
Algorithms and Hardware Structures for
Unobtrusive Real-Time Compression of

Instruction and Data Address Traces
Milena Milenkovic§, Aleksandar Milenkovic†, and Martin Burtscher¥

§ IBM, Austin, Texas
†Electrical and Computer Engineering Department, University of Alabama in Huntsville

¥ Computer Systems Laboratory, Cornell University, Ithaca, New York

Abstract. Instruction and data address traces are widely used by computer designers for
quantitative evaluations of new architectures and workload characterization, as well as by
software developers for program optimization, performance tuning, and debugging. Such
traces are typically very large and need to be compressed to reduce the storage, process-
ing, and communication bandwidth requirements. However, preexisting general-purpose
and trace-specific compression algorithms are designed for software implementation and
are not suitable for runtime compression.

Compressing program execution traces at runtime in hardware can deliver insights into
the behavior of the system under test without any negative interference with normal pro-
gram execution. Traditional debugging tools, on the other hand, have to stop the program
frequently to examine the state of the processor. Moreover, software developers often do
not have access to the entire history of computation that led to an erroneous state. In addi-
tion, stepping through a program is a tedious task and may interact with other system
components in such a way that the original errors disappear, thus preventing any useful
insight. The need for unobtrusive tracing is further underscored by the development of
computer systems that feature multiple processing cores on a single chip.

In this paper, we introduce a set of algorithms for compressing instruction and data
address traces that can easily be implemented in an on-chip trace compression module
and describe the corresponding hardware structures. The proposed algorithms are analyti-
cally and experimentally evaluated. Our results show that very small hardware structures
suffice to achieve a compression ratio similar to that of a software implementation of gzip
while being orders of magnitude faster. A hardware structure with slightly over 2 KB of
state achieves a compression ratio of 125.9 for instruction address traces, whereas gzip
achieves a compression ratio of 87.4. For data address traces, a hardware structure with
5 KB of state achieves a compression ratio of 6.1, compared to 6.8 achieved by gzip.

1. Introduction
Instruction and data address traces are invaluable for quantitative evaluations of new ar-
chitectures as well as for workload characterization, performance tuning, testing, and de-
bugging. Two major issues are trace collection and storage. To offer a faithful representa-
tion of the system workload or to capture program behavior in real-world conditions,
traces are needed from programs that run for seconds or even minutes on real machines.
Hence, trace files tend to be very large and difficult to use and distribute. To reduce their
size, they are typically compressed using general-purpose compression algorithms such
as Ziv-Lempel (gzip) [1], the Burroughs-Wheeler transformation (bzip2) [2], or Sequitur

[3]. Whereas these algorithms offer good compression ratios, more efficient compression
is possible when the specific nature of redundancy in traces is taken into account.

Trace-specific compression techniques can be broadly classified in two groups, de-
pending on whether they compress only instruction traces or traces including both in-
struction and data address information. Instruction traces can be compressed either by re-
placing an execution sequence by its identifier [4-7] or by exploiting control-flow graph
information [8, 9]. Combined instruction and data address traces can be compressed by
recording only offsets from previous trace records of the same type [4, 10], by linking
data addresses to the corresponding dynamic basic blocks or loops [11-14], or by regen-
erating values using abstract execution [9, 15] or prediction [16, 17]. Compression of
more complex trace records can exploit trace locality by storing relevant values in a
cache-like structure so that a compressed trace consists of cache hit and miss information
[18].

Virtually all trace compression techniques target compression in software. However,
some computer systems could greatly benefit from hardware support for trace collection
and compression, such as emerging systems-on-a-chip with multiple embedded RISC and
DSP processor cores. They present a formidable challenge to efficient debugging and
performance tuning. For instance, ARM offers a module for tracing the complete pipeline
information [19]. However, the existing compression techniques that can be efficiently
implemented in hardware have poor compression ratios. For example, the ARM emulator
compresses traces by replacing sequences of the same record by their repetition count
[20].

In this paper, we present a set of trace compression algorithms targeting on-the-fly
compression of instruction and data address traces. The proposed algorithms strive to
provide a good compression ratio while minimizing the required chip area for the trace
compressor and the number of pins on the trace port. For the compression of instruction
address traces we propose two new structures: stream caches and N-tuple history buffers.
For the compression of data address traces we propose novel data address stride caches.
Detailed experimental analyses based on full system simulations (i) prove the feasibility
of runtime compression, (ii) show the proposed instruction address trace compressor to
outperform gzip with minimal hardware cost, and (iii) demonstrate that the proposed data
address trace compressor performs as well as gzip with relatively small structures. The
compression ratio over all considered instruction address traces is 87.4 with gzip and
125.9 with a 128-entry stream cache and a 255-entry trace history buffer. The compres-
sion ratio over all considered data address traces is 6.78 with gzip and 6.16 with a 1024-
entry data address stride cache. The total size of the stream compressor corresponds to
7629 bytes of on-chip memory.

The rest of this paper is organized as follows. Section 2 describes the architecture of
the trace compressor and presents algorithms for instruction and data address trace com-
pression. Section 3 discusses the results of the experimental analysis. Section 4 concludes
the paper.

2. Instruction and Data Address Trace Compression
The proposed algorithms for instruction and data address trace compression are suitable
for both software and hardware implementations. A software implementation may be
used as an operating system plug-in for on-line compression or as a separate application

for compressing already generated trace
files. In this paper, we focus on hard-
ware implementations. Our goals are (i)
to minimize the size of the structures to
reduce the chip area required for trace
compression, (ii) to provide real-time
compression so that the processor is
never stalled, and (iii) to achieve a good
compression ratio so that the trace port
requires only a few external pins.

Figure 1 shows the structure of the
proposed trace compressor. The trace
compressor receives instruction ad-
dresses (the program counter, PC), data
addresses (DA), and task switch infor-
mation from the processor core. The first
level of the trace compressor encom-
passes an instruction stream cache (SC)
and a data address stride cache (DASC).
The output from this level consists of four components: the stream cache index trace
(SCIT), the stream cache miss trace (SCMT), the data address trace (DT), and the data
address miss trace (DMT). Redundancy in the output traces can be further exploited with
an optional second-level compressor that features N-tuple compression for the SCIT trace
component and data repetitions – a simple finite state machine that compresses repeti-
tions in the DT stream. The final streams are forwarded to a trace output controller that
manages the output of the logical trace streams (synchronize, pack, add header) and inter-
faces with the external trace unit through the trace port pins akin to the ARM trace fun-
neling [19]. Internal buffers ensure that the trace compression proceeds without stalling
the processor and without dropping data.

2.1. Instruction Address Trace Compression
Instruction trace compression exploits temporal and spatial locality in instruction streams
[14]. An instruction stream is defined as a sequential run of instructions, from the target
of a taken branch to the first taken branch in the sequence. Previous studies show that
most programs generate only a small number of unique instruction streams. For example,
the average instruction stream length is about 12 instructions for the SPEC CPU2000 in-
teger applications and about 117 instructions for the floating-point applications, with a
maximal length of 3162 instructions and a minimal length of one instruction [14]. The
starting address (SA) and length (SL) uniquely identify an instruction stream.

To compress an instruction address trace, we detect instruction streams and replace
each of them with an identifier, which is similar to the SBC trace compression technique
[14, 21]. Instruction streams are detected as described in Figure 4 using very simple hard-
ware (Figure 2). SA and SL are placed in the instruction stream buffer, which is a FIFO
structure that buffers possible bursts of short instruction streams. S.SA and S.SL are read
from the instruction stream buffer and a stream cache lookup is performed (Figure 4).
The stream cache has NWAY ways and NSET sets (Figure 2). A set is selected using a simple
function of S.SA and S.SL, such as bit-wise XOR of selected bits and/or bit concatena-

SCIT

Stream Cache
(SC)

Data Address Stride
Cache (DASC)

N-tuple
Compressor

Processor Core

SCMT DT DMT

Program
Counter

Data
Address

Task
Switch

Trace Output Controller

To External Unit

DAPC DAPC

Data
Address

Buffer

Data
Repetitions

Figure 1. Trace compressor

……

……

……

……

F(S.SA, S.SL)

iSet

Hit/Miss

SCMT (SA, SL) SCIT

’00…0’
S.SA & S.L

Stream Cache (SC)

0

1

i

NSET - 1 LSA

……

……

reserved

…
0

1

NWAY - 1

=?

iWay

S.SA & S.L
From Instruction
Stream Buffer

Stream Cache
Index Trace

Stream Cache
Miss Trace

iWay

PC

PPC

-

S.SA S.LS.SA S.L

SA

=! 4

SL

Instruction
Stream
Buffer

Figure 2. Stream cache

tion. In case of a stream
cache hit, the correspond-
ing stream cache index
(concatenated iSet and
iWay indices) is emitted
to the SCIT. In case of a
cache miss, the reserved
index 0 is emitted to the
SCIT, and the stream de-
scriptor (S.SA and S.SL)
is emitted to the SCMT.
The algorithm then de-
terministically selects a
cache entry to be re-
placed, and the selected
entry is updated with the
stream descriptor.

The compression ratio
achieved by the stream cache compression, CR(SC.I), is defined as the ratio of the raw in-
struction address trace (Itrace) size, calculated as the number of instructions multiplied by
the address size, and the sum of the sizes of the output traces SCIT and SCMT (Eq. 1). It
can be expressed analytically as a function of the average dynamic stream length
(SL.Dyn), the stream cache hit rate (SC.Hit), and the stream cache size (NSET*NWAY) (Eq.
2). For each instruction stream, log2(NSET*NWAY) bits are emitted to the SCIT output. On
each miss in the stream cache, 5 bytes are emitted to the SCMT output, assuming 1-byte
stream lengths and 4-byte addresses.

Eq. 1
)()(

)().(
SCMTSizeSCITSize

ItraceSizeISCCR
+

=

Eq. 2
).1(5)(log125.0

.4).(
2 WAYSNSETNWAYSSET HitSCNN

DynSLISCCR
⋅−⋅+⋅⋅

⋅=

Typically, we see high stream cache hit rates due to the small number of unique in-
struction streams and the high temporal locality of the streams. Consequently, the size of
the compressed trace is predominantly determined by the size of the SCIT output. The
SCIT output trace is highly re-
dundant because the majority of
the runtime is spent in critical
portions of the code that often
encompass short sequences of in-
struction streams. To further ex-
ploit this redundancy with small
hardware resources, we employ
N-tuple compression. Figure 3
shows the structure of the N-
tuple compressor, and Figure 4
details the N-tuple compression
of the SCIT output trace. A se-

SCIT
Trace

8-tuple History Buffer
(FIFO)

==?
’00…0’ index

1

MaxT-1

Hit/Miss

TUPLE.HIT Trace TUPLE.MISS Trace

Figure 3. N-tuple compressor (N=8)

quence of N indices in the SCIT trace makes an N-tuple. The SCIT trace is replaced by
Tuple.Hit and Tuple.Miss traces. We maintain a tuple history buffer (THB) of the most
recent N-tuples. This THB is searched for a match with an incoming N-tuple. In case of a
hit, an index in the THB is emitted to the Tuple.Hit trace. Otherwise, the whole N-tuple is
emitted to the Tuple.Miss trace.

// Detect a new instruction stream
1. Get next PC;
2. ndiff = PC – PPC; // PPC is the previous PC
3. if (ndiff != 4 or SL == MaxStreamLength) { // a new stream is detected
4. Place <SA, SL> into the instruction stream buffer;
5. SL = 1;
6. SA = PC;
7. } else SL++;
8. PPC = PC;
// Compress an instruction stream
1. Get the next stream from the instruction stream buffer (S.SA, S.SL);
2. Perform lookup in the stream cache with iSet = F(S.SA, S.SL);
3. if (hit)
4. Emit <iSet, iWay> to SCIT;
5. else {
6. Emit reserved value <0> to SCIT;
7. Emit stream descriptor <S.SA, S.SL> to SCMT;
8. Select an entry (iWay) in the iSet set to be replaced;
9. Update stream cache entry: SC[iSet][iWay].Valid = 1;
 SC[iSet][iWay].SA = S.SA; SC[iSet][iWay].SL = S.SL; }
10. Update stream cache replacement indicators;
// N-tuple compression
1. Get the next index from the SCIT stream
2. if (N-tuple incoming stream buffer is full) {
3. Perform lookup in the Tuple History Buffer (THB);
4. if (hit) {
5. Emit <index in the THB> to the Tuple.Hit trace;
6. // emit the first index found in the buffer
7. } else {
8. Emit <0> to Tuple.Hit trace;
9. Emit <N-tuple> to Tuple.Miss trace; }
10. Update the Tuple History Buffer; }

Figure 4. Pseudo code for stream detection, stream compression, and N-tuple compression

2.2. Data Address Trace Compression
Unlike instruction addresses, data addresses (of
memory referencing instructions) rarely stay
constant during program execution [22]. How-
ever, they often have a regular stride. Our pro-
posed algorithm for runtime data address trace
compression exploits temporal locality of mem-
ory referencing instructions and regularity in
data address strides.

The data address trace compression utilizes a
data address stride cache (DASC). The DASC is
a tagless direct mapped cache-like structure,
where each entry consists of two fields: a last
data address (LDA) and a stride field (Figure 5).
The data address trace compression algorithm is

index

PC
Data Address Stride

Cache (DASC)

0

1

i

N - 1 StrideLDA

……

……

StrideLDA

……

……

LDA-DA

G(PC)

DA

==?’0’ ’1’

DT (Data trace)
DMT

Data Miss Trace

Stride.Hit
Stride.Hit

Figure 5. Data address stride cache

Table 1. Benchmark characteristics
 IC NUS max.SL SL.Dyn
cjpeg 104,607,812 1636 239 10.89
djpeg 23,391,628 1324 206 21.81
lame 1,285,111,635 3410 252 27.81
tiff2bw 143,254,646 1058 43 12.79
tiff2rgba 151,691,275 1146 75 27.54
tiffmedian 541,260,067 1431 75 22.22
tiffdither 832,951,018 1831 51 12.57
mad 286,974,899 1659 1055 20.09
sha 140,885,982 495 62 15.15
bf_e 544,053,846 413 300 5.85
rijndael_e 319,977,971 542 254 18.94
ghostscript 708,090,638 6900 187 8.70
rsynth 824,942,227 1323 180 15.77
stringsearch 3,675,745 439 62 5.61
adpcm_c 732,513,651 347 71 54.63
gsm_d 1,299,270,245 845 401 11.07

described in Figure 6. A memory reference descriptor, i.e., a <PC, DA> pair, is read from
the data address FIFO buffer. An entry in the DASC is selected using a portion of the PC.
A new stride (cStride) is calculated and compared to the Stride field read from the se-
lected entry. If they match, only a single bit ‘1’ is emitted to the DT output, indicating a
DASC hit. Otherwise, a ‘0’ bit is emitted to the DT and the DA field is emitted to the
DMT output.

1. Get the next <PC, DA> pair from the data buffers
2. Perform lookup in the data address stride cache, index = G(PC);
3. cStride = DA - DASC[index].LDA;
4. if (cStride == DASC[index].Stride) {
5. Emit <1> to DT; // 1-bit info
6. } else {
7. Emit <0> to DT;
8. Emit <DA> to DMT;
9. DASC[index].Stride = lsb(cStride); }
10. DASC[index].LDA = DA;

Figure 6. Data address trace compression

The compression ratio achieved by the data address trace compression, CR(DASC.D),
is defined as the ratio of the raw data address trace (Dtrace) size, calculated as the num-
ber of memory referencing instructions multiplied by the address size, and the sum of the
sizes of the output traces DT and DMT (Eq. 3). It can be expressed analytically as a func-
tion of the data address stride cache hit rate (Eq. 4). For each memory referencing in-
struction a single bit is emitted to the DT. On each miss a 4-byte address is emitted to the
DMT.

Eq. 3
)()(

)().(
DMTSizeDTSize

DtraceSizeDDASCCR
+

= Eq. 4
StrideHitDASC

DDASCCR
.03125.1

1).(
−

=

A generalized set-associative organization of DASC promises even better stride hit
rates and consequently better compression ratios. However, the set-associative DASC re-
quires address tags to be kept, which increases hardware complexity. Hence, we do not
consider such DASCs in this paper. A
simple state machine detects
repetitions in the DT output and
replaces repeating patterns with a
<pattern, number of repetitions> pair.

3. Experimental Evaluation
and Results

The goals of the experimental evalua-
tion are (i) to assess the effectiveness
of the proposed compression algo-
rithms and (ii) to explore the feasibility
of the proposed hardware implementa-
tions. We compare the compression ra-
tio of the proposed algorithms to the
compression ratio achieved by the
general-purpose compression algo-
rithms in the gzip (fast, default, best)

and bzip2 (best) software utility programs. To ex-
plore the design space of the hardware trace com-
pressor, we extended the SimpleScalar simulator
[23] to support the proposed runtime trace com-
pression algorithms.

As workload we use complete runs of 16
MiBench programs. Table 1 shows the benchmark
characteristics, including the number of instruc-
tions executed (IC), the number of unique streams
(NUS), the maximum stream length (max.SL),
and the average dynamic stream length (SL.Dyn).
This table reveals that the number of unique in-
struction streams is relatively small. The average
stream length ranges from 5.61 in stringsearch to
54.6 in adpcm_c.

3.1. Instruction Address Trace Compression
The compression ratio for instruction address
traces depends on application characteristics (such as the average stream length and the
temporal locality of the instruction streams) and the stream cache parameters. To evaluate
the impact of the stream cache size and organization, we vary the number of entries from
8 to 256, and the number of ways from 1 to 8. Table 2 shows the average stream cache hit
rate and the total compression ratio (the sum of the raw instruction traces for all applica-
tions divided by the sum of all compressed traces). The results indicate that even very
small stream caches can achieve a good compression ratio. For example, the 16x4 (16-set
and 4-way) stream cache achieves an overall compression ratio of 44.1, i.e., about 80% of
the compression ratio achieved with the 32x4 stream cache, which is twice as complex.
Increasing the associativity of the stream cache improves the compression ratio. Even
though the 16x8 stream cache yields the best overall compression ratio of 57.4, the 32x4
represents the best price-performance tradeoff. We have tested several mapping functions
and S.SA<5+ne:6> xor S.L<ne-1:0> performs the best, where ne=log2(NSET*NWAY). The
chosen stream cache organization achieves a better compression ratio than gzip with the
“fast” option on the raw instruction traces (Table 3).

N-tuple compression can further compress the SCIT trace. We consider a 32x4 stream
cache and a 255-entry 8-tuple history buffer. Table 3 shows the compression ratio for the
following algorithms: stream cache compression only (SC.I), combined stream cache and
N-tuple compression (SC.I+Ntup), gzip (default, fast, best), and bzip2 (best). The com-
bined SC.I+Ntup outperforms gzip even with the “best” option, yet it can be performed in
real time with small on-chip hardware structures. It only requires a bandwidth of 0.25 bits
per executed instruction on the trace port.

3.2. Data Address Trace Compression
The compression ratio for data address traces depends on program behavior (the number
of memory referencing instructions and their locality) and the size and organization of the
DASC structure. We vary the size of the DASC from 128 to 1024 entries. Table 4 shows
the compression ratios for data address trace compression for different DASC structures
as well as the compression ratio achieved by gzip (fast, default, best) and bzip2 (best) on

Table 2. Stream cache hit rate
and total compression ratio

SC.Hit Ways
Entries 1 2 4 8

8 55.47 59.67 61.06 59.54
16 67.35 71.22 74.58 73.60
32 73.99 79.51 82.45 82.82
64 80.75 88.28 91.44 93.08

128 84.62 94.27 97.26 98.33
256 85.98 97.05 99.08 99.08

CR(SC.I) Ways
Entries 1 2 4 8

8 16.33 17.59 16.99 15.79
16 21.10 22.15 27.81 26.61
32 23.88 28.02 34.40 33.96
64 27.54 36.89 44.12 47.07

128 28.95 47.57 54.14 57.43
256 28.05 47.81 53.60 54.24

the raw data address traces. The results indicate that increasing the number of entries is
beneficial. The 1024-entry DASC achieves a compression ratio of 6.12, which is higher
than that of fast gzip, but slightly lower than that of default and best gzip. The tagged
DASC with the same number of entries, organized as a set-associative structure with 256
sets and 4 ways, achieves a compression ratio of 6.6, which is as good as default gzip.
This translates into a bandwidth of 0.26 bits per executed instruction on the trace port. A
256-entry DASC requires 0.4 bits/instruction.

Table 3. Compression ratio for instruction address traces
 FAST DEF. BEST BEST
 SC.I SC.I+Ntup I.GZ I.GZ I.GZ I.BZ2
cjpeg 47.98 147.56 54.53 109.58 124.45 341.96
djpeg 87.35 188.53 39.85 71.78 73.70 201.98
lame 100.68 158.10 128.53 60.46 333.88 87.61
tiff2bw 54.91 235.05 83.94 114.11 114.42 376.83
tiff2rgba 117.53 407.14 20.26 121.30 121.98 529.62
tiffmedian 95.91 414.37 92.32 152.81 155.47 472.93
tiffdither 43.45 65.48 46.35 91.09 99.84 170.88
mad 81.52 177.84 37.82 73.46 78.52 94.31
sha 69.24 440.35 54.42 211.43 221.75 656.53
bf_e 25.57 98.46 40.95 170.38 182.25 352.02
rijndael_e 85.17 454.63 12.56 143.82 150.62 141.77
ghostscript 26.57 50.91 39.68 100.64 111.24 212.54
rsynth 56.42 91.83 30.61 46.71 48.02 143.22
stringsearch 16.92 24.22 32.34 82.06 100.63 202.47
adpcm_c 249.71 1583.96 107.34 233.12 233.63 1862.63
gsm_d 46.79 174.57 59.22 85.37 87.17 165.58
TOTAL 54.14 125.90 47.24 87.45 112.91 171.97

Table 4. Compression ratio for data address traces
 32 64 128 256 512 1024 FAST DEF. BEST BEST
 DASC DASC DASC DASC DASC DASC D.GZ D.GZ D.GZ D.BZ2
cjpeg 3.35 4.60 5.14 5.77 6.54 7.11 4.50 5.98 6.11 18.20
djpeg 2.81 3.57 4.28 4.96 5.22 5.29 3.78 4.22 4.22 8.62
lame 1.20 1.52 2.81 3.82 4.49 4.88 4.01 6.56 6.63 8.80
tiff2bw 76.31 78.04 84.28 105.04 128.84 134.23 2.55 2.14 2.10 14.28
tiff2rgba 5.98 79.81 91.24 107.49 127.05 139.57 2.79 2.10 2.09 4.06
tiffmedian 8.64 8.70 8.74 8.81 8.87 8.89 4.37 4.40 4.53 11.16
tiffdither 2.61 6.08 7.21 8.69 9.65 10.06 4.41 4.51 4.51 7.87
mad 1.30 1.59 1.96 2.07 2.35 2.64 3.60 4.08 4.22 13.47
sha 6.58 7.94 9.38 10.79 11.36 11.36 8.36 44.91 45.61 172.71
bf_e 1.58 1.95 2.38 2.61 2.75 2.91 4.86 7.58 7.83 16.35
rijndael_e 1.10 1.10 1.10 1.13 1.29 2.06 3.22 4.24 4.27 7.31
ghostscript 1.07 1.19 1.56 2.19 2.93 5.27 18.58 27.21 27.46 47.42
rsynth 1.22 1.36 1.76 3.81 8.30 32.43 21.46 24.44 25.27 57.40
stringsearch 1.80 2.04 2.70 4.13 4.44 5.16 8.57 11.12 11.23 15.03
adpcm_c 3.13 3.13 3.13 3.13 3.13 3.13 3.64 6.57 7.15 12.27
gsm_d 2.67 4.48 11.30 13.60 14.81 16.78 18.05 21.60 23.29 63.53
TOTAL 1.66 2.04 2.80 3.77 4.67 6.12 5.51 6.78 6.90 13.29

3.3. Hardware Complexity
So far we have shown that the proposed algorithms indeed achieve a good compression
ratio ensuring that a small trace port would suffice. In addition, the compressed output
traces are suitable for further compression in software, which allows the design of exter-
nal trace units that can capture traces over prolonged periods of time for experimental
systems (the results are not shown due to page limitation).

The simple hardware structures guarantee low latency of the proposed compression.
To verify that we can perform runtime compression without stalling the processor, we ex-
tended the SimpleScalar full system simulator to support our runtime compressor. In ad-
dition to verifying the feasibility of the proposed system, this simulator is used to deter-
mine the minimal necessary depth of the instruction stream buffer (Figure 2) and the data
address buffer (Figure 1). We assume that the stream cache latency is 1 clock cycle for
hits and 2 clock cycles for misses. The DASC latency is 2 clock cycles for both hits and
misses. The modeled processor corresponds to the XScale processor. The results indicate
that the instruction stream buffer needs only 2 entries, while the data address buffer needs
8 entries.

Table 5 provides an estimate of
the hardware complexity of the
proposed structures. The overall
size corresponds to 7629 bytes,
which is several times smaller than
L1 processor caches, giving further
evidence that the structures can op-
erate at CPU clock frequencies.

4. Conclusion
This paper presents a set of algorithms for runtime compression of instruction and data
address traces. Based on these algorithms we propose an on-chip hardware compressor
capable of unobtrusive real-time instruction and data address trace compression. It
achieves excellent compression ratios, comparable to general-purpose compression in
software, at minimal hardware complexity.

References
[1] J. Ziv and A. Lempel, "A Universal Algorithm for Sequential Data Compression," IEEE

Transaction on Information Theory, vol. 23, May 1977, pp. 337-343.
[2] M. Burrows and D. J. Wheeler, "A Block-Sorting Lossless Data Compression Algorithm,"

Digital SRC, Report 124, May 10, 1994.
[3] C. G. Nevill-Manning and I. H. Witten, "Linear-Time, Incremental Hierarchy Interference

for Compression," in Proceedings of the IEEE Data Compression Conference, Snowbird,
UT, 1997, pp. 3-11.

[4] E. E. Johnson, J. Ha, and M. B. Zaidi, "Lossless Trace Compression," IEEE Transactions
on Computers, vol. 50, February 2001, pp. 158-173.

[5] J. R. Larus, "Whole Program Paths," in Proceedings of the ACM SIGPLAN 1999 Confer-
ence on Programming Language Design and Implementation, Atlanta, GA, 1999, pp. 259-
269.

Table 5. Hardware complexity estimation
Component Entries Complexity Bytes
Instruction stream buffer 2 2x5 10
Stream detector 2 2x4 8
Stream cache 32x4 128x5 640
N-tuple history buffer 255 255x8*(7/8) 1785
Data address buffer 8 8x8 64
Data address stride cache 1024 1024x5 5120
Data repetitions
state machine

- 2 2

[6] A. Milenkovic, M. Milenkovic, and J. Kulick, "N-Tuple Compression: A Novel Method
for Compression of Branch Instruction Traces," in Proceedings of the 16th International
Conference on Parallel and Distributed Computing Systems, Reno, NV, 2003, pp. 49-55.

[7] Y. Zhang and R. Gupta, "Timestamped Whole Program Path Representation and Its Appli-
cations," in Proceedings of the ACM SIGPLAN 2001 Conference on Programming Lan-
guage Design and Implementation, Snowbird, UT, 2001, pp. 180-190.

[8] A. Hamou-Lhadj and T. C. Lethbridge, "Compression Techniques to Simplify the Analysis
of Large Execution Traces," in Proceedings of the 10th International Workshop on Pro-
gram Comprehension, Paris, France, 2002, pp. 159 -168.

[9] J. R. Larus, "Efficient Program Tracing," IEEE Computer, vol. 26, May 1993, pp. 52-61.
[10] A. D. Samples, "Mache: No-Loss Trace Compaction," in Proceedings of the 1989 ACM

SIGMETRICS International Conference on Measurement and Modeling of Computer Sys-
tems, Oakland, CA, 1989, pp. 89 - 97.

[11] L. DeRose, K. Ekanadham, J. K. Hollingsworth, and S. Sbaraglia, "Sigma: A Simulator In-
frastructure to Guide Memory Analysis," in Proceedings of the 2002 ACM/IEEE confer-
ence on Supercomputing, Baltimore, Maryland, 2002, pp. 1-13.

[12] E. N. Elnozahy, "Address Trace Compression through Loop Detection and Reduction,"
ACM SIGMETRICS Performance Evaluation Review, vol. 27, June 1999, pp. 214-215.

[13] A. R. Pleszkun, "Techniques for Compressing Program Address Traces," in Proceedings of
the 27th Annual International Symposium on Microarchitecture, San Jose, CA, 1994, pp.
32-39.

[14] A. Milenkovic and M. Milenkovic, "Exploiting Streams in Instruction and Data Address
Trace Compression," in Proceedings of IEEE 6th Annual Workshop on Workload Charac-
terization, Austin, TX, 2003, pp. 99-107.

[15] S. J. Eggers, D. R. Keppel, E. J. Koldinger, and H. M. Levy, "Techniques for Efficient
Inline Tracing on a Shared-Memory Multiprocessor," in Proceedings of the 1990 ACM
SIGMETRICS Joint International Conference on Measurement and Modeling of Computer
Systems, Boulder, CO, 1990, pp. 37 - 47.

[16] M. Burtscher, "VPC3: A Fast and Effective Trace-Compression Algorithm," in Joint Inter-
national Conference on Measurement and Modeling of Computer Systems, New York, NY,
USA, 2004, pp. 167-176.

[17] M. Burtscher and N. B. Sam, "Automatic Generation of High-Performance Trace Com-
pressors," in 2005 International Symposium on Code Generation and Optimization, San
Jose, CA, USA, 2005, pp. 229-240.

[18] Y. Luo and L. K. John, "Locality-Based Online Trace Compression," IEEE Transaction on
Computers, vol. 53, June 2004, pp. 723-731.

[19] "Coresight On-Chip Debug and Trace Technology,"
<http://www.arm.com/products/solutions/CoreSight.html> (Available July 2004).

[20] D. I. McCullough and L. A. Traylor, "Trace Reporting Method and System," United States
Patent 6,615,371, American Arium, 2003.

[21] A. Milenkovic and M. Milenkovic, "Stream-Based Trace Compression," Computer Archi-
tecture Letters, vol. 2, September 2003.

[22] A. Milenkovic and M. Milenkovic, "An Efficient Single-Pass Trace Compression Tech-
nique Utilizing Instruction Streams," ACM Transactions on Modeling and Computer Simu-
lation January 2007.

[23] D. Burger and T. Austin, "The Simplescalar Tool Set Version 2.0," University of Wiscon-
sin, Technical Report CS-TR-97-1342, 1997.

