Caching in Distributed Systems

% In bus-based
shared-memory
multiprocessors,
several techniques
reduce cache misses
and bus traffic,

the key obstacles to

high performance.

Aleksandar Milenkovic
University of Belgrade

Achieving High
Performance in Bus-

Based Shared-Memory

Multiprocessors

us-based shared-memory multiprocessors, or symmetric mul-

tiprocessors, are widely used in small- to medium-scale paral-

lel machines of up to 30 processors. Their popularity has

greatly increased because almost all modern microprocessors
support cost-effective bus-based SMPs, making them the dominant
architecture in parallel machines today.!

In bus-based SMPs, cache misses and bus
traffic pose key obstacles to high perfor-
mance. To overcome these problems, sev-
eral techniques have been proposed. Cache
prefetching, read snarfing, software-con-
trolled updating, and cache injection reduce
cache misses; migrate-on-dirty, adaptive
migratory detection, load-exclusive instruc-
tion, and exclusive prefetching reduce inval-
idation bus traffic.

SMP performance

Private caches are essential for reduc-
ing bus congestion and for coping with
memory reference latency in bus-based
SMPs. Snooping cache coherence proto-
cols can effectively keep shared data coher-
ent because they use the simple and effec-
tive broadcast capability of a single bus.?

Cache coherence protocols fall into two
broad classes—write-invalidate and write-
update —depending on whether a write to
a shared cache block invalidates or updates
all other copies of the block.? Although a
write-update protocol produces fewer
cache misses, the bus’s higher write traftic
often decreases overall performance.*
Therefore, almost all commercial ma-
chines use write-invalidate as the standard
protocol, preserving precious communi-
cation bandwidth.’

However, the widening gap between
processor and memory speeds, the high
contention on the bus, and data sharing in
parallel programs cause two performance
bottlenecks: large read and write cache-
miss latencies and bus traffic. Although
appropriate write buffers and relaxed mem-
ory consistency models can often hide

36

1092-3063/00/$10.00 © 2000 IEEE

IEEE Concurrency

Table 1. Techniques for reducing read misses and invalidation bus traffic.

TECHNIQUE

EFFECTS ON READ MISSES

EFFECTS ON BUS TRAFFIC

CONTROLLED BY

Cache prefetching

Read snarfing

Software-controlled updating

Cache injection

Decrease: cold and replacement Increase
Decrease, no change,

or increase: coherence

Decrease: coherence Decrease

Decrease: coherence

Decrease: cold, coherence, and
replacement

Hardware or software

Hardware

Decrease, no change, or increase Software

Decrease, no change, or increase Software

Migrate-on-dirty Increase or no change: coherence Decrease, no change, or increase Hardware
Adaptive migratory detection No change Decrease Hardware
Load-exclusive instruction No change Decrease Software
Exclusive prefetching Increase or no change: coherence Decrease Software

Table 2. Hardware needed to reduce read misses and invalidation bus traffic.

TEcHNIQUE

ADDITIONAL BITS PER CACHE LINE

ADDITIONAL MECHANISMS PER CACHE

ADDITIONAL INSTRUCTIONS

Software-controlled None
cache prefetching

Hardware-controlled
cache prefetching

Read snarfing None
Software-controlled Private bit
updating

Cache injection None
Migrate-on-dirty None

Adaptive migratory Two bits
detection (three new states)
Load-exclusive None

instruction

Exclusive None

prefetching

Several bits, depending
on particular scheme

Write-buffer or additional prefetch buffer for
buffering of outstanding prefetch requests

Write-buffer or additional prefetch buffer for
buffering of outstanding prefetch requests

and

hardware for address pattern detection and
prefetch scheduling

Negligible modification of the snooping
mechanism

Write-buffer or additional update buffer for
buffering of outstanding update requests

Injection table and negligible modification of

Prefetch

None

None

Update and
store-update

OpenWin, closeWin,

the snooping mechanism

update, and
store-update

Negligible modification of the bus control unit None

Modification of the snooping mechnism and None

migratory line on the bus

None

Write-buffer or additional prefetch buffer for

Load-exc

Prefetch-exc

buffering of outstanding prefetch-exclusive

requests

write-miss latency,® read-miss latency still
remains. Consequently, achieving high
performance depends on reducing the
number of read misses and bus traffic.
Several techniques based on snooping
write-invalidate cache coherence proto-
cols can reduce read misses and bus traffic
in bus-based SMPs. As Table 1 shows,
these techniques vary according to their

effect on read misses, their effect on bus
traffic, and whether software or hardware
controls them. Table 2 shows additional
hardware needed to support the tech-
niques, compared to the basic SMP, which
assumes use of lockup-free caches and the
Illinois cache-coherence protocol.?
Cache prefetching, read snarfing,
software-controlled updating, and cache

injection all reduce read misses, which
are classified as

® cold misses, which occur when the
processor has never referenced the
requested block before;

o coberence misses, which occur when the
processor references the block but
another processor has written to it; or

July-September 2000

37

. 2 P1 P2 PO P1
store A 7 store ATy of a
—————
load A load A
kel an I .
o
i RREE) 22 load A
Time Time 3]
L L
(a) (b)
PO P1 P2 P2
store A _ store-up A
load A
IQ
1
Time L £ Time load A _
(c) - (d) -
PO P1 P2 .
store A[J/] OpenWin A store-up A OpenWin A

load A

OpenWin A

l

Ll road R Time

(e) - (f) -
[Execute Modified [-]Not present Read bus request

m Stall Shared Invalid Invalidation bus request

load A

Update bus request

Figure 1. Read-miss reduction techniques: (a) base, (b) cache prefetching, (c) read snarfing, (d) software-controlled
updating, (e) injection on first read, and (f) injection on update.

* replacement misses, or all other misses,
which result from replacements due
to the cache’s limited size and asso-
ciativity.

Figure 1 illustrates how each technique
works in a simple producer-consumer
sharing pattern: Processor PO produces
the data and processors P1 and P2 con-
sume it.

Migrate-on-dirty, adaptive migratory
detection, load-exclusive instruction, and
exclusive prefetching reduce invalidation
bus traffic, an important contributor to
bus delays, especially in applications
where migratory sharing prevails. In
migratory sharing, many processors read
and modify a block—but only one
processor at a time. Unfortunately, if a
processor reads a migratory block before
it is written, the common write-invali-
date protocol requires two separate bus
transactions: a read request with block
transfer and an invalidation request.

These techniques merge ownership
acquisition with read-miss service, pro-
viding two benefits: They eliminate
invalidation traffic under both release and
sequential consistency, and they reduce
write latency under sequential consis-
tency. Figure 2 illustrates how each tech-
nique works in simple migratory sharing:
Processor PO initially modifies the block
in its cache, and processor P1 reads and
then writes the same block.

Cache prefetching

Cache prefetching is a common tech-
nique for hiding high memory latency in
both multiprocessors and uniprocessors.
It predicts which blocks, currently miss-
ing in the cache, will be referenced in the
future and brings them into the cache
prior to references triggering the misses.
The returned block is not bound; it is
still subject to invalidations by the cache
coherence mechanism.

Cache prefetching can be either hard-
ware- or software-controlled. Hardware-
controlled cache prefetching is based on
data access regularity in applications,
assuming that data accesses in the near
future will follow detected patterns.
There are many hardware prefetching
schemes—such as fixed and adaptive
sequential prefetching and stride pre-
fetching.” Although these techniques
relieve the programmer or compiler of
deciding what and when to prefetch, the
hardware’s knowledge of data access pat-
terns limits their effectiveness. Addi-
tionally, except for the simplest sequen-
tial prefetching, all proposed schemes
require complex hardware support,
which is not yet found in microproces-
sors and multiprocessors.!

However, almost all modern micro-
processors have instructions that support
prefetching, so I concentrate on soft-
ware-controlled cache prefetching. Here,
a processor executes a special prefetch

38

IEEE Concurrency

instruction that moves a data block—that
the processor is expected to use—into
the cache before it is actually needed.®
Prefetch instructions are nonblocking:
The processor proceeds with program
execution during fetching of the
prefetched data. In the best case, the data
block arrives at the cache before the
processor needs it, and the load instruc-
tion results in a hit, as shown in proces-

sor P2 of Figure 1b. Cache prefetching
can be useful even if the prefetch is not
issued early enough, in which case the
memory latency is only partially hidden,
as shown in processor P1 of Figure 1b.
Software-controlled prefetching re-
quires both hardware and compiler sup-
port. Hardware support includes pre-
fetch instructions and a cache, which
allows buffering of the prefetch requests

in the write buffer or in an additional
prefetch buffer. For compiler support,
several compiler algorithms have been
proposed to support software-controlled
prefetching for applications based on
numerical arrays® and on recursive data
structures.’

Dean Tullsen and Susan Eggers
examined the potential for software-con-
trolled cache prefetching in bus-based

PO P1 PO P1
-/ -/
load A load A
I I
store A store A
/ /
Time Time
(a) (b)
PO P1 PO P1 P2
load A load A
|
l l
Time store A store A
Time | load A
j@)
-
store A
L
(c) (d)
PO P1 PO P1
-/ PEScxR
load-ex A load A
S E
£
store A
store A
Time Time -
(e) (f)
O Execute [-Not present Migratory-dirty
m Stall Invalid Read bus request
[M]Modified Shared-2 Invalidation bus request
Shared Migratory-clean Read bus exclusive request

Figure 2. Invalidation bus traffic reduction techniques: (a) base under sequential consistency, (b) base under release

consistency, (c) migrate-on-dirty, (d) adaptive detection scheme under release consistency, (e) load-exclusive instruction,

and (f) exclusive prefetching.

July-September 2000

39

SMPs.!? Their simulation was based on
traces collected from a real parallel
machine with 12 processors. To aug-
ment each reference resulting in a miss,
they inserted a prefetch instruction in
the instruction stream some distance
ahead of that reference. The modeled
architecture had 32 Kbytes of direct-
mapped private caches with a 32-byte
block size and the Illinois coherency pro-
tocol, a 16-deep prefetch buffer, and a
split-transaction bus with a round-robin
arbitration scheme.

Surprisingly, the study found ineffec-
tive cache prefetching despite an as-
sumed high memory latency of 100
processor cycles. For several architecture
variations, speedups for five parallel pro-
grams were no greater than 39%, and
degradations were as high as 7%. The
following describes the main reasons
for this:

* Prefetching increases bus traffic, which
can resultin performance degradation
due to the bus-based architecture’s
strong sensitivity to bus traffic changes.

¢ Cache prefetching results in code
expansion from both the prefetch
instructions and code restructuring
techniques used to support prefetch
algorithms.

* Cache prefetching can adversely affect
data sharing, especially in cases where
prefetching initiates too early and
another processor’s write invalidates a
prefetched block before it is used.

* Current prefetching algorithms are
notvery effective in predicting coher-
ence misses. Actually, cache misses
caused by data sharing represent the
biggest challenge for designers, espe-
cially as caches become larger and
coherence misses dominate the per-
formance of parallel programs.

In their follow-up article, Tullsen and
Eggers explored reducing these prob-
lems using architectural techniques and
heuristics such as victim caching, com-
piler-based shared-data restructuring,
and special prefetch algorithms for
shared data, but limited effectiveness of
cache prefetching in bus-based SMPs
remains an issue.!!

Read snarfing

Read snarfing is based on the heuris-
tic that all invalid blocks will be needed
in the future.!” As shown in Figure 1c, a
data block transferred on the bus as a
read response not only updates the node
that requested it but also updates all
other caches that have the block in the
invalid state. Typically, one processor
writes to a block, and a large number of
processors read from it. Here, only one
read request will be transferred on the
bus. Read snarfing is hardware-based
and adds negligible extra complexity to
the cache snoop mechanism.

Craig Anderson and Jean-Loup Baer
explored read snarfing in an SMP with
the Illinois protocol using an instruction-
level simulator and six applications with
different reference behaviors.”® The sim-
ulated architecture had

* two-way set-associative 128-Kbyte
private caches with dual-ported tag
directories;

® 2 64-bit bus width;

* an assumed 10-cycle main-memory
latency;

* eitheran 8- or 64-byte block size; and

* 1,4, 16, and 32 processors.

As the principal metrics, they used the
speedup, the number of data bytes trans-
ferred during execution, and the num-
ber of bus transactions. They found that
read snarfing improves performance by
30% to 67% for 32 processors with 64-
byte cache blocks for three applications.
For 8-byte cache blocks, performance
improves up to 10%. Also, read snarfing
reduces the number of bytes transferred
—by up to 67% for 64-byte cache blocks
—and reduces the number of bus trans-
actions—by up to 70%. As the number
of processors increases, read snarfing’s
effectiveness increases; it is poor in sys-
tems with less than 16 processors.

Read snarfing’s main drawback is that
its effectiveness highly depends on cache
size. When cache size is relatively small,
invalid cache blocks will probably be dis-
placed from the cache, so read snarfing is
not applicable. Although read snarfing is
applicable when there are multiple data
consumers, it is not applicable for other

data sharing patterns, such as migratory
sharing and 1P-1C (1 producer-1 con-
sumer) situations. If there is dynamic
change in a block’s sharing pattern, read
snarfing can hurt performance.

Software-controlled
updating

Software-controlled updating further
improves read snarfing. With this tech-
nique, a data producer initiates a block-
update bus request by executing an
update instruction after data production
is finished. During this bus request, as
shown in Figure 1d, all caches holding
an invalid block copy are updated. This
technique assumes the existence of an
update instruction, which carries a block
address and generates a block update
transaction on the bus if the block is
modified but does nothing if the block is
not modified.

Jonas Skeppstedt and Per Stenstrom
proposed a compiler algorithm that uses
classic dataflow analysis techniques to
insert update instructions where each
modified memory block is written for the
last time.!* Instruction overhead due to
inserted update instructions can be
almost completely eliminated by replac-
ing a store with a store-update instruc-
tion, which first performs a store and
then an update. When the static inser-
tion of an update instruction is success-
ful, coherence misses and traffic can be
reduced if other processors subsequently
access the block.

However, if the block is not actively
shared, update transactions waste bus
traffic and increase the processor read
stall time under sequential consistency.
To mitigate this problem, Fredrik
Dahlgren and his associates proposed a
dynamic heuristic for detecting actively
shared memory blocks.!’ If a memory
module provides a block fetched into the
cache on a load miss, the block is con-
sidered effectively private in the cache
and an additional cache block status bit,
denoted as a private flag, is set. For such
blocks, update (or store-update) instruc-
tions have no effect.

The second problem is when the
processor that caused the block update

40

IEEE Concurrency

modifies the block again, with no inter-
vening access by another processor. To
mitigate this problem, update requests
can be delayed by temporarily inserting
them in the write buffer or in an addi-
tional update buffer instead of immedi-
ately updating the block to other caches.
Thus, if the processor continues to write
to the block, it is still dirty in the cache
and the update buffer is flushed at the
synchronization point.

In an experimental analysis of soft-
ware-controlled updating based on an
execution-driven simulation, Dahlgren,
Skeppstedt, and Stenstrom assumed a
bus-based SMP with eight processors
connected by a split-transaction bus.!
Each processor had

* its own private 4-Kbyte direct-mapped
write-through first-level cache,

* aninfinitely large write-back second-
level cache, and

¢ write-back buffers that allow use of
release consistency potentials.

The cache coherence protocol was Illi-
nois, cache line size was 32 bytes, and
data bus width was 64 bits.

They compared the number of read
misses and bus traffic for the base sys-
tem, for the system with read snarfing,
and for the system with software-con-
trolled updating. They found that soft-
ware-controlled updating eliminated
almost all coherence misses for three of
four considered applications, but read
snarfing provided relatively small im-
provements. However, bus traffic
increased for all applications from 4% to
108%. Bus traffic can be considerably
reduced by buffering update instructions
in a separate update buffer, but in the
three applications, it was still higher than
in the base system.

Unlike read snarfing, software-
controlled updating reduces the num-
ber of read misses for blocks that exhibit
a 1P-1C sharing pattern. However,
software-controlled updating is based
on read snarfing. Small caches and
dynamic sharing-pattern changes can
limit this approach’s effectiveness, and
useless update bus requests increase bus
traffic.

Cache injection

Cache injection tries to overcome
some of the other techniques’ short-
comings, such as

¢ the minor effectiveness of read snarf-
ing and software-controlled updating
in SMPs with relatively small private
caches,

¢ the high contention on the bus in
cache prefetching and software-
controlled updating, and

¢ the minor effectiveness of cache
prefetching in reducing coherence
misses.

In cache injection,'® a consumer pre-
dicts its future needs for shared data by
executing an openWin instruction,
which does not initiate any bus transac-
tion but only stores the first and last
addresses of a range of consecutive cache
blocks—an address window—in a spe-
cial local injection table. There are two
main scenarios when cache injection
could happen: during the bus read trans-
action—injection on first read—or dur-
ing the software-initiated update bus
transaction—injection on update.

Injection on first read is always applic-
able when there is more than one con-
sumer—for read-only shared data or for a
1P-MC (1 producer-multiple consumers)
sharing pattern. Each consumer initializes
its local injection table according to its
future needs. When the first consumer
executes a load instruction specifying the
shared data, it sees a cache miss and initi-
ates a read bus transaction. During this
transaction, each cache controller snoops
the bus, and if there is an injection hit, the
cache controller stores the block into its
cache, as shown in Figure 1e. For multiple
consumers, only one read bus transaction
is needed to update all consumers if they
all have initialized their injection tables
before this transaction.

Injection on update is applicable when
shared data exhibit 1P-1C, 1P-MC, or
migratory sharing patterns. In these sce-
narios, each consumer also initializes its
injection table. After data production,
the producer initiates an update bus
transaction by executing an update
instruction. During this transaction, all

consumers snoop the bus, and if they
find an injection hit, they catch the data
block from the data bus and store it into
their caches, as shown in Figure 1f.
Cache injection may result in cache
replacement if there is a conflict between
the injected data and the current work-
ing set in the cache.

Hardware support for cache injection
includes an injection table, proposed
instructions, and a negligible modification
of the bus control unit. The injection table
is implemented as part of the cache con-
troller. Each entry includes two address
fields—Laddr and Haddr, which respec-
tively define the first and last addresses of
an address window—and a valid bit /. The
proposed openWin instruction initializes
an entry in the injection table by setting
the valid bit and putting Laddr and Haddr
values in the corresponding entry fields. If
only one cache block should be injected,
Laddr equals Haddr.

Because an entry’s initialization
requires two address fields, they can be
created with two separate instructions—
openWinL, which initialize Laddr, and
openWinH, which initialize Haddr—or
by using an instruction which specifies
Laddr and the number of consecutive
cache blocks. Instruction closeWin
checks the injection table, and if there is
an open window with a specified Laddr,
it closes that window by resetting the
valid bit. The compiler and/or pro-
grammer are responsible for inserting
openWin and closeWin instructions at
the consumer side and for inserting
update and store-update instructions at
the producer side.

Performance analysis of cache injec-
tion shows that this scheme, compared
to read snarfing and software-controlled
updating, can further cut the number of
read misses and consequently bus traf-
fic, as explained in the sidebar “Perfor-
mance evaluation of cache injection.”

Migrate-on-dirty

Migrate-on-dirty acquires an exclu-
sive copy of the block when the block is
exclusive or modified in another cache.
Thus, copying the block to P1 and inval-
idating P0’s copy are done in one bus

July-September 2000

41

Performance evaluation of cache injection

We compared the number of read
misses and the amount of bus traffic for
the base system, the system with read
snarfing, the system with software-con-
trolled updating, and the system with
cache injection using Limes, a tool for
program-driven shared-memory multi-
processor simulations. For the workload,
we used four parallel test applications
well suited for demonstrating various
data-sharing patterns—PC (1 producer—
multiple consumers), MM (read only,
multiple consumers), MS (migratory
sharing), and Jacobi (1 producer—1 con-
sumer)—and four applications from
the Splash-2 suite—Radix, FFT, LU, and
Ocean.! They are all written in C using
ANL macros to express parallelism and
compiled by the Gnu C compiler with
the optimization flag -02. We hand-
inserted proposed instructions for soft-
ware-controlled updating and cache
injection support into the applications.

The modeled architecture is a bus-
based SMP with 16 processors that uses
the lllinois write-back invalidate cache
coherence protocol. The bus supports
split transactions and uses a round-
robin arbitration scheme. We assumed
asingle-issue, in-order processor model

with blocking reads. Processors execute
a single cycle per instruction. Each
processor includes only first-level cache
memory. Instructions always hit into the
cache, and a cache hit is solved without
penalty. The relevant system parame-
ters are a 32-byte cache line size, 64-bit
data bus width, 2-pclk (processor clock)
snoop cycle, 32-byte write-back buffer
size, and an assumed 20-pclk memory
latency. We used a 128-entry injection
table in the evaluation.

Figure A shows the number of read
misses and the bus traffic for parallel
applications, normalized to the base
system, when the caches are relatively
small (left) and relatively large (right).
For all applications, cache injection out-
performs read snarfing and software-
controlled updating, except for Jacobi,
where software-controlled updating
performs as well as cache injection. The
effectiveness of cache injection rela-
tive to read snarfing and software-
controlled updating is higher in the sys-
tem with relatively small caches. Invalid
blocks are frequently displaced from
the cache, in which case snarfing is not
applicable (applications PC, Radix, and
Ocean). Next, cache injection can be

effective in reducing cold misses when
there are multiple consumers of shared
data (applications MM and LU), but
read snarfing can eliminate only coher-
ence misses. Last, software control of
the time window during which a block
can be injected provides flexibility and
adaptivity to different data-sharing
patterns (applications MS and FFT).

Additional experiments, which varied
architectural parameters, showed that
cache-injection efficiency increases with
the number of processors in the system,
with cache memory size, and with mem-
ory latency. When the number of proces-
sors increases, the percentage of shared
data and the number of sharers in-
crease. Hence, the benefit of injection
increases due to lowering the overall
miss rate and reducing the bus traffic.
Larger caches reduce the probability of
collision between the injected data and
the current working set. If the memory
read cycle time is longer, we gain more
by reducing the read stall time.

Reference

1. S.C. Woo et al., “The SPLASH-2 Pro-
grams: Characterization and Method-
ological Considerations,” Proc. 22nd
Ann. Int’l Symp. Computer Architecture,
IEEE Computer Soc. Press, Los Alamitos,
Calif., 1995, pp. 24-36

120 120
100 100
£ 80 =)
e e
=60 260
o o
£ 40 <2 40
= =

20 20

" | ol 1 1. Hin

BSUI BSUI BSUI BSUI BSUI BSUI BSUI BSUI BSUI BSUI BSUI BSUI BSUI BSUI BSUI BSUI

(1) PC MM MS Jacobi Radx FFT LU Ocean (2) PC MM MS Jacobi Radix FFT LU Ocean
120 120

100 100
o 80 » 80
= =
= 60 = 60
S 49 2 40

20 20

1

0BSUI BSUI BSUI BSUI BSUI BSUI BSUI BSUI 0BSUI BSUI BSUI BSUI BSUI BSUI BSUI BSUI
(3) PC MM MS Jacobi Radix FFT LU Ocean (4) PC MM MS Jacobi Radix FFT LU Ocean

Figure A. Number of read misses (1-2) and bus traffic (3—-4) relative to the base system. Cache_size = 64/128
Kbytes (128 Kbytes for FFT, LU, Ocean) (1, 3), and Cache_size = 1024 Kbytes (2, 4). (B = base system; S = read
snarfing; U = software-controlled updating; | = cache injection.)

42

IEEE Concurrency

transaction, rather than two, as shown in
Figure 2c. If the first access from P1 is a
write, both base protocol and migrate-
on-dirty incur the same overhead
because they handle write misses in the
same way. However, it is clear that this
approach can increase the number of
read misses and consequently bus traffic
for sharing patterns other than migra-
tory sharing.

An experimental study by Dahlgren
and his associates showed that for appli-
cations in which migratory sharing pre-
vails a migrate-on-dirty policy reduces
bus traffic in two out of four considered
applications by 25% and 33%."° How-
ever, in two other applications having
a producer-consumer sharing pattern,
migrate-on-dirty heavily increases the
number of read misses—up to five times
—and bus traffic—up to three times.

Adaptive migratory
detection

Although the base write-invalidate
protocol, based on a replicate-on-read-
miss policy, is not appropriate for migra-
tory data, a migrate-on-read-miss policy
performs poorly for other data-sharing
patterns. It motivated Alan Cox and
Robert Fowler to propose an adaptive
migratory detection scheme in which the
two policies coexist.!” In this scheme, a
block is classified as migratory if one of
the following conditions is true:

® one processor has written to the
block, and thus made it dirty, and
another processor first reads and then
writes to it or

® one processor has written to the
block, and thus made it dirty, and

another processor writes to it.

If a block is classified as migratory, the
adaptive protocol expects that the block
will be modified at every processor it visits.
Thus, if the block is not modified before it
moves to another processor, this shows
that the block is not currently migratory.
To support an adaptive protocol, Cox
and Fowler extended the Illinois protocol
with three new states—migratory-clean,
migratory-dirty, and shared-2—and a

migratory line on the bus. A new shared-
2 state means that no more than two
copies of the block exist. The only transi-
tions into shared-2 come from the exclu-
sive and modified states in response to a
read request from the bus, as shown in
Figure 2d. On an invalidation request
from the bus to a block in state shared-2,
the block is invalidated and the migratory
line activated, and then the writing node
changes the state from shared to migra-
tory-dirty. When another node reads this
block, it will get an exclusive copy of the
block, and because it has not yet written
to it, the state of the block will be migra-
tory-clean. When that node writes to the
block, the state changes to migratory-
dirty. The aggressive protocol also
switches from the replicate-on-read-miss
policy to the migrate-on-read-miss policy
if a processor has a write miss to a block
with a single cached copy in either the
exclusive or modified states. However, if
another processor requests the block while
itis still in the migratory-clean state, it will
be reclassified as not migratory.

Dahlgren and his associates showed
that adaptive migratory detection reduces
bus traffic for three out of four applica-
tions by 21% to 31%.% This technique
proves almost as efficient as migrate-on-
dirty in reducing invalidation bus traffic
in applications where migratory sharing is
dominant, but it is more robust because it
does not generate many useless misses for
other data-sharing patterns.

Load-exclusive
instruction

Another technique assumes the exis-
tence of a load-exclusive instruction,
which forces the cache to obtain an
exclusive copy of the requested block if
the load misses in the cache, as shown in
Figure 2e. Skeppstedt and Stenstrom’s
compiler algorithm uses dataflow analy-
sis at the intraprocedural level to recog-
nize each load instruction, followed with
a store instruction to the same address,
and replaces the load instruction with a
load-exclusive instruction. !

Dahlgren and his associates showed
that this approach reduces bus traffic by
3% to 31%, and proves as effective as the

previous two techniques in applications
exhibiting significant migratory shar-
ing.” This robust approach does not
increase the number of read misses for
nonmigratory sharing patterns.

Exclusive prefetching

In software-controlled cache prefetch-
ing, a prefetched migratory block is in the
shared state. A write to the block causes
the invalidation bus request and stalls the
processor under sequential consistency.
However, this can be avoided with exclu-
sive prefetching of all the shared data that
will be written, as shown in Figure 2f.

To support exclusive prefetching, a
prefetch-exclusive instruction is needed.
This instruction prefetches the data into
the cache in exclusive mode, invalidat-
ing copies in other caches. Todd Mowry
developed an extension of the base com-
piler algorithm for prefetching that sup-
ports exclusive prefetching.®

Dean Tullsen and Susan Eggers
found that exclusive prefetching is inef-
fective at reducing execution time for
four of the five applications.!! The prob-
lem of unnecessary invalidate operations
caused by prefetching write accesses was
only evident in one application, where
exclusive prefetching reduced execution
time by 2%.

MODERN MICROPROCESSORS in-
clude support for software-controlled
prefetching, but other techniques out-
lined in this article can further improve
performance at minimal cost. Combin-
ing software-controlled cache prefetch-
ing and cache injection—which in a way
encompasses the other two considered
techniques, read snarfing and software-
controlled updating—seems especially
promising. Further combinations that
incorporate invalidation bus traffic
reduction techniques, such as exclusive
prefetching and adaptive migratory
detection, could significantly improve
performance and allow bus-based SMPs
with more processors. Much can be

July-September 2000

43

How to Reach

IEEE Concurrency

Writers

For detailed information on sub-
mitting articles, write for our edi-
torial guidelines (concurrency@
computer.org), or access
computer.org/concurrency/

edguide.htm.

Letters to the Editor
Send letters to

Shani Murray
IEEE Concurrency
10662 Los Vaqueros Circle
Los Alamitos, CA 90720

Please provide an e-mail address
or daytime phone number with
your letter.

Subscription Change of Address

Send change-of-address requests
for magazine subscriptions to
address.change@ieee.org. Be
sure to specify IEEE Concurrency.

Membership Change of Address

Send change-of-address requests
for the membership directory to
directory.updates@computer.org.

Missing or Damaged Copies

If you are missing an issue or you
received a damaged copy, contact
membership@computer.org.

Reprints of Articles

For price information or to order
reprints, send e-mail to
concurrency@computer.org or fax

+1 714 821 4010.

Reprint Permission

To obtain permission to reprint
an article, contact William Hagen,
IEEE Copyrights and trademarks
Manager, at whagen@ieee.org.

gained from exploring the effectiveness
of these combined techniques both in
state-of-the-art and future bus-based

SMPs. %

References
1. D. Culler, J.P.Singh, and A. Gupta, Parallel
Computer Architecture: A Hardware/ Soft-
ware Approach, Morgan Kaufmann, San
Francisco, 1998.

2. M. Tomasevic and V. Milutinovic, Tutorial
on the Cache Coherence Problem in
Shared-Memory Multiprocessors: Hard-
ware Solutions, |IEEE Computer Society
Press, Los Alamitos, Calif., 1993.

3. M. Tomasevic and V. Milutinovic, “Hard-
ware Approaches to Cache Coherence in
Shared Memory Multiprocessors, Part I,”
IEEE Micro, Vol. 14, No. 5, Oct. 1994, pp.
52-59.

4. S.J. Eggers and R.H. Katz, “Evaluating the
Performance of Four Snooping Cache
Coherence Protocols,” Proc. 16th Ann. Int’|
Symp. Computer Architecture, IEEE Com-
puter Soc. Press, Los Alamitos, Calif., 1989,
pp. 2-15.

5. V. Milutinovic, Microprocessors and Mul-
timicroprocessor Systems, John Wiley &
Sons, New York, 2000.

6. J. Protic, M. Tomasevic, and V. Milutinovic,
Distributed Shared Memory: Concepts and
Systems, |EEE Computer Soc. Press, Los
Alamitos, Calif., 1998.

7. F. Dahlgren, M. Dubois, and P. Stenstrom,
“Sequential Hardware Prefetching in
Shared Memory Multiprocessors,” IEEE
Trans. Parallel and Distributed Systems,
Vol. 6, No. 7, July 1995, pp. 733-746.

8. T. Mowry, Tolerating Latency through
Software-Controlled Data Prefetching,
doctoral dissertation, Computer Science
Dept., Stanford University, Stanford, Calif.,
1994.

9. T. Mowry and C. Luk, “Predicting Data
Cache Misses in Non-Numeric Applications
Through Correlation Profiling,” Proc. 30th
Ann. Symp. Microarchitecture, IEEE Com-
puter Soc. Press, Los Alamitos, Calif., 1997,
pp. 314-320.

10. D. Tullsen and S. Eggers, “Limitations on
Cache Prefetching on a Bus-Based Multi-
processor,” Proc. 20th Ann. Int’l Symp.
Computer Architecture, IEEE Computer
Soc. Press, Los Alamitos, Calif., 1995, pp.
392-403.

11. D. Tullsen and S. Eggers, “Effective Cache
Prefetching on Bus-Based Multiproces-
sors,” ACM Trans. Computer Systems, Vol.
13, No. 1, Feb. 1995, pp. 57-88.

12. L. Rudolph and Z. Segall, “Dynamic Decen-
tralized Cache Schemes for MIMD Parallel
Processors,” Proc. 11th Ann. Int’l Symp.
Computer Architecture, IEEE Computer
Soc. Press, Los Alamitos, Calif., 1984, pp.
340-347.

13. C. Anderson and J.-L. Baer, “Two Tech-
niques for Improving Performance on Bus-
Based Multiprocessors,” Proc. First Int’l
Symp. High Performance Computer Archi-
tecture, IEEE Computer Soc. Press, Los
Alamitos, Calif., 1995, pp. 256-275.

14.). Skeppstedt and P. Stenstrom, “A Com-
piler Algorithm that Reduces Read Latency
in Ownership-Based Cache Coherence Pro-
tocols,” Proc. Int’l Conf. Parallel Architec-
tures and Compilation Techniques, |EEE
Computer Soc. Press, Los Alamitos, Calif.,
1995, pp. 69-78.

15. F. Dahlgren, J. Skeppstedt, and P. Sten-
strom, “Effectiveness of Hardware-Based
and Compiler-Controlled Snooping Cache
Protocol Extensions,” Proc. High-Perfor-
mance Computing, Springer-Verlag, Ber-
lin, 1995, pp. 87-92.

16. A. Milenkovic and V. Milutinovic, “Cache
Injection on Bus-Based Multiprocessors,”
Proc. Workshop on Advances in Parallel
and Distributed Systems, IEEE Computer
Soc. Press, Los Alamitos, Calif., 1998.

17. A.L. Cox and R.J. Fowler, “Adaptive Cache
Coherency for Detecting Migratory Shared
Data,” Proc. 20th Ann. Int’l Symp. Com-
puter Architecture, IEEE Computer Soc.
Press, Los Alamitos, Calif., 1993, pp.
98-108.

18. J. Skeppstedt and P. Stenstrom, “A Com-
piler Algorithm to Reduce Ownership
Overhead in Cache Coherence Protocols,”
Proc. Int’l Conf. Architectural Support for
Programming Languages and Operating
Systems, ACM Press, New York, 1994, pp.
286-296.

Aleksandar Milenkovic is an assistant pro-
fessor in the Department of Computer Engi-
neering, School of Electrical Engineering, at
the University of Belgrade. His research inter-
ests include computer architecture, parallel
computer systems, computer-aided design,
and the Internet. He received a BS, an MS,
and a PhD in computer engineering from the
University of Belgrade. He is a member of the
IEEE and IEEE Computer Society. Contact
him at milenkovic@computer.org.

44

IEEE Concurrency

