secure
installation. Concurrently with MISR calculation, the AES block
decrypts the signature from the SIGM register. Hence, the
decryption time is partially or completely overlapped with the
instruction block fetch phase. The decrypted signature is
compared to the final MISR calculation: If the two values match,
the instruction block is properly installed and can be trusted. If the
values differ, the instruction block includes injected code or it is
not properly installed, so a trap to the operating system is asserted.
The operating system then aborts the process whose code integrity
cannot be guaranteed and possibly audits the event.

An embedded computing system might be designed to run only in
the secure execution mode. However, if an application does not
accept input data from untrustworthy channels, a user might
decide to install it without instruction block signatures. Such an
application then executes in the ordinary, insecure mode. The
information about the required execution mode could be added to
the program header during installation.

57

L1
I-cache

L1
D-cache

MMU

Datapath

FPUs IF

Control IBSVU

Processor

……

……

……

……

Data bus

SIGM

AES
Decrypt

……

……

……

……

MISR L1 I-cache

sig

sig

=?

S-match

…… ……
…… ……

S-Cache S-cache_hit

K0 K1 Kn-1

D

ld

Q

Q

S

R

0

1
D

ld

Q

Q

S

R

0

1
D

ld

Q

Q

S

R

0

1

I0 I1 In-1

Init Init Init

. . .

Legend:
Zoom in
Signature cache

Figure 3. Hardware support for signature verification.

2.3 Implementation Details
We propose four techniques based on the common sign-and-verify
mechanism: SIGCED, SIGCEK, SIGCTD, and SIGCTK. These
techniques can be classified according to the signature placement
in the code and signature handling after verification. Instruction
block signatures can be stored before the corresponding
instruction blocks, i.e., embedded in the code (SIGCED,
SIGCEK). Another possibility is to store all signatures in a
separate code section that we call the signature table (SIGCTD,
SIGCTK). After verification, a signature can be discarded
(SIGCED, SIGCTD), or kept in a decrypted form in a dedicated
read-only resource called the signature cache – S-cache (SIGCEK,
SIGCTK), shown with dotted lines in Figure 3. The S-cache can
be accessed only by the IBSVU. The S-cache’s number of entries
and organization differ from those of the I-cache in order to keep
decrypted signatures even when the corresponding instruction
blocks are evicted from the I-cache. The S-cache may reduce the
overhead of run-time signature verification at the price of
increased hardware complexity. The potential benefit of an S-
cache is twofold: first, if a signature is found in the S-cache, it
does not have to be fetched from memory, thus saving both
processor cycles and energy. Second, since signatures in the S-
cache are decrypted, an S-cache hit also avoid power overhead for
AES decryption. However, a relatively large S-cache may
significantly increase processor area, thus increasing total power
dissipation.

Figure 4 illustrates the modifications in the instruction fetch
control flow for the SIGCED. The value of the program counter
(PC) is used to access the I-cache. Note that without loss of
generality, we assume that the I-cache is indexed by virtual
addresses and it is virtually tagged. This is a frequent case in

embedded processor caches, for example in Intel’s Xscale
processor [2]. In the case of a cache hit, the instruction is fetched
from the I-cache and there is no need for signature verification. In
the case of a cache miss, we need to calculate the address of the
instruction block to be fetched in the virtual memory. The
instruction block address has changed because of signature
embedding and added padding. The secure installation process
adds padding to the code with embedded signatures so that no
instruction block is split between two pages. When a correct
virtual address is calculated, the translation look-aside buffer
(TLB) is accessed for virtual to physical address translation. The
signature is fetched before instructions and decrypted while
instructions are being fetched. With the SIGCEK technique, an I-
cache miss is followed by the corresponding S-cache lookup.
Hence, the signature needs to be fetched and decrypted only if it is
not found in the S-cache.

Figure 5 illustrates modifications in the instruction fetch control
flow with SIGCTD. The address of a signature SigAddress is
calculated in parallel with the I-cache lookup, and it must not be
greater than the SigTableEnd, the address of the last signature in
the signature table. With the SIGCTK technique, the signature
fetch and decrypt phases may be avoided if a signature is found in
the S-cache.

The SIGCTD and SIGCTK techniques have both advantages and
disadvantages over techniques with embedded signatures. Since
signatures are stored separately from instructions, there is no need
for padding and hardware address translation. On the other hand,
signature fetch from memory requires a completely separate
memory access. If the application code is relatively large,
instructions and signatures may even be located on separate pages,
so accesses to signatures may cause page faults.

58

Address Translation

Go to decode
& execute

Virtual to Physical Address Translation

Trap OS

Yes

I-Cache Lookup

Fetch Signature

Fetch Instructions

No

No

No

Yes

Yes

Go to decode
& execute

I-cache Miss?

Cache Line Fetched?

Decrypted Signature == Calculated Signature

Decrypt Signature
from Memory

Using a Hidden Key

Calculate Instruction
Block Signature Using

MISR and a Hidden Key

Legend:
Parallel tasks
Steps supporting
signature verification

Figure 4. SIGCED: Signature verification control flow.

Go to decode
& execute

Virtual to Physical Address Translation
(Signature)

Trap OS

Yes

Fetch Signature

Fetch Instructions

No

No

No

Yes

Yes

Go to decode
& execute

Signature Address Calculation

Virtual to Physical Address Translation
(PC)

Yes Trap OS

No

Decrypt Signature
from Memory

Using a Hidden Key

Calculate Instruction
Block Signature Using

MISR and a Hidden Key

I-cache Miss?

Cache Line Fetched

Decrypted Signature == Calculated Signature

SigAddress ≤ SigTableEnd?

I-Cache Lookup

Legend:
Parallel tasks
Steps supporting
signature verification

Legend:
Parallel tasks
Steps supporting
signature verification

Figure 5. SIGCTD: Signature verification control flow.

2.4 Other Considerations
With the proposed techniques, each dynamically linked library
(DLL) has its own signature section or embedded signatures, so
all code can be safely verified. The pointer to the signature section
or the beginning of the code with embedded signatures can be
loaded to the IBSVU when a particular library is dynamically
linked. The IBSVU stores a fixed number of such pointers. When
an application is dynamically linked with more DLLs than the
IBSVU can hold, the overflow is handled by the operating system,
and the overflow data is stored in memory.

Another consideration is dynamically generated code, such as the
code generated by the Java Just-In-Time compiler, which may
never be saved in an executable file. Such code can be marked as
non-signed and executed in the unprotected mode, or the code
generator can generate the signatures together with the code. If the
generator is trusted, its output should be trusted too. The same
argument applies to the interpreted code.

Although effective against all injection attacks of malicious code,
the described signature verification mechanism cannot detect a
return-into-libc attack. Signatures embedded in the code also do

59

not prevent an attack where the injected code consists of copies of
regularly installed instruction blocks and corresponding signatures
(a form of replay attack). However, the basic mechanism can be
expanded to defend against such attacks. Replay attacks can be
easily prevented if an instruction block signature is a function of
not only instructions, but also the relative offset of that block from
the beginning of the code: e.g., if the relative address of the first
instruction in a block also passes through the MISR during secure
installation. Unauthorized jumps into existing code can be
prevented by embedding allowed target addresses in signatures,
similar to branch address hashing [36]; unauthorized returns can
be disabled by combining the signature verification with a form of
the secure stack.

3. EXPERIMENTAL METHODOLOGY
A hardware-supported defense technique should not add
significant overhead in hardware complexity, execution time,
energy consumption, and memory requirements. A qualitative
assessment indicates relatively low hardware complexity of
techniques without the S-cache; the complexity of techniques with
the S-cache depends on the S-cache size. We evaluate only
implementations where the S-cache is smaller than the I-cache, so
the complexity of these techniques is also moderate.

The memory overhead is simply determined by comparing the
sizes of the original code and the code with signatures. To
emulate the secure installation process, we have developed a
program that calculates signatures of instruction blocks in
executable sections of programs in the ELF format, and modifies
programs to include calculated signatures [27]. The signature size
is 128 bits, a minimum size for AES encryption. We have chosen
the MISR coefficients to be the coefficients of a primitive
polynomial of the 128-th order.

The performance overhead is evaluated using a modified
SimpleScalar ARM simulator [4] that supports the SIGCED,
SIGCEK, SIGCTD, and SIGCTK techniques. As a measure of
performance we use the average number of cycles per instruction
(CPI) and compare the CPI of the proposed techniques to the CPI
of the Base configuration (without signature verification).

In order to evaluate the proposed techniques’ sensitivity to
different system configurations, we varied the I-cache line size (64
and 128 bytes), the I-cache size (1, 2, 4, and 8KB), the width of a
bus between memory and the I-cache (32 and 64 bits), and the
speed of processor core relative to memory (fast and slow). The
D-cache (data cache) and I-cache have the same size and
organization. The values of other SimpleScalar simulator
parameters are shown in Table 1.

We assume that the AES decryption latency is 12 processor cycles
for slow and 22 cycles for fast processor core, which are the
speeds attainable with current optimized ASIC solutions [1].
Since a signature is always fetched first, signature decryption is
finished before the corresponding instruction block is fetched, so
the decryption latency is completely hidden in all evaluated
system configurations. The address translation latency is one cycle
for the SIGCED and SIGCEK techniques. For the SIGCEK and
SIGCTK techniques, the S-cache has eight ways, random cache
replacement policy, and twice as many entries as the
corresponding I-cache. Note that an S-cache line contains only
one signature of 16 bytes, whereas an I-cache line contains 64 or

128 bytes. Hence, the size of an I-cache with n cache lines is
approximately two or four times larger than the size of an S-cache
with 2n entries.

Table 1. SimpleScalar Simulator parameters

Simulator parameter Value
Branch predictor type Bimodal
Branch predictor table size 128 entries, direct-mapped
Return address stack size 8 entries
Instruction decode bandwidth 1 instruction/cycle
Instruction issue bandwidth 1 instruction/cycle
Instruction commit bandwidth 1 instruction/cycle
Pipeline with in-order issue True
I-cache/D-cache 4-way, first level only
I-TLB/D-TLB 32 entries, fully associative
Execution units 1 floating point, 1 integer
Memory fetch latency (first
chunk/other chunks)

12/3 cycles for slow core, 24/6
cycles for fast core

Branch misprediction latency 2 cycles for slow core,
3 cycles for fast core

TLB latency 30 cycles for slow core,
60 cycles for fast core

The energy overhead is determined by comparing the total energy
spent by a system with the Base configuration to the energy spent
with signature verification. The total energy is calculated as a
product of power dissipation and execution time. Power
dissipation is estimated using a modified Sim-Panalyzer ARM
simulator [19], which models the effects of internal and external
switching and leakage. For Sim-Panalyzer parameters related to
power, we use values from a provided template file. The operating
frequency is 200MHz, and the supply voltage is 3.3V. The
technology parameters correspond to the 0.18µm process. The
AES decryption block is modeled as a static logic block with
10,000 gates. The S-cache is modeled as a regular cache structure.

We use benchmarks from several benchmark suites for embedded
systems: MiBench [17], MediaBench [22], and Basicrypt [6].
Table 2 lists benchmarks, their descriptions, and the number of
executed instructions, while Table 2 gives the number of I-cache
misses per 1000 instructions.

Table 2. Benchmark description and characteristics

Benchmark Description
Executed
instructions
in millions

blowfish_dec Blowfish decryption 544.0
blowfish_enc Blowfish encryption 544.0
cjpeg JPEG compression 104.6
djpeg JPEG decompression 23.4
ecdhb Diffie-Hellman key exchange 122.5
ecdsignb Digital signature generation 131.3
ecdsverb Digital signature verification 171.9
ecelgdecb El-Gamal encryption 92.4
ecelgencb El-Gamal decryption 180.2
ispell Spell checker 817.7
mpeg2_enc MPEG2 compression 127.5
qsort Quicksort 737.9
rijndael_dec Rijndael decryption 307.9
rijndael_enc Rijndael encryption 320.0
stringsearch String search 3.7

60

Table 3 .Number of I-cache misses per 1000 instructions.

I-cache misses per 1000 instructions
Cache line 64B Cache line 128B Benchmark
1K 2K 4K 8K 1K 2K 4K 8K

blowfish_dec 22.2 5.6 0.1 0.0 13.7 3.8 0.8 0.0
blowfish_enc 22.2 4.6 0.1 0.0 12.9 3.8 0.8 0.0
cjpeg 6.2 1.6 0.3 0.1 6.6 1.7 0.3 0.1
djpeg 8.4 4.0 1.1 0.2 6.2 2.9 1.0 0.2
ecdhb 20.3 6.0 2.3 0.1 14.6 6.2 1.6 0.2
ecdsignb 15.9 4.6 1.7 0.1 17.3 4.8 1.2 0.1
ecdsverb 21.3 5.2 2.0 0.3 16.9 5.3 1.5 0.3
ecelgdecb 26.2 0.3 0.0 0.0 22.4 2.5 0.0 0.0
ecelgencb 23.4 3.2 1.1 0.1 18.7 4.4 0.8 0.1
ispell 61.7 51.1 21.7 2.9 40.4 35.7 20.9 3.5
mpeg2_enc 1.8 0.8 0.3 0.2 2.1 0.6 0.3 0.1
qsort 44.2 29.4 22.2 5.4 32.8 21.1 15.3 7.4
rijndael_dec 70.6 68.6 68.0 6.6 41.6 40.3 37.6 9.9
rijndael_enc 73.7 70.5 68.0 8.1 42.6 39.4 38.1 11.2
stringsearch 55.3 35.4 12.9 3.7 38.0 24.3 10.6 1.9

All benchmarks but mpeg2encode use the largest possible
provided input, and mpeg2encode uses the provided test input.
Since signature verification is done only at an I-cache miss, the
benchmarks are selected so that most of them have a relatively
high number of I-cache misses for at least some of the simulated
cache sizes.

4. RESULTS

4.1 Performance Overhead
Figure 6 shows the performance overhead for a system with 64B
I-cache lines, a 64-bit bus, and a slow processor core. The results
indicate a low performance overhead for the SIGCED technique.
With a 4K I-cache, the SIGCED technique increases CPI in the
range 0.01-9.6%, with an average increase of 2.6%. Even with a
very small 1K I-cache, the average CPI increase is 5.8%. The
absolute CPI increase is very close to a linear function of the
number of I-cache misses.

The SIGCED overhead can be reduced if signatures are kept in
the S-cache, i.e., with the SIGCEK technique. With a 4K I-cache,
the SIGCEK CPI increase is in the range 0.01-1.5%, with an
average increase of 0.5%. With smaller I-caches, the SIGCEK
CPI increase is in the range 0.3-7.4% (1K) and 0.3-5.7% (2K). A
low number of I-cache misses with an 8K I-cache enables the
SIGCEK to virtually remove the performance overhead of
signature verification.

The SIGCTD technique always introduces more performance
overhead than the SIGCED does, since signatures stored in the
separate code section require an additional memory access. With a
4K I-cache, the SIGCTD increase is in the range 0.02-21%, and
the average increase is 5.7%. This difference is more significant
with small caches: The average CPI increase for the SIGCTD is
13% with a 1K I-cache and 8% with a 2K one.

The performance overhead can be reduced with an S-cache, i.e.,
with the SIGCTK technique. With a 4K I-cache, the SIGCTK CPI
increase is in the range 0-1.2%, and the average increase is 0.2%.

I-cache 1K

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

blo
wfis

h_
dec

blo
wfis

h_
enc

cjp
eg

djp
eg

ec
dh

b

ec
ds

ignb

ec
ds

ve
rb

ec
elg

de
cb

ec
elg

en
cb

isp
ell

mpe
g2 e qs

ort

rijn
dae

l_d
ec

rijn
dae

l_e
nc

str
ings

earc
h

av
era

ge

C
PI

 (S
IG

C
) /

 C
PI

(B
as

e)

SIGCED
SIGCEK
SIGCTD
SIGCTK

I-cache 2K

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

blo
wfis

h_
dec

blo
wfis

h_
enc

cjp
eg

djp
eg

ec
dh

b

ec
ds

ignb

ec
ds

ve
rb

ec
elg

de
cb

ec
elg

en
cb

isp
ell

mpe
g2 e qs

ort

rijn
dae

l_d
ec

rijn
dae

l_e
nc

str
ings

earc
h

av
era

ge

C
PI

 (S
IG

C
) /

 C
PI

(B
as

e)

SIGCED
SIGCEK
SIGCTD
SIGCTK

I-cache 4K

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

blo
wfis

h_
dec

blo
wfis

h_
enc

cjp
eg

djp
eg

ec
dh

b

ec
ds

ignb

ec
ds

ve
rb

ec
elg

de
cb

ec
elg

en
cb

isp
ell

mpe
g2 e qs

ort

rijn
dae

l_d
ec

rijn
dae

l_e
nc

str
ings

earc
h

av
era

ge

C
PI

 (S
IG

C
) /

 C
PI

(B
as

e)

SIGCED
SIGCEK
SIGCTD
SIGCTK

I-cache 8K

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

blo
wfis

h_
dec

blo
wfis

h_
enc

cjp
eg

djp
eg

ec
dh

b

ec
ds

ignb

ec
ds

ve
rb

ec
elg

de
cb

ec
elg

en
cb

isp
ell

mpe
g2 e qs

ort

rijn
dae

l d

rijn
dae

l e

str
ings

earc
h

av
era

ge

C
PI

 (S
IG

C
) /

 C
PI

(B
as

e)

SIGCED
SIGCEK
SIGCTD
SIGCTK

Figure 6. The ratio of CPI for the proposed techniques and the Base system.

61

SIGCED

0.98
1.00
1.02
1.04
1.06
1.08
1.10
1.12
1.14
1.16
1.18

32/slow 64/slow 32/fast 64/fast 32/slow 64/slow 32/fast 64/fast

System configuration: data bus width/processor core speed

A
ve

ra
ge

 o
f C

PI
/C

P
I(B

as
e) 1K

2K
4K
8K

Line size 64B Line size 128B

SIGCEK

0.98
1.00
1.02
1.04
1.06
1.08
1.10
1.12
1.14
1.16
1.18

32/slow 64/slow 32/fast 64/fast 32/slow 64/slow 32/fast 64/fast

System configuration: data bus width/processor core speed

A
ve

ra
ge

 o
f C

PI
/C

PI
(B

as
e) 1K

2K
4K
8K

Line size 64B Line size 128B

SIGCTD

0.98
1.00
1.02
1.04
1.06
1.08
1.10
1.12
1.14
1.16
1.18

32/slow 64/slow 32/fast 64/fast 32/slow 64/slow 32/fast 64/fast

System configuration: data bus width/processor core speed

A
ve

ra
ge

 o
f C

PI
/C

P
I(B

as
e) 1K

2K
4K
8K

Line size 64B Line size 128B

SIGCTK

0.98
1.00
1.02
1.04
1.06
1.08
1.10
1.12
1.14
1.16
1.18

32/slow 64/slow 32/fast 64/fast 32/slow 64/slow 32/fast 64/fast

System configuration: data bus width/processor core speed
A

ve
ra

ge
 o

f C
PI

/C
P

I(B
as

e) 1K
2K
4K
8K

Line size 64B Line size 128B

Figure 7. Sensitivity of performance overhead to architectural parameters.

Note that the overhead is less than with the SIGCEK technique;
i.e., with this I-cache/S-cache size, the technique with a signature
table performs better than does the technique with embedded
signatures. This difference is due to the low number of S-cache
misses with this configuration, on average less than 0.5 per 1000
instructions. With the SIGCTK, there is no additional delay if the
signature is found in the S-cache, whereas with the SIGCEK there
is always delay due to the address translation. However, with
smaller caches the SIGCTK is worse than the SIGCEK: The
average CPI increase is 6% with a 1K I-cache, and more than 10%
for five benchmarks.

Figure 7 shows the sensitivity of the proposed techniques to
processor core speed, memory bus width, and I-cache line size.
The techniques with embedded signatures are less sensitive to the
configuration parameters than the techniques with the signature
table. For example, with a 2K I-cache the average CPI increase for
SIGCED goes from 2% with 128B lines, 64-bit bus, and a slow
core to 6% with 64B lines, 32-bit bus, and a fast core. The
average CPI increase for the SIGCTD with the same I-cache
varies from 4% to 10%. Techniques with an S-cache are also less
sensitive than their counterparts without an S-cache, due to the
lower CPI overhead. Note that performance overhead is higher
with 64B than with 128B I-cache lines for all techniques, due to
the larger number of I-cache misses (Table 2). The SIGCED
technique remains an overall winner if the hardware budget does
not allow for an S-cache. With a hardware budget insufficient for
an I-cache increase but allowing for an S-cache, the SIGCEK
technique has better overall performance than does the SIGCTK.

4.2 Energy Overhead
We evaluate the energy overhead of techniques with embedded
signatures, since they have lower performance overhead. Figure 8

shows the energy of a system with the SIGCED and SIGCEK
techniques normalized to the energy of the Base system, with 64B
I-cache line, 64-bit memory bus, and slow core. With a 4K I-
cache the SIGCED increases energy 0-27%, with an average
increase of 8%; the SIGCEK technique reduces the average
energy overhead to 3%. The increase in average power dissipation
for the SIGCED is mainly due to the additional I/O activity when
signatures are fetched from memory. Hence, both components of
the SIGCED energy overhead are reduced with larger I-caches:
The average energy increase is 16%, 10%, and 3%, for I-cache
sizes of 1K, 2K, and 8K, respectively. This may not be the case
with the SIGCEK technique. Whereas the S-cache may reduce the
number of signature fetches and the corresponding performance
and power penalties, it also increases the total die size and,
consequently, the clock tree power dissipation. This is why the
average SIGCEK energy increase with an 8K I-cache is larger
than with a 4K one.

4.3 Memory Overhead
The memory overhead is an inherent characteristic of all proposed
techniques, since instruction block signatures are added to the
executable code sections. On average, the SIGCED technique
with 16B signatures increases the size of the executable sections
by 25.5% with 64B-instruction blocks, and by 14.3% with 128B-
blocks. The SIGCTD technique does not require padding, so the
executable section increase is 25% with 64B cache lines and
12.5% with 128B cache lines. An executable file typically
includes non-executable code sections, so the proposed
techniques add even less memory overhead to complete
executable files: less than 7% with 64B cache lines, and less than
4% with 128B lines.

62

I-cache 1K

0.90
0.95
1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35

blo
wfis

h_
dec

blo
wfis

h_
enc

cjp
eg

djp
eg

ec
dh

b

ec
ds

ignb

ec
ds

ve
rb

ec
elg

de
cb

ec
elg

en
cb

isp
ell

mpe
g2_

en
c

qs
ort

rijn
dae

l_d
ec

rijn
dae

l_e
nc

str
ings

earc
h

av
era

ge

En
er

gy
 n

or
m

al
iz

ed
 to

 B
as

e SIGCED
SIGCEK

I-cache 2K

0.90
0.95
1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35

blo
wfis

h_
dec

blo
wfis

h_
enc

cjp
eg

djp
eg

ec
dh

b

ec
ds

ignb

ec
ds

ve
rb

ec
elg

de
cb

ec
elg

en
cb

isp
ell

mpe
g2_

en
c

qs
ort

rijn
dae

l_d
ec

rijn
dae

l_e
nc

str
ings

earc
h

av
era

ge

En
er

gy
 n

or
m

al
iz

ed
 to

 B
as

e

SIGCED
SIGCEK

I-cache 4K

0.90
0.95
1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35

blo
wfis

h_
dec

blo
wfis

h_
enc

cjp
eg

djp
eg

ec
dh

b

ec
ds

ignb

ec
ds

ve
rb

ec
elg

de
cb

ec
elg

en
cb

isp
ell

mpe
g2_

en
c

qs
ort

rijn
dae

l_d
ec

rijn
dae

l_e
nc

str
ings

earc
h

av
era

ge

En
er

gy
 n

or
m

al
iz

ed
 to

 B
as

e

SIGCED
SIGCEK

I-cache 8K

0.90
0.95
1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35

blo
wfis

h_
dec

blo
wfis

h_
enc

cjp
eg

djp
eg

ec
dh

b

ec
ds

ignb

ec
ds

ve
rb

ec
elg

de
cb

ec
elg

en
cb

isp
ell

mpe
g2_

en
c

qs
ort

rijn
dae

l_d
ec

rijn
dae

l_e
nc

str
ings

earc
h

av
era

ge

En
er

gy
 n

or
m

al
iz

ed
 to

 B
as

e SIGCED
SIGCEK

Figure 8. System energy normalized to the Base case.

5. RELATED WORK
A broad spectrum of techniques has been proposed to counter
code injection attacks. These techniques can be classified into
static software based, dynamic software based, and techniques
that include hardware support. Static software based techniques
attempt to find possible security vulnerabilities in the code, so
they can be corrected before the code is released. Completely
automated tools for detection of security-related flaws must
choose between precise but not scalable analysis and lightweight
analysis that may produce a lot of false positives and false
negatives [41]. The need for precise automated analysis can be
alleviated if programmers add specially formulated comments
about program constraints [14], but adding annotations can be as
error prone as programming itself and puts additional burden on
programmers.

Dynamic software techniques aim to prevent successful code
injection attacks or to significantly reduce the attackers’ chances
for success. These techniques can be further classified into four
groups. One group encompasses techniques that augment the code
with various run-time checks [11, 16, 24]. Another group
comprises techniques that monitor different aspects of program
behavior, such as sequences of system calls or values of
performance monitoring registers [32, 34]. The third approach is
obfuscation: This group includes segment addresses and jump
addresses, or the complete code can be scrambled, making it
difficult for an attacker to succeed [5, 7, 10]. Finally, the fourth
group includes “safe dialects” of language C, which restrict the
use of unsafe constructs, perform static analysis and runtime
checks, and use garbage collection or region-base memory
management [21]. Dynamic software techniques often require
recompilation, so they are not readily applicable to legacy code.
Moreover, since these techniques increase the code size and the
number of executed instructions, they may incur significant
performance and energy overhead.

Hardware-based defense techniques use architectural support to
counter injected code. These techniques promise lower overhead
in performance and energy than do solely software solutions.
They also reduce overall defense cost: An architectural feature
protects all programs executed by the processor, whereas most
software-based techniques have to be applied to each program
separately. However, hardware-based techniques are mainly
attack-specific. For example, several researchers propose
architectural support against stack smashing attacks, either by
saving return addresses on a separate hardware stack [23, 33, 43,
45], or by interpreting instructions in hardware so that return
addresses are saved and restored from a “shadow” stack [9].
Various obfuscation techniques can also benefit from hardware
support: from using special instructions to load/store encrypted
code pointers [35, 38], to transforming instruction blocks
according to the encrypted hash values of transformation
invariants [20], to complete code encryption [18]. Another
approach is to tag untrustworthy data that cannot be used for
control transfers [12, 37]. For applications with intensive I/O
tagging may have a significant performance and power overhead.

The code integrity in run-time can be successfully protected if all
instruction blocks are signed with a cryptographically secure
signature. We did preliminary research on protection of basic
blocks and cache blocks using signatures [28, 29]. The results of
this research indicated that basic block signatures might add a
significant overhead. Cache block signatures were evaluated with
a less detailed performance simulator and without the S-cache.
Independently, Kirovski et al. also propose to sign all cache
blocks and to verify signatures in run-time [15]. This approach
generates the signature for an instruction block using a chained
Rijndael cipher: The instruction block is divided into sub-blocks,
so that each cipher stage encrypts the result of XOR of a sub-
block and the output from the previous stage. Such encoding
might be more cryptographically secure, but it introduces more
power and performance overhead. The authors did not consider

63

the S-cache, and tried to reduce the impact of signature
mechanism by code transformation.

Signatures of instruction blocks of various granularity are also
frequently used in fault-tolerant computing [26, 36, 42]. Unlike
these techniques, our approach does not require a dedicated
watchdog processor, and focuses rather on seamless integration on
verification mechanism into existing processor architecture.
Moreover, the signatures in our mechanism are also protected
from read attacks.

The ultimate protection of code integrity can be achieved if all
instructions are encrypted, as in the eXecute Only Memory
(XOM) framework [25]. However, complete code encryption by a
cryptographically strong technique such as AES or DES
considerably slows down execution. A fast on-time pad
encryption has been proposed for XOM, where pairs of
instructions are XORed with the corresponding encrypted address
[44]. This approach might be vulnerable to attacks where an
attacker is able to correctly guess the instructions in an instruction
pair, which than can be replaced by a malicious pair.

6. CONCLUSION
This paper presents a hardware mechanism that provides complete
run-time code integrity and evaluates four different
implementations of that mechanism in terms of additional
performance and energy overhead. The technique with embedded
signatures that are discarded after verification has relatively low
hardware complexity and a very low overhead across all
considered configurations; this overhead can be further reduced
with an additional processor resource, a signature cache. The
techniques with signatures in a separate code section have higher
overhead and slightly simpler implementation than the techniques
with embedded signatures.

Low overhead, protection from the whole class of code injection
attacks, and applicability to already-compiled code make the
proposed techniques a better choice for embedded systems than
run-time checking techniques implemented solely in software. The
signature verification mechanism also detects unintentional code
changes that may happen in error-prone environments.

In future work, performance overhead for all signature verification
techniques might be reduced with prefetching of code and
signatures. The signature verification mechanism can be expanded
to provide defense from other types of attacks, such as replay
attacks and return-into-libc.

REFERENCES
[1] "Enhanced Aes (Rijndael) IP Core," <http://www.asics.ws>

(Available December 2004).
[2] "Intel Xscale® Core Developer’s Manual,"

<http://www.intel.com/design/intelxscale/> (Available
December 2004).

[3] Ahmad, D., "The Rising Threat of Vulnerabilities Due to
Integer Errors," IEEE Security & Privacy, 1, 4 (July-August
2003), 77-82.

[4] Austin, T., Larson, E., and Ernst, D., "Simplescalar: An
Infrastructure for Computer System Modeling," IEEE
Computer, 35, 2 (February 2002), 59-67.

[5] Bhatkar, S., DuVarney, D. C., and Sekar, R., "Address
Obfuscation: An Approach to Combat Buffer Overflows,
Format-String Attacks, and More," in Proceedings of the
12th USENIX Security Symposium, Washington, DC, USA,
2003, 105-120.

[6] Branovic, I., Giorgi, R., and Martinelli, E., "A Workload
Characterization of Elliptic Curve Cryptography Methods in
Embedded Environments," ACM SIGARCH Computer
Architecture News, 32, 3 (June 2004), 27-34.

[7] Busser, P., "Memory Protection with Pax and the Stack
Smashing Protector: Breaking out Peace," Linux Magazine,
40(March 2004), 36-39.

[8] Conover, M., "w00w00 on Heap Overflows,"
<http://www.w00w00.org/files/articles/heaptut.txt>
(Available January 2005).

[9] Corliss, M., Lewis, E. C., and Roth, A., "Using DISE to
Protect Return Addresses from Attack," in Proceedings of
the Workshop on Architectural Support for Security and
Anti-Virus (WASSA), Boston, MA, USA, 2004, 61-68.

[10] Cowan, C., Beattie, S., Johansen, J., and Wagle, P.,
"Pointguard™: Protecting Pointers from Buffer Overflow
Vulnerabilities," in Proceedings of the 12th USENIX
Security Symposium, Washington, DC, USA, 2003, 91-104.

[11] Cowan, C., Pu, C., Maier, D., Walpole, J., Bakke, P., Beattie,
S., Grier, A., Wagle, P., Zhang, Q., and Hinton, H.,
"Stackguard: Automatic Adaptive Detection and Prevention
of Buffer Overflow Attacks," in Proceedings of the 7th
USENIX Security Conference, San Antonio, TX, USA, 1998,
63-78.

[12] Crandall, J. R. and Chong, F. T., "Minos: Control Data
Attack Prevention Orthogonal to Memory Model," in
Proceedings of the 37th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), Portland, OR,
USA, 2004, 221-232.

[13] Dobrovitski, I., "Exploit for Cvs Double free() for Linux
pserver,"
<http://seclists.org/lists/bugtraq/2003/Feb/0042.html>
(Available January 2005).

[14] Dor, N., Rodeh, M., and Sagiv, M., "CSSV: Towards a
Realistic Tool for Statically Detecting All Buffer Overflows
in C," in Proceedings of the ACM SIGPLAN 2003
Conference on Programming Language Design and
Implementation, San Diego, CA, USA, 2003, 155-167.

[15] Drinic, M. and Kirovski, D., "A Hardware-Software Platform
for Intrusion Prevention," in Proceedings of the 37th Annual
ACM/IEEE International Symposium on Microarchitecture
(MICRO), Portland, OR, USA, 2004, 233-242.

[16] Fetzer, C. and Xiao, Z., "Detecting Heap Smashing Attacks
through Fault Containment Wrappers," in Proceedings of the
20th IEEE Symposium on Reliable Distributed Systems, New
Orleans, LA, USA, 2001, 80-89.

[17] Guthaus, M. R., Ringenberg, J. S., Ernst, D., Austin, T. M.,
Mudge, T., and Brown, R. B., "MiBench: A Free,
Commercially Representative Embedded Benchmark Suite,"
in Proceedings of the IEEE 4th Annual Workshop on
Workload Characterization, Austin, TX, USA, 2001.

[18] Kc, G. S., Keromytis, A. D., and Prevelakis, V., "Countering
Code-Injection Attacks with Instruction-Set Randomization,"
in Proceedings of the 10th ACM Conference on Computer

64

and Communication Security, Washington, DC, USA, 2003,
272-280.

[19] Kim, N., Kgil, T., Bertacco, V., Austin, T., and Mudge, T.,
"Microarchitectural Power Modeling Techniques for Deep
Sub-Micron Microprocessors," in Proceedings of the
International Symposium on Low Power Electronics and
Design (ISLPED), Newport Beach, CA, USA, 2004,
212-217.

[20] Kirovski, D., Drinic, M., and Potkonjak, M., "Enabling
Trusted Software Integrity," in Proceedings of the 10th
International Conference on Architectural Support for
Programming Languages and Operating Systems
(ASPLOS-X), San Jose, CA, USA, 2002, 108-120.

[21] Larus, J. R., Ball, T., Das, M., DeLine, R., Fähndrich, M.,
Pincus, J., Rajamani, S. K., and Venkatapathy, R., "Righting
Software," IEEE Software, 21, 3 (May-June 2004), 92-100.

[22] Lee, C., Potkonjak, M., and Mangione-Smith, W. H.,
"MediaBench: A Tool for Evaluating and Synthesizing
Multimedia and Communications Systems," IEEE Micro, 30,
1 (December 1997), 330-335.

[23] Lee, R. B., Karig, D. K., McGregor, J. P., and Shi, Z.,
"Enlisting Hardware Architecture to Thwart Malicious Code
Injection," in Proceedings of the Security in Pervasive
Computing, Boppard, Germany, 2003, 237-252.

[24] Lhee, K.-s. and Chapin, S. J., "Type-Assisted Dynamic
Buffer Overflow Detection," in Proceedings of the 11th
USENIX Security Symposium, San Francisco, CA, USA,
2002, 81-88.

[25] Lie, D., Thekkath, C., Mitchell, M., Lincolny, P., Boneh, D.,
Mitchell, J., and Horowitz, M., "Architectural Support for
Copy and Tamper Resistant Software," in Proceedings of the
9th International Conference on Architectural Support for
Programming Languages and Operating Systems,
Cambridge, MA, USA, 2000, 168-177.

[26] Mahmood, A. and McCluskey, E. J., "Concurrent Error
Detection Using Watchdog Processors-a Survey," IEEE
Transactions on Computers, 37, 2 (February 1988), 160-174.

[27] Milenkovic, M., "Architectures for Run-Time Verification of
Code Integrity," Ph.D. Thesis, Electrical and Computer
Engineering Department, University of Alabama in
Huntsville, 2005.

[28] Milenkovic, M., Milenkovic, A., and Jovanov, E., "A
Framework for Trusted Instruction Execution Via Basic
Block Signature Verification," in Proceedings of the 42nd
Annual ACM Southeast Conference, Huntsville, AL, USA,
2004, 191-196.

[29] Milenkovic, M., Milenkovic, A., and Jovanov, E., "Using
Instruction Block Signatures to Counter Code Injection
Attacks," in Proceedings of the Workshop on Architectural
Support for Security and Anti-Virus (WASSA), Boston, MA,
USA, 2004, 104-113.

[30] Newsham, T., "Format String Attacks," September 2000,
<http://www.securityfocus.com/guest/3342> (Available
January 2004).

[31] One, A., "Smashing the Stack for Fun and Profit," Phrack
Magazine, 7, 49 (November 1996).

[32] Oppenheimer, D. L. and Martonosi, M. R., "Performance
Signatures: A Mechanism for Intrusion Detection," in

Proceedings of the 1997 IEEE Information Survivability
Workshop, San Diego, CA, USA, 1997.

[33] Ozdoganoglu, H., Brodley, C. E., Vijaykumar, T. N.,
Kuperman, B. A., and Jalote, A., "SmashGuard: A Hardware
Solution to Prevent Security Attacks on the Function Return
Address," Purdue University, TR-ECE 03-13, November 22,
2003.

[34] Sekar, R., Bendre, M., Dhurjati, D., and Bollineni, P., "A
Fast Automaton-Based Method for Detecting Anomalous
Program Behaviors," in Proceedings of the IEEE Symposium
on Security and Privacy, Oakland, CA, USA, 2001, 144-155.

[35] Shao, Z., Zhuge, Q., He, Y., and Sha, E. H.-M., "Defending
Embedded Systems against Buffer Overflow Via
Hardware/Software," in Proceedings of the 19th Annual
Computer Security Applications Conference (ACSAC 2003),
Las Vegas, NV, USA, 2003, 352-363.

[36] Shen, J. P. and Schuette, M. A., "On-Line Self-Monitoring
Using Signatured Instruction Streams," in Proceedings of the
1983 IEEE International Test Conference, Philadelphia, PA,
USA, 1983, 275-282.

[37] Suh, G. E., Lee, J. W., and Devadas, S., "Secure Program
Execution Via Dynamic Information Flow Tracking," in
Proceedings of the 11th Architectural Support for
Programming Languages and Operating Systems (ASPLOS),
Boston, MA, USA, 2004, 85-96.

[38] Tuck, N., Calder, B., and Varghese, G., "Hardware and
Binary Modification Support for Code Pointer Protection
from Buffer Overflow," in Proceedings of the 37th Annual
ACM/IEEE International Symposium on Microarchitecture
(MICRO), Portland, OR, USA, 2004, 209-220.

[39] US-CERT, "Cert/Cc Statistics," <http://www.cert.org/stats/>
(Available December 2003).

[40] US-CERT, "Cyber Security Bulletin Sb04-231,"
<http://www.us-cert.gov/cas/bulletins/SB04-231.html>
(Available November 2004).

[41] Wagner, D., Foster, J. S., Brewer, E. A., and Aiken, A., "A
First Step Towards Automated Detection of Buffer Overrun
Vulnerabilities," in Proceedings of the Network and
Distributed System Security Symposium (NDCS), San Diego,
CA, USA, 2000.

[42] Wilken, K. and Shen, J. P., "Continuous Signature
Monitoring: Low-Cost Concurrent Detection of Processor
Control Errors," IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 9, 6 (June 1990),
629-641.

[43] Xu, J., Kalbarczyk, Z., Patel, S., and Iyer, R. K.,
"Architecture Support for Defending against Buffer
Overflow Attacks," in Proceedings of the Workshop on
Evaluating and Architecting System dependability (EASY),
San Jose, CA, USA, 2002.

[44] Yang, J., Zhang, Y., and L.Gao, "Fast Secure Processor for
Inhibiting Software Piracy and Tampering," in Proceedings
of the 36th International Symposium on Microarchitecture,
San Diego, CA, USA, 2003, 351-360.

[45] Ye, D. and Kaeli, D., "A Reliable Return Address Stack:
Microarchitectural Features to Defeat Stack Smashing," in
Proceedings of the Workshop on Architectural Support for
Security and Anti-Virus (WASSA), Boston, MA, USA, 2004,
69-76.

65

