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ABSTRACT 
Computer security becomes increasingly important with continual 
growth of the number of interconnected computing platforms. 
Moreover, as capabilities of embedded processors increase, the 
applications running on these systems also grow in size and 
complexity, and so does the number of security vulnerabilities. 
Attacks that impair code integrity by injecting and executing 
malicious code are one of the major security issues. This problem 
can be addressed at different levels, from more secure software 
and operating systems, down to solutions that require hardware 
support. Most of the existing techniques tackle the problem of 
security flaws at the software level, but this approach lacks 
generality and often induces prohibitive overhead in performance 
and cost, or generates a significant number of false alarms. On the 
other hand, a further increase in the number of transistors on a 
single chip enables integrated hardware support for functions that 
formerly were restricted to the software domain. Hardware-
supported defense techniques have the potential to be more 
general and more efficient than solely software solutions. This 
paper proposes four new architectural extensions to ensure 
complete run-time code integrity using instruction block signature 
verification. The experimental analysis shows that the proposed 
techniques have low performance and energy overhead. In 
addition, the proposed mechanism has low hardware complexity, 
and does not impose either changes to the compiler or changes to 
the existing instruction set architecture.   

Categories and Subject Descriptors 
C.1 [ Processor Architectures]: Miscellaneous; 
C3. [Special-purpose and application-based Systems]: Real-
time and embedded systems; 
K6. [Management of Computing and Information Systems]: 
Security and Protection. 

General Terms 
Performance, Design, Security. 

Keywords 
Code integrity, code injection attacks. 

1. INTRODUCTION 
With the exponential growth of the number of interconnected 
computing platforms, computer security has become a critical 
issue. The utmost importance of system security is further 
underscored by the expected proliferation of diverse Internet-
enabled embedded systems — ranging from home appliances, 
cars, and sensor networks to personal health monitoring devices. 

One of the security issues that have recently drawn attention is 
software integrity, which ensures that the executing instructions 
have not been changed by either an accident or an attack. The 
attacks impairing software integrity are called code injection 
attacks, since they inject and execute malicious code instead of 
regularly installed programs. The most widely known type of code 
injection attacks is so-called stack smashing [31]. Figure 1 
illustrates one such attack for an architecture where the stack 
grows towards lower memory addresses. A function accepts 
untrustworthy values into a local buffer Buf. If the function does 
not verify whether the length of the input exceeds the buffer size, 
an attacker can easily overflow the buffer. By overflowing the 
buffer, any location on the stack in the address space after the 
beginning of the buffer can be overwritten, including the return 
address of the vulnerable function. Using this mechanism, an 
attacker can insert malicious code sequence, and overwrite the 
return address to point to the malicious code. Other attacks may 
overflow buffers stored on the heap [8] or exploit integer errors 
[3], dangling pointers [13], or format string vulnerabilities [30]. 
Most programs with these vulnerabilities are also susceptible to 
so-called return-into-libc attacks, where an attacker changes a 
code pointer to point to the existing code, usually the library code. 
Return-into-libc attacks are also called arc injection, since they 
inject an arc in a control flow graph of a program.  

The number of reported software vulnerabilities has grown from 
171 in 1995 to 4,129 in 2002, according to the United States 
Computer Emergency Readiness Team Coordination Center (US-
CERT/CC) [39]; a large number of these vulnerabilities can be 
exploited by code injection attacks. Although most reported 
vulnerabilities are found in programs executing on desktop and 
server platforms, the increasing complexity of embedded system 
applications may result in similar software flaws. For example, 
one recent Cyber Security Bulletin from US-CERT reports 
multiple buffer overflow vulnerabilities in a Bluetooth 
connectivity program for Personal Digital Assistants (PDAs) [40]. 
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As the communication and computation capabilities of smart 
phones, PDAs, and other embedded systems continue to grow, so 
will the number of malicious attacks. 
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Figure 1. An illustration of the stack smashing attack.  

The multitude of code injection attacks prompted development of 
a large number of predominantly software-based counter-
measures. Static software techniques rely on formal analysis 
and/or programmers’ annotations to detect security flaws in the 
code, and then leave it to the programmers to correct these flaws 
[14, 41]. However, using these techniques has yet to become a 
common programming practice. Moreover, they fail to discover 
all vulnerabilities, suffer from false alarms, and put an additional 
burden on programmers. On the other hand, dynamic software 
techniques augment the original code or operating system to 
detect malicious attacks and to terminate attacked programs, or to 
reduce the attacker’s chances of success [5, 7, 10, 11, 16, 21, 24, 
32, 34]. Though effective, these techniques can result in 
significant performance overhead and usually require program 
recompilation, so they are not readily applicable to legacy 
software. 

Several recent research efforts propose hardware-supported 
techniques to prevent unauthorized changes of program control 
flow [9, 12, 15, 18, 20, 23, 28, 29, 33, 35, 37, 38, 43, 45]. These 
techniques have potential to offer better protection from code 
injection attacks with lower performance and energy overhead 
than techniques relying solely on software. However, most of 
hardware-supported techniques focus only on stack smashing, or 
still have a significant performance overhead, or do not 
thoroughly explore the implications of implementation choices. 
We believe that there is a need for a new hardware security layer 
to prevent the whole class of code injection attacks. 

In this paper we propose and evaluate new architectural 
extensions to ensure run-time code integrity at minimal cost, 
energy overhead, and performance loss. The proposed techniques 
share a common mechanism: Instruction blocks are signed using 
secret hardware keys during a secure program installation process, 
and signatures are stored with the code. During secure program 
execution, signatures are recalculated from instructions and 
compared to the stored signatures. If the two values do not match, 
the program cannot be trusted and should be terminated. The 

proposed mechanism does not require significant processor 
changes; it is cost-effective and requires no changes in legacy 
source code and no compiler support. In addition, encrypted 
instruction block signatures protect the code from software 
tampering, and enable fault detection in error-prone environments 
such as space. Though the proposed mechanism offers protection 
from code injection attacks only, it can be easily expanded to 
protect from return-into-libc attacks. 

The results of detailed cycle-by-cycle simulations indicate that the 
signature verification mechanism with hardware support indeed 
does have low performance and energy overhead. In an embedded 
processor with a 4K-instruction cache (I-cache), the average 
performance overhead of the best low-complexity technique is 
2.6%, and the average energy overhead is 8%. With additional 
hardware investment in a signature cache, the performance and 
energy overhead can be reduced to 0.5% and 3%, respectively. 

The rest of this paper is organized as follows. Section 2 describes 
the proposed architectures for instruction block verification. 
Section 3 describes the experimental methodology, and Section 4 
discusses the results of the performance and energy analysis. 
Section 5 describes the related work and the last section concludes 
the paper. 

2. ARCHITECTURES FOR INSTRUCTION 
BLOCK VERIFICATION 
The proposed techniques share a common sign-and-verify 
mechanism, where instruction blocks are signed during the secure 
installation process, and signatures are verified during secure 
program execution for each instruction block fetched from 
memory (Figure 2). Four techniques discussed differ in signature 
placement (embedded in the code vs. separate code segment) and 
in signature handling after verification (discard vs. keep in a 
signature cache). 

2.1 Secure Installation  
The role of the secure installation process is to generate signatures 
for programs whose integrity we want to protect, and to store 
them together with the program binary. The algorithm for 
signature generation should satisfy two opposing requirements: 
On the one hand, signatures should be cryptographically secure; 
i.e., it should be very hard for an attacker to generate a correct 
signature for a given instruction block. On the other hand, 
signature verification should not add a significant overhead to 
program execution. An additional requirement is that the signature 
mechanism should require minimal or no compiler support, so 
that any already-compiled code can be securely installed. To 
satisfy these requirements, we decided to use a combination of an 
extended version of a Multiple Input Shift Register (MISR) and 
Advance Encryption Standard (AES), although other algorithms 
may also be used.  

A signature of an instruction block is obtained in the following 
way (Figure 2). First, all instructions in that block pass through a 
MISR. The MISR is essentially a shift register with linear 
feedback coefficients, so a new value of the MISR is a function of 
the current value and incoming instructions. After each instruction 
block, the MISR is initialized to a predefined start value. Linear 
feedback connections and the start value are determined by secret 
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processor keys hidden in permanent read-only registers. The only 
program that can read these registers is the secure installer, which 
is protected by password or smart card. This installation process is 
similar to the one proposed by Kirovski et al. [20]. 

An attacker could discover the MISR secret keys if he/she 
manages to read the stored signatures, and compare them to the 
corresponding instruction blocks. To prevent successful read 
attacks, the result of the final MISR calculation is encrypted using 
AES, which is proved to be secure. The AES key is also stored in 
a read-only protected register and thus is hidden from attackers. 
With the signature length of 128 bits, a brute force buffer 
overflow attack would need to overflow the buffer up to 2128 times 

to find an instruction block that is accepted by the system. With 
the possibility of a buffer overflow each second of program 
execution, an attacker would need more than 1031 years for a 
successful attack. 

To achieve signature generation without any compiler support, an 
instruction block is defined as a block of k consecutive 
instructions, where k is fixed for a given computer system. Hence, 
the secure installation simply breaks up executable sections of a 
program binary to instruction blocks, and signs each block 
separately. If the last block is shorter than k, it is padded with 
randomly generated instructions that do not change the state of the 
processor. 
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Figure 2. Mechanism for trusted instruction execution. 

2.2 Secure Program Execution 
When an instruction is fetched from memory, the integrity of the 
corresponding instruction block needs to be verified, so the whole 
instruction block must be fetched. Consequently, the most suitable 
instruction block size is the size of the lowest level of the 
instruction cache (the cache that is the closest to memory), or the 
size of the fetch buffer in systems without the cache. Without loss 
of generality, in the rest of this paper, we focus on a system with 
separated data and instruction first level caches, and no second 
level cache. The instruction cache (I-cache) is a read-only 
resource, so the integrity is guaranteed for instructions already in 
the I-cache. Hence, signatures need to be verified only on I-cache 
misses.  

Signatures are verified using a dedicated hardware resource called 
the Instruction Block Signature Verification Unit (IBSVU, Figure 
3). The IBSVU encompasses registers for buffering instructions 
and signatures, support for AES decryption, MISR, and control 
logic. On an I-cache miss, the corresponding signature is fetched 
before instructions and temporarily stored in an IBSVU register 
called SIGM. Note that the signatures are not stored in the cache 

memory, since they are not needed for blocks already in the I-
cache.  

Fetched instructions pass through the MISR register with the 
linear coefficients that are equal to those used during secure 
installation. Concurrently with MISR calculation, the AES block 
decrypts the signature from the SIGM register. Hence, the 
decryption time is partially or completely overlapped with the 
instruction block fetch phase. The decrypted signature is 
compared to the final MISR calculation: If the two values match, 
the instruction block is properly installed and can be trusted. If the 
values differ, the instruction block includes injected code or it is 
not properly installed, so a trap to the operating system is asserted. 
The operating system then aborts the process whose code integrity 
cannot be guaranteed and possibly audits the event. 

An embedded computing system might be designed to run only in 
the secure execution mode. However, if an application does not 
accept input data from untrustworthy channels, a user might 
decide to install it without instruction block signatures. Such an 
application then executes in the ordinary, insecure mode. The 
information about the required execution mode could be added to 
the program header during installation. 
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Figure 3. Hardware support for signature verification.

2.3 Implementation Details 
We propose four techniques based on the common sign-and-verify 
mechanism: SIGCED, SIGCEK, SIGCTD, and SIGCTK. These 
techniques can be classified according to the signature placement 
in the code and signature handling after verification. Instruction 
block signatures can be stored before the corresponding 
instruction blocks, i.e., embedded in the code (SIGCED, 
SIGCEK). Another possibility is to store all signatures in a 
separate code section that we call the signature table (SIGCTD, 
SIGCTK). After verification, a signature can be discarded 
(SIGCED, SIGCTD), or kept in a decrypted form in a dedicated 
read-only resource called the signature cache – S-cache (SIGCEK, 
SIGCTK), shown with dotted lines in Figure 3. The S-cache can 
be accessed only by the IBSVU. The S-cache’s number of entries 
and organization differ from those of the I-cache in order to keep 
decrypted signatures even when the corresponding instruction 
blocks are evicted from the I-cache. The S-cache may reduce the 
overhead of run-time signature verification at the price of 
increased hardware complexity. The potential benefit of an S-
cache is twofold: first, if a signature is found in the S-cache, it 
does not have to be fetched from memory, thus saving both 
processor cycles and energy. Second, since signatures in the S-
cache are decrypted, an S-cache hit also avoid power overhead for 
AES decryption. However, a relatively large S-cache may 
significantly increase processor area, thus increasing total power 
dissipation.  

Figure 4 illustrates the modifications in the instruction fetch 
control flow for the SIGCED. The value of the program counter 
(PC) is used to access the I-cache. Note that without loss of 
generality, we assume that the I-cache is indexed by virtual 
addresses and it is virtually tagged. This is a frequent case in 

embedded processor caches, for example in Intel’s Xscale 
processor [2]. In the case of a cache hit, the instruction is fetched 
from the I-cache and there is no need for signature verification. In 
the case of a cache miss, we need to calculate the address of the 
instruction block to be fetched in the virtual memory. The 
instruction block address has changed because of signature 
embedding and added padding. The secure installation process 
adds padding to the code with embedded signatures so that no 
instruction block is split between two pages. When a correct 
virtual address is calculated, the translation look-aside buffer 
(TLB) is accessed for virtual to physical address translation. The 
signature is fetched before instructions and decrypted while 
instructions are being fetched. With the SIGCEK technique, an I-
cache miss is followed by the corresponding S-cache lookup. 
Hence, the signature needs to be fetched and decrypted only if it is 
not found in the S-cache.  

Figure 5 illustrates modifications in the instruction fetch control 
flow with SIGCTD. The address of a signature SigAddress is 
calculated in parallel with the I-cache lookup, and it must not be 
greater than the SigTableEnd, the address of the last signature in 
the signature table. With the SIGCTK technique, the signature 
fetch and decrypt phases may be avoided if a signature is found in 
the S-cache.  

The SIGCTD and SIGCTK techniques have both advantages and 
disadvantages over techniques with embedded signatures. Since 
signatures are stored separately from instructions, there is no need 
for padding and hardware address translation. On the other hand, 
signature fetch from memory requires a completely separate 
memory access. If the application code is relatively large, 
instructions and signatures may even be located on separate pages, 
so accesses to signatures may cause page faults. 
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2.4 Other Considerations 
With the proposed techniques, each dynamically linked library 
(DLL) has its own signature section or embedded signatures, so 
all code can be safely verified. The pointer to the signature section 
or the beginning of the code with embedded signatures can be 
loaded to the IBSVU when a particular library is dynamically 
linked. The IBSVU stores a fixed number of such pointers. When 
an application is dynamically linked with more DLLs than the 
IBSVU can hold, the overflow is handled by the operating system, 
and the overflow data is stored in memory. 

Another consideration is dynamically generated code, such as the 
code generated by the Java Just-In-Time compiler, which may 
never be saved in an executable file. Such code can be marked as 
non-signed and executed in the unprotected mode, or the code 
generator can generate the signatures together with the code. If the 
generator is trusted, its output should be trusted too. The same 
argument applies to the interpreted code. 

Although effective against all injection attacks of malicious code, 
the described signature verification mechanism cannot detect a 
return-into-libc attack. Signatures embedded in the code also do 
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not prevent an attack where the injected code consists of copies of 
regularly installed instruction blocks and corresponding signatures 
(a form of replay attack). However, the basic mechanism can be 
expanded to defend against such attacks. Replay attacks can be 
easily prevented if an instruction block signature is a function of 
not only instructions, but also the relative offset of that block from 
the beginning of the code: e.g., if the relative address of the first 
instruction in a block also passes through the MISR during secure 
installation. Unauthorized jumps into existing code can be 
prevented by embedding allowed target addresses in signatures, 
similar to branch address hashing [36]; unauthorized returns can 
be disabled by combining the signature verification with a form of 
the secure stack. 

3. EXPERIMENTAL METHODOLOGY 
A hardware-supported defense technique should not add 
significant overhead in hardware complexity, execution time, 
energy consumption, and memory requirements. A qualitative 
assessment indicates relatively low hardware complexity of 
techniques without the S-cache; the complexity of techniques with 
the S-cache depends on the S-cache size. We evaluate only 
implementations where the S-cache is smaller than the I-cache, so 
the complexity of these techniques is also moderate.  

The memory overhead is simply determined by comparing the 
sizes of the original code and the code with signatures. To 
emulate the secure installation process, we have developed a 
program that calculates signatures of instruction blocks in 
executable sections of programs in the ELF format, and modifies 
programs to include calculated signatures [27]. The signature size 
is 128 bits, a minimum size for AES encryption. We have chosen 
the MISR coefficients to be the coefficients of a primitive 
polynomial of the 128-th order.  

The performance overhead is evaluated using a modified 
SimpleScalar ARM simulator [4] that supports the SIGCED, 
SIGCEK, SIGCTD, and SIGCTK techniques. As a measure of 
performance we use the average number of cycles per instruction 
(CPI) and compare the CPI of the proposed techniques to the CPI 
of the Base configuration (without signature verification). 

In order to evaluate the proposed techniques’ sensitivity to 
different system configurations, we varied the I-cache line size (64 
and 128 bytes), the I-cache size (1, 2, 4, and 8KB), the width of a 
bus between memory and the I-cache (32 and 64 bits), and the 
speed of processor core relative to memory (fast and slow). The 
D-cache (data cache) and I-cache have the same size and 
organization. The values of other SimpleScalar simulator 
parameters are shown in Table 1.  

We assume that the AES decryption latency is 12 processor cycles 
for slow and 22 cycles for fast processor core, which are the 
speeds attainable with current optimized ASIC solutions [1]. 
Since a signature is always fetched first, signature decryption is 
finished before the corresponding instruction block is fetched, so 
the decryption latency is completely hidden in all evaluated 
system configurations. The address translation latency is one cycle 
for the SIGCED and SIGCEK techniques. For the SIGCEK and 
SIGCTK techniques, the S-cache has eight ways, random cache 
replacement policy, and twice as many entries as the 
corresponding I-cache. Note that an S-cache line contains only 
one signature of 16 bytes, whereas an I-cache line contains 64 or 

128 bytes. Hence, the size of an I-cache with n cache lines is 
approximately two or four times larger than the size of an S-cache 
with 2n entries. 

Table 1. SimpleScalar Simulator parameters 

Simulator parameter Value 
Branch predictor type Bimodal 
Branch predictor table size 128 entries, direct-mapped 
Return address stack size 8 entries 
Instruction decode bandwidth  1 instruction/cycle 
Instruction issue bandwidth  1 instruction/cycle 
Instruction commit bandwidth  1 instruction/cycle 
Pipeline with in-order issue True 
I-cache/D-cache 4-way, first level only 
I-TLB/D-TLB 32 entries, fully associative 
Execution units 1 floating point, 1 integer 
Memory fetch latency (first 
chunk/other chunks) 

12/3 cycles for slow core, 24/6 
cycles for fast core 

Branch misprediction latency 2 cycles for slow core,  
3 cycles for fast core 

TLB latency 30 cycles for slow core,  
60 cycles for fast core 

The energy overhead is determined by comparing the total energy 
spent by a system with the Base configuration to the energy spent 
with signature verification. The total energy is calculated as a 
product of power dissipation and execution time. Power 
dissipation is estimated using a modified Sim-Panalyzer ARM 
simulator [19], which models the effects of internal and external 
switching and leakage. For Sim-Panalyzer parameters related to 
power, we use values from a provided template file. The operating 
frequency is 200MHz, and the supply voltage is 3.3V. The 
technology parameters correspond to the 0.18µm process. The 
AES decryption block is modeled as a static logic block with 
10,000 gates. The S-cache is modeled as a regular cache structure.  

We use benchmarks from several benchmark suites for embedded 
systems: MiBench [17], MediaBench [22], and Basicrypt [6]. 
Table 2 lists benchmarks, their descriptions, and the number of 
executed instructions, while Table 2 gives the number of I-cache 
misses per 1000 instructions. 

Table 2. Benchmark description and characteristics 

Benchmark Description 
Executed 
instructions  
in millions 

blowfish_dec Blowfish decryption 544.0 
blowfish_enc Blowfish encryption 544.0 
cjpeg JPEG compression 104.6 
djpeg JPEG decompression 23.4 
ecdhb Diffie-Hellman key exchange 122.5 
ecdsignb Digital signature generation 131.3 
ecdsverb Digital signature verification 171.9 
ecelgdecb El-Gamal encryption 92.4 
ecelgencb El-Gamal decryption 180.2 
ispell Spell checker 817.7 
mpeg2_enc MPEG2 compression 127.5 
qsort Quicksort 737.9 
rijndael_dec Rijndael decryption 307.9 
rijndael_enc Rijndael encryption 320.0 
stringsearch String search 3.7 
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Table 3 .Number of I-cache misses per 1000 instructions. 

I-cache misses per 1000 instructions 
Cache line 64B Cache line 128B Benchmark 
1K 2K 4K 8K 1K 2K 4K 8K 

blowfish_dec 22.2 5.6 0.1 0.0 13.7 3.8 0.8 0.0
blowfish_enc 22.2 4.6 0.1 0.0 12.9 3.8 0.8 0.0
cjpeg 6.2 1.6 0.3 0.1 6.6 1.7 0.3 0.1
djpeg 8.4 4.0 1.1 0.2 6.2 2.9 1.0 0.2
ecdhb 20.3 6.0 2.3 0.1 14.6 6.2 1.6 0.2
ecdsignb 15.9 4.6 1.7 0.1 17.3 4.8 1.2 0.1
ecdsverb 21.3 5.2 2.0 0.3 16.9 5.3 1.5 0.3
ecelgdecb 26.2 0.3 0.0 0.0 22.4 2.5 0.0 0.0
ecelgencb 23.4 3.2 1.1 0.1 18.7 4.4 0.8 0.1
ispell 61.7 51.1 21.7 2.9 40.4 35.7 20.9 3.5
mpeg2_enc 1.8 0.8 0.3 0.2 2.1 0.6 0.3 0.1
qsort 44.2 29.4 22.2 5.4 32.8 21.1 15.3 7.4
rijndael_dec 70.6 68.6 68.0 6.6 41.6 40.3 37.6 9.9
rijndael_enc 73.7 70.5 68.0 8.1 42.6 39.4 38.1 11.2
stringsearch 55.3 35.4 12.9 3.7 38.0 24.3 10.6 1.9

 

All benchmarks but mpeg2encode use the largest possible 
provided input, and mpeg2encode uses the provided test input. 
Since signature verification is done only at an I-cache miss, the 
benchmarks are selected so that most of them have a relatively 
high number of I-cache misses for at least some of the simulated 
cache sizes.  

4. RESULTS 

4.1 Performance Overhead 
Figure 6 shows the performance overhead for a system with 64B 
I-cache lines, a 64-bit bus, and a slow processor core. The results 
indicate a low performance overhead for the SIGCED technique. 
With a 4K I-cache, the SIGCED technique increases CPI in the 
range 0.01-9.6%, with an average increase of 2.6%. Even with a 
very small 1K I-cache, the average CPI increase is 5.8%. The 
absolute CPI increase is very close to a linear function of the 
number of I-cache misses. 

The SIGCED overhead can be reduced if signatures are kept in 
the S-cache, i.e., with the SIGCEK technique. With a 4K I-cache, 
the SIGCEK CPI increase is in the range 0.01-1.5%, with an 
average increase of 0.5%. With smaller I-caches, the SIGCEK 
CPI increase is in the range 0.3-7.4% (1K) and 0.3-5.7% (2K). A 
low number of I-cache misses with an 8K I-cache enables the 
SIGCEK to virtually remove the performance overhead of 
signature verification. 

The SIGCTD technique always introduces more performance 
overhead than the SIGCED does, since signatures stored in the 
separate code section require an additional memory access. With a 
4K I-cache, the SIGCTD increase is in the range 0.02-21%, and 
the average increase is 5.7%. This difference is more significant 
with small caches: The average CPI increase for the SIGCTD is 
13% with a 1K I-cache and 8% with a 2K one.  

The performance overhead can be reduced with an S-cache, i.e., 
with the SIGCTK technique. With a 4K I-cache, the SIGCTK CPI 
increase is in the range 0-1.2%, and the average increase is 0.2%. 
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Figure 6. The ratio of CPI for the proposed techniques and the Base system. 
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Figure 7. Sensitivity of performance overhead to architectural parameters. 
 
Note that the overhead is less than with the SIGCEK technique; 
i.e., with this I-cache/S-cache size, the technique with a signature 
table performs better than does the technique with embedded 
signatures. This difference is due to the low number of S-cache 
misses with this configuration, on average less than 0.5 per 1000 
instructions. With the SIGCTK, there is no additional delay if the 
signature is found in the S-cache, whereas with the SIGCEK there 
is always delay due to the address translation. However, with 
smaller caches the SIGCTK is worse than the SIGCEK: The 
average CPI increase is 6% with a 1K I-cache, and more than 10% 
for five benchmarks.  

Figure 7 shows the sensitivity of the proposed techniques to 
processor core speed, memory bus width, and I-cache line size. 
The techniques with embedded signatures are less sensitive to the 
configuration parameters than the techniques with the signature 
table. For example, with a 2K I-cache the average CPI increase for 
SIGCED goes from 2% with 128B lines, 64-bit bus, and a slow 
core to 6% with 64B lines, 32-bit bus, and a fast core. The 
average CPI increase for the SIGCTD with the same I-cache 
varies from 4% to 10%. Techniques with an S-cache are also less 
sensitive than their counterparts without an S-cache, due to the 
lower CPI overhead. Note that performance overhead is higher 
with 64B than with 128B I-cache lines for all techniques, due to 
the larger number of I-cache misses (Table 2). The SIGCED 
technique remains an overall winner if the hardware budget does 
not allow for an S-cache. With a hardware budget insufficient for 
an I-cache increase but allowing for an S-cache, the SIGCEK 
technique has better overall performance than does the SIGCTK. 

4.2 Energy Overhead 
We evaluate the energy overhead of techniques with embedded 
signatures, since they have lower performance overhead. Figure 8 

shows the energy of a system with the SIGCED and SIGCEK 
techniques normalized to the energy of the Base system, with 64B 
I-cache line, 64-bit memory bus, and slow core. With a 4K I-
cache the SIGCED increases energy 0-27%, with an average 
increase of 8%; the SIGCEK technique reduces the average 
energy overhead to 3%. The increase in average power dissipation 
for the SIGCED is mainly due to the additional I/O activity when 
signatures are fetched from memory. Hence, both components of 
the SIGCED energy overhead are reduced with larger I-caches: 
The average energy increase is 16%, 10%, and 3%, for I-cache 
sizes of 1K, 2K, and 8K, respectively. This may not be the case 
with the SIGCEK technique. Whereas the S-cache may reduce the 
number of signature fetches and the corresponding performance 
and power penalties, it also increases the total die size and, 
consequently, the clock tree power dissipation. This is why the 
average SIGCEK energy increase with an 8K I-cache is larger 
than with a 4K one.  

4.3 Memory Overhead 
The memory overhead is an inherent characteristic of all proposed 
techniques, since instruction block signatures are added to the 
executable code sections. On average, the SIGCED technique 
with 16B signatures increases the size of the executable sections 
by 25.5% with 64B-instruction blocks, and by 14.3% with 128B-
blocks. The SIGCTD technique does not require padding, so the 
executable section increase is 25% with 64B cache lines and 
12.5% with 128B cache lines. An executable file typically 
includes non-executable code sections, so the proposed 
techniques add even less memory overhead to complete 
executable files: less than 7% with 64B cache lines, and less than 
4% with 128B lines. 
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Figure 8. System energy normalized to the Base case.

5.  RELATED WORK 
A broad spectrum of techniques has been proposed to counter 
code injection attacks. These techniques can be classified into 
static software based, dynamic software based, and techniques 
that include hardware support. Static software based techniques 
attempt to find possible security vulnerabilities in the code, so 
they can be corrected before the code is released. Completely 
automated tools for detection of security-related flaws must 
choose between precise but not scalable analysis and lightweight 
analysis that may produce a lot of false positives and false 
negatives [41]. The need for precise automated analysis can be 
alleviated if programmers add specially formulated comments 
about program constraints [14], but adding annotations can be as 
error prone as programming itself and puts additional burden on 
programmers. 

Dynamic software techniques aim to prevent successful code 
injection attacks or to significantly reduce the attackers’ chances 
for success. These techniques can be further classified into four 
groups. One group encompasses techniques that augment the code 
with various run-time checks [11, 16, 24]. Another group 
comprises techniques that monitor different aspects of program 
behavior, such as sequences of system calls or values of 
performance monitoring registers [32, 34]. The third approach is 
obfuscation: This group includes segment addresses and jump 
addresses, or the complete code can be scrambled, making it 
difficult for an attacker to succeed [5, 7, 10]. Finally, the fourth 
group includes “safe dialects” of language C, which restrict the 
use of unsafe constructs, perform static analysis and runtime 
checks, and use garbage collection or region-base memory 
management [21]. Dynamic software techniques often require 
recompilation, so they are not readily applicable to legacy code. 
Moreover, since these techniques increase the code size and the 
number of executed instructions, they may incur significant 
performance and energy overhead. 

 
Hardware-based defense techniques use architectural support to 
counter injected code. These techniques promise lower overhead 
in performance and energy than do solely software solutions. 
They also reduce overall defense cost: An architectural feature 
protects all programs executed by the processor, whereas most 
software-based techniques have to be applied to each program 
separately. However, hardware-based techniques are mainly 
attack-specific. For example, several researchers propose 
architectural support against stack smashing attacks, either by 
saving return addresses on a separate hardware stack [23, 33, 43, 
45], or by interpreting instructions in hardware so that return 
addresses are saved and restored from a “shadow” stack [9]. 
Various obfuscation techniques can also benefit from hardware 
support: from using special instructions to load/store encrypted 
code pointers [35, 38], to transforming instruction blocks 
according to the encrypted hash values of transformation 
invariants [20], to complete code encryption [18]. Another 
approach is to tag untrustworthy data that cannot be used for 
control transfers [12, 37]. For applications with intensive I/O 
tagging may have a significant performance and power overhead. 

The code integrity in run-time can be successfully protected if all 
instruction blocks are signed with a cryptographically secure 
signature. We did preliminary research on protection of basic 
blocks and cache blocks using signatures [28, 29]. The results of 
this research indicated that basic block signatures might add a 
significant overhead. Cache block signatures were evaluated with 
a less detailed performance simulator and without the S-cache. 
Independently, Kirovski et al. also propose to sign all cache 
blocks and to verify signatures in run-time [15]. This approach 
generates the signature for an instruction block using a chained 
Rijndael cipher: The instruction block is divided into sub-blocks, 
so that each cipher stage encrypts the result of XOR of a sub-
block and the output from the previous stage. Such encoding 
might be more cryptographically secure, but it introduces more 
power and performance overhead. The authors did not consider 
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the S-cache, and tried to reduce the impact of signature 
mechanism by code transformation.  

Signatures of instruction blocks of various granularity are also 
frequently used in fault-tolerant computing [26, 36, 42]. Unlike 
these techniques, our approach does not require a dedicated 
watchdog processor, and focuses rather on seamless integration on 
verification mechanism into existing processor architecture. 
Moreover, the signatures in our mechanism are also protected 
from read attacks. 

The ultimate protection of code integrity can be achieved if all 
instructions are encrypted, as in the eXecute Only Memory 
(XOM) framework [25]. However, complete code encryption by a 
cryptographically strong technique such as AES or DES 
considerably slows down execution. A fast on-time pad 
encryption has been proposed for XOM, where pairs of 
instructions are XORed with the corresponding encrypted address 
[44]. This approach might be vulnerable to attacks where an 
attacker is able to correctly guess the instructions in an instruction 
pair, which than can be replaced by a malicious pair.  

6. CONCLUSION 
This paper presents a hardware mechanism that provides complete 
run-time code integrity and evaluates four different 
implementations of that mechanism in terms of additional 
performance and energy overhead. The technique with embedded 
signatures that are discarded after verification has relatively low 
hardware complexity and a very low overhead across all 
considered configurations; this overhead can be further reduced 
with an additional processor resource, a signature cache. The 
techniques with signatures in a separate code section have higher 
overhead and slightly simpler implementation than the techniques 
with embedded signatures. 

Low overhead, protection from the whole class of code injection 
attacks, and applicability to already-compiled code make the 
proposed techniques a better choice for embedded systems than 
run-time checking techniques implemented solely in software. The 
signature verification mechanism also detects unintentional code 
changes that may happen in error-prone environments. 

In future work, performance overhead for all signature verification 
techniques might be reduced with prefetching of code and 
signatures. The signature verification mechanism can be expanded 
to provide defense from other types of attacks, such as replay 
attacks and return-into-libc. 
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