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Abstract. Instruction and data address traces are widely used by computer designers for 
quantitative evaluations of new architectures and workload characterization, as well as by 
software developers for program optimization, performance tuning, and debugging. Such 
traces are typically very large and need to be compressed to reduce the storage, process-
ing, and communication bandwidth requirements. However, preexisting general-purpose 
and trace-specific compression algorithms are designed for software implementation and 
are not suitable for runtime compression. 

Compressing program execution traces at runtime in hardware can deliver insights into 
the behavior of the system under test without any negative interference with normal pro-
gram execution. Traditional debugging tools, on the other hand, have to stop the program 
frequently to examine the state of the processor. Moreover, software developers often do 
not have access to the entire history of computation that led to an erroneous state. In addi-
tion, stepping through a program is a tedious task and may interact with other system 
components in such a way that the original errors disappear, thus preventing any useful 
insight. The need for unobtrusive tracing is further underscored by the development of 
computer systems that feature multiple processing cores on a single chip. 

In this paper, we introduce a set of algorithms for compressing instruction and data 
address traces that can easily be implemented in an on-chip trace compression module 
and describe the corresponding hardware structures. The proposed algorithms are analyti-
cally and experimentally evaluated. Our results show that very small hardware structures 
suffice to achieve a compression ratio similar to that of a software implementation of gzip 
while being orders of magnitude faster. A hardware structure with slightly over 2 KB of 
state achieves a compression ratio of 125.9 for instruction address traces, whereas gzip 
achieves a compression ratio of 87.4. For data address traces, a hardware structure with 
5 KB of state achieves a compression ratio of 6.1, compared to 6.8 achieved by gzip.  

1. Introduction 
Instruction and data address traces are invaluable for quantitative evaluations of new ar-
chitectures as well as for workload characterization, performance tuning, testing, and de-
bugging. Two major issues are trace collection and storage. To offer a faithful representa-
tion of the system workload or to capture program behavior in real-world conditions, 
traces are needed from programs that run for seconds or even minutes on real machines. 
Hence, trace files tend to be very large and difficult to use and distribute. To reduce their 
size, they are typically compressed using general-purpose compression algorithms such 
as Ziv-Lempel (gzip) [1], the Burroughs-Wheeler transformation (bzip2) [2], or Sequitur 



[3]. Whereas these algorithms offer good compression ratios, more efficient compression 
is possible when the specific nature of redundancy in traces is taken into account. 

Trace-specific compression techniques can be broadly classified in two groups, de-
pending on whether they compress only instruction traces or traces including both in-
struction and data address information. Instruction traces can be compressed either by re-
placing an execution sequence by its identifier [4-7] or by exploiting control-flow graph 
information [8, 9]. Combined instruction and data address traces can be compressed by 
recording only offsets from previous trace records of the same type [4, 10], by linking 
data addresses to the corresponding dynamic basic blocks or loops [11-14], or by regen-
erating values using abstract execution [9, 15] or prediction [16, 17]. Compression of 
more complex trace records can exploit trace locality by storing relevant values in a 
cache-like structure so that a compressed trace consists of cache hit and miss information 
[18]. 

Virtually all trace compression techniques target compression in software. However, 
some computer systems could greatly benefit from hardware support for trace collection 
and compression, such as emerging systems-on-a-chip with multiple embedded RISC and 
DSP processor cores. They present a formidable challenge to efficient debugging and 
performance tuning. For instance, ARM offers a module for tracing the complete pipeline 
information [19]. However, the existing compression techniques that can be efficiently 
implemented in hardware have poor compression ratios. For example, the ARM emulator 
compresses traces by replacing sequences of the same record by their repetition count 
[20]. 

In this paper, we present a set of trace compression algorithms targeting on-the-fly 
compression of instruction and data address traces. The proposed algorithms strive to 
provide a good compression ratio while minimizing the required chip area for the trace 
compressor and the number of pins on the trace port. For the compression of instruction 
address traces we propose two new structures: stream caches and N-tuple history buffers. 
For the compression of data address traces we propose novel data address stride caches. 
Detailed experimental analyses based on full system simulations (i) prove the feasibility 
of runtime compression, (ii) show the proposed instruction address trace compressor to 
outperform gzip with minimal hardware cost, and (iii) demonstrate that the proposed data 
address trace compressor performs as well as gzip with relatively small structures. The 
compression ratio over all considered instruction address traces is 87.4 with gzip and 
125.9 with a 128-entry stream cache and a 255-entry trace history buffer. The compres-
sion ratio over all considered data address traces is 6.78 with gzip and 6.16 with a 1024-
entry data address stride cache. The total size of the stream compressor corresponds to 
7629 bytes of on-chip memory. 

The rest of this paper is organized as follows. Section 2 describes the architecture of 
the trace compressor and presents algorithms for instruction and data address trace com-
pression. Section 3 discusses the results of the experimental analysis. Section 4 concludes 
the paper. 

2. Instruction and Data Address Trace Compression 
The proposed algorithms for instruction and data address trace compression are suitable 
for both software and hardware implementations. A software implementation may be 
used as an operating system plug-in for on-line compression or as a separate application 



for compressing already generated trace 
files. In this paper, we focus on hard-
ware implementations. Our goals are (i) 
to minimize the size of the structures to 
reduce the chip area required for trace 
compression, (ii) to provide real-time 
compression so that the processor is 
never stalled, and (iii) to achieve a good 
compression ratio so that the trace port 
requires only a few external pins. 

Figure 1 shows the structure of the 
proposed trace compressor. The trace 
compressor receives instruction ad-
dresses (the program counter, PC), data 
addresses (DA), and task switch infor-
mation from the processor core. The first 
level of the trace compressor encom-
passes an instruction stream cache (SC) 
and a data address stride cache (DASC). 
The output from this level consists of four components: the stream cache index trace 
(SCIT), the stream cache miss trace (SCMT), the data address trace (DT), and the data 
address miss trace (DMT). Redundancy in the output traces can be further exploited with 
an optional second-level compressor that features N-tuple compression for the SCIT trace 
component and data repetitions – a simple finite state machine that compresses repeti-
tions in the DT stream. The final streams are forwarded to a trace output controller that 
manages the output of the logical trace streams (synchronize, pack, add header) and inter-
faces with the external trace unit through the trace port pins akin to the ARM trace fun-
neling [19]. Internal buffers ensure that the trace compression proceeds without stalling 
the processor and without dropping data. 

2.1. Instruction Address Trace Compression 
Instruction trace compression exploits temporal and spatial locality in instruction streams 
[14]. An instruction stream is defined as a sequential run of instructions, from the target 
of a taken branch to the first taken branch in the sequence. Previous studies show that 
most programs generate only a small number of unique instruction streams. For example, 
the average instruction stream length is about 12 instructions for the SPEC CPU2000 in-
teger applications and about 117 instructions for the floating-point applications, with a 
maximal length of 3162 instructions and a minimal length of one instruction [14]. The 
starting address (SA) and length (SL) uniquely identify an instruction stream. 

To compress an instruction address trace, we detect instruction streams and replace 
each of them with an identifier, which is similar to the SBC trace compression technique 
[14, 21]. Instruction streams are detected as described in Figure 4 using very simple hard-
ware (Figure 2). SA and SL are placed in the instruction stream buffer, which is a FIFO 
structure that buffers possible bursts of short instruction streams. S.SA and S.SL are read 
from the instruction stream buffer and a stream cache lookup is performed (Figure 4). 
The stream cache has NWAY ways and NSET sets (Figure 2). A set is selected using a simple 
function of S.SA and S.SL, such as bit-wise XOR of selected bits and/or bit concatena-
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tion. In case of a stream 
cache hit, the correspond-
ing stream cache index 
(concatenated iSet and 
iWay indices) is emitted 
to the SCIT. In case of a 
cache miss, the reserved 
index 0 is emitted to the 
SCIT, and the stream de-
scriptor (S.SA and S.SL) 
is emitted to the SCMT. 
The algorithm then de-
terministically selects a 
cache entry to be re-
placed, and the selected 
entry is updated with the 
stream descriptor. 

The compression ratio 
achieved by the stream cache compression, CR(SC.I), is defined as the ratio of the raw in-
struction address trace (Itrace) size, calculated as the number of instructions multiplied by 
the address size, and the sum of the sizes of the output traces SCIT and SCMT (Eq. 1). It 
can be expressed analytically as a function of the average dynamic stream length 
(SL.Dyn), the stream cache hit rate (SC.Hit), and the stream cache size (NSET*NWAY) (Eq. 
2). For each instruction stream, log2(NSET*NWAY) bits are emitted to the SCIT output. On 
each miss in the stream cache, 5 bytes are emitted to the SCMT output, assuming 1-byte 
stream lengths and 4-byte addresses. 
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Typically, we see high stream cache hit rates due to the small number of unique in-
struction streams and the high temporal locality of the streams. Consequently, the size of 
the compressed trace is predominantly determined by the size of the SCIT output. The 
SCIT output trace is highly re-
dundant because the majority of 
the runtime is spent in critical 
portions of the code that often 
encompass short sequences of in-
struction streams. To further ex-
ploit this redundancy with small 
hardware resources, we employ 
N-tuple compression. Figure 3 
shows the structure of the N-
tuple compressor, and Figure 4 
details the N-tuple compression 
of the SCIT output trace. A se-
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quence of N indices in the SCIT trace makes an N-tuple. The SCIT trace is replaced by 
Tuple.Hit and Tuple.Miss traces. We maintain a tuple history buffer (THB) of the most 
recent N-tuples. This THB is searched for a match with an incoming N-tuple. In case of a 
hit, an index in the THB is emitted to the Tuple.Hit trace. Otherwise, the whole N-tuple is 
emitted to the Tuple.Miss trace. 

 

// Detect a new instruction stream 
1. Get next PC; 
2. ndiff = PC – PPC; // PPC is the previous PC 
3. if (ndiff != 4 or SL == MaxStreamLength) { // a new stream is detected 
4.  Place <SA, SL> into the instruction stream buffer; 
5.  SL = 1; 
6.  SA = PC; 
7. } else SL++; 
8. PPC = PC; 
// Compress an instruction stream 
1. Get the next stream from the instruction stream buffer (S.SA, S.SL); 
2. Perform lookup in the stream cache with iSet = F(S.SA, S.SL); 
3. if (hit) 
4.  Emit <iSet, iWay> to SCIT; 
5. else { 
6.  Emit reserved value <0> to SCIT; 
7.  Emit stream descriptor <S.SA, S.SL> to SCMT; 
8.  Select an entry (iWay) in the iSet set to be replaced; 
9.  Update stream cache entry: SC[iSet][iWay].Valid = 1; 
   SC[iSet][iWay].SA = S.SA; SC[iSet][iWay].SL = S.SL; } 
10. Update stream cache replacement indicators; 
// N-tuple compression 
1. Get the next index from the SCIT stream 
2. if (N-tuple incoming stream buffer is full) { 
3.  Perform lookup in the Tuple History Buffer (THB); 
4.  if (hit) { 
5.   Emit <index in the THB> to the Tuple.Hit trace; 
6.   // emit the first index found in the buffer 
7.  } else { 
8.   Emit <0> to Tuple.Hit trace; 
9.   Emit <N-tuple> to Tuple.Miss trace; } 
10.  Update the Tuple History Buffer; } 

Figure 4. Pseudo code for stream detection, stream compression, and N-tuple compression 

2.2. Data Address Trace Compression 
Unlike instruction addresses, data addresses (of 
memory referencing instructions) rarely stay 
constant during program execution [22]. How-
ever, they often have a regular stride. Our pro-
posed algorithm for runtime data address trace 
compression exploits temporal locality of mem-
ory referencing instructions and regularity in 
data address strides. 

The data address trace compression utilizes a 
data address stride cache (DASC). The DASC is 
a tagless direct mapped cache-like structure, 
where each entry consists of two fields: a last 
data address (LDA) and a stride field (Figure 5). 
The data address trace compression algorithm is 

index

PC
Data Address Stride 

Cache (DASC)

0

1

i

N - 1 StrideLDA

……

……

StrideLDA

……

……

LDA-DA

G(PC)

DA

==?’0’ ’1’

DT (Data trace)
DMT 

Data Miss Trace

Stride.Hit
Stride.Hit

Figure 5. Data address stride cache



Table 1.  Benchmark characteristics 
 IC NUS max.SL SL.Dyn 
cjpeg 104,607,812 1636 239 10.89 
djpeg 23,391,628 1324 206 21.81 
lame 1,285,111,635 3410 252 27.81 
tiff2bw 143,254,646 1058 43 12.79 
tiff2rgba 151,691,275 1146 75 27.54 
tiffmedian 541,260,067 1431 75 22.22 
tiffdither 832,951,018 1831 51 12.57 
mad 286,974,899 1659 1055 20.09 
sha 140,885,982 495 62 15.15 
bf_e 544,053,846 413 300 5.85 
rijndael_e 319,977,971 542 254 18.94 
ghostscript 708,090,638 6900 187 8.70 
rsynth 824,942,227 1323 180 15.77 
stringsearch 3,675,745 439 62 5.61 
adpcm_c 732,513,651 347 71 54.63 
gsm_d 1,299,270,245 845 401 11.07 

described in Figure 6. A memory reference descriptor, i.e., a <PC, DA> pair, is read from 
the data address FIFO buffer. An entry in the DASC is selected using a portion of the PC. 
A new stride (cStride) is calculated and compared to the Stride field read from the se-
lected entry. If they match, only a single bit ‘1’ is emitted to the DT output, indicating a 
DASC hit. Otherwise, a ‘0’ bit is emitted to the DT and the DA field is emitted to the 
DMT output. 

 
1. Get the next <PC, DA> pair from the data buffers 
2. Perform lookup in the data address stride cache, index = G(PC); 
3. cStride = DA - DASC[index].LDA; 
4. if (cStride == DASC[index].Stride) { 
5.  Emit <1> to DT; // 1-bit info 
6. } else { 
7.  Emit <0> to DT; 
8.  Emit <DA> to DMT; 
9.  DASC[index].Stride = lsb(cStride); } 
10. DASC[index].LDA = DA; 

Figure 6. Data address trace compression 

The compression ratio achieved by the data address trace compression, CR(DASC.D), 
is defined as the ratio of the raw data address trace (Dtrace) size, calculated as the num-
ber of memory referencing instructions multiplied by the address size, and the sum of the 
sizes of the output traces DT and DMT (Eq. 3). It can be expressed analytically as a func-
tion of the data address stride cache hit rate (Eq. 4). For each memory referencing in-
struction a single bit is emitted to the DT. On each miss a 4-byte address is emitted to the 
DMT. 

Eq. 3 
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A generalized set-associative organization of DASC promises even better stride hit 
rates and consequently better compression ratios. However, the set-associative DASC re-
quires address tags to be kept, which increases hardware complexity. Hence, we do not 
consider such DASCs in this paper. A 
simple state machine detects 
repetitions in the DT output and 
replaces repeating patterns with a 
<pattern, number of repetitions> pair.  

3. Experimental Evaluation 
and Results 

The goals of the experimental evalua-
tion are (i) to assess the effectiveness 
of the proposed compression algo-
rithms and (ii) to explore the feasibility 
of the proposed hardware implementa-
tions. We compare the compression ra-
tio of the proposed algorithms to the 
compression ratio achieved by the 
general-purpose compression algo-
rithms in the gzip (fast, default, best) 



and bzip2 (best) software utility programs. To ex-
plore the design space of the hardware trace com-
pressor, we extended the SimpleScalar simulator 
[23] to support the proposed runtime trace com-
pression algorithms. 

As workload we use complete runs of 16 
MiBench programs. Table 1 shows the benchmark 
characteristics, including the number of instruc-
tions executed (IC), the number of unique streams 
(NUS), the maximum stream length (max.SL), 
and the average dynamic stream length (SL.Dyn). 
This table reveals that the number of unique in-
struction streams is relatively small. The average 
stream length ranges from 5.61 in stringsearch to 
54.6 in adpcm_c. 

3.1. Instruction Address Trace Compression 
The compression ratio for instruction address 
traces depends on application characteristics (such as the average stream length and the 
temporal locality of the instruction streams) and the stream cache parameters. To evaluate 
the impact of the stream cache size and organization, we vary the number of entries from 
8 to 256, and the number of ways from 1 to 8. Table 2 shows the average stream cache hit 
rate and the total compression ratio (the sum of the raw instruction traces for all applica-
tions divided by the sum of all compressed traces). The results indicate that even very 
small stream caches can achieve a good compression ratio. For example, the 16x4 (16-set 
and 4-way) stream cache achieves an overall compression ratio of 44.1, i.e., about 80% of 
the compression ratio achieved with the 32x4 stream cache, which is twice as complex. 
Increasing the associativity of the stream cache improves the compression ratio. Even 
though the 16x8 stream cache yields the best overall compression ratio of 57.4, the 32x4 
represents the best price-performance tradeoff. We have tested several mapping functions 
and S.SA<5+ne:6> xor S.L<ne-1:0> performs the best, where ne=log2(NSET*NWAY). The 
chosen stream cache organization achieves a better compression ratio than gzip with the 
“fast” option on the raw instruction traces (Table 3). 

N-tuple compression can further compress the SCIT trace. We consider a 32x4 stream 
cache and a 255-entry 8-tuple history buffer. Table 3 shows the compression ratio for the 
following algorithms: stream cache compression only (SC.I), combined stream cache and 
N-tuple compression (SC.I+Ntup), gzip (default, fast, best), and bzip2 (best). The com-
bined SC.I+Ntup outperforms gzip even with the “best” option, yet it can be performed in 
real time with small on-chip hardware structures. It only requires a bandwidth of 0.25 bits 
per executed instruction on the trace port. 

3.2. Data Address Trace Compression 
The compression ratio for data address traces depends on program behavior (the number 
of memory referencing instructions and their locality) and the size and organization of the 
DASC structure. We vary the size of the DASC from 128 to 1024 entries. Table 4 shows 
the compression ratios for data address trace compression for different DASC structures 
as well as the compression ratio achieved by gzip (fast, default, best) and bzip2 (best) on 

Table 2. Stream cache hit rate
and total compression ratio 

SC.Hit Ways    
Entries 1 2 4 8 

8 55.47 59.67 61.06 59.54 
16 67.35 71.22 74.58 73.60 
32 73.99 79.51 82.45 82.82 
64 80.75 88.28 91.44 93.08 

128 84.62 94.27 97.26 98.33 
256 85.98 97.05 99.08 99.08 

CR(SC.I) Ways    
Entries 1 2 4 8 

8 16.33 17.59 16.99 15.79 
16 21.10 22.15 27.81 26.61 
32 23.88 28.02 34.40 33.96 
64 27.54 36.89 44.12 47.07 

128 28.95 47.57 54.14 57.43 
256 28.05 47.81 53.60 54.24 



the raw data address traces. The results indicate that increasing the number of entries is 
beneficial. The 1024-entry DASC achieves a compression ratio of 6.12, which is higher 
than that of fast gzip, but slightly lower than that of default and best gzip. The tagged 
DASC with the same number of entries, organized as a set-associative structure with 256 
sets and 4 ways, achieves a compression ratio of 6.6, which is as good as default gzip. 
This translates into a bandwidth of 0.26 bits per executed instruction on the trace port. A 
256-entry DASC requires 0.4 bits/instruction. 

 

Table 3. Compression ratio for instruction address traces 
   FAST DEF. BEST BEST 
 SC.I SC.I+Ntup I.GZ I.GZ I.GZ I.BZ2 
cjpeg 47.98 147.56 54.53 109.58 124.45 341.96 
djpeg 87.35 188.53 39.85 71.78 73.70 201.98 
lame 100.68 158.10 128.53 60.46 333.88 87.61 
tiff2bw 54.91 235.05 83.94 114.11 114.42 376.83 
tiff2rgba 117.53 407.14 20.26 121.30 121.98 529.62 
tiffmedian 95.91 414.37 92.32 152.81 155.47 472.93 
tiffdither 43.45 65.48 46.35 91.09 99.84 170.88 
mad 81.52 177.84 37.82 73.46 78.52 94.31 
sha 69.24 440.35 54.42 211.43 221.75 656.53 
bf_e 25.57 98.46 40.95 170.38 182.25 352.02 
rijndael_e 85.17 454.63 12.56 143.82 150.62 141.77 
ghostscript 26.57 50.91 39.68 100.64 111.24 212.54 
rsynth 56.42 91.83 30.61 46.71 48.02 143.22 
stringsearch 16.92 24.22 32.34 82.06 100.63 202.47 
adpcm_c 249.71 1583.96 107.34 233.12 233.63 1862.63 
gsm_d 46.79 174.57 59.22 85.37 87.17 165.58 
TOTAL 54.14 125.90 47.24 87.45 112.91 171.97 

Table 4. Compression ratio for data address traces 
 32 64 128 256 512 1024 FAST DEF. BEST BEST 
 DASC DASC DASC DASC DASC DASC D.GZ D.GZ D.GZ D.BZ2 
cjpeg 3.35 4.60 5.14 5.77 6.54 7.11 4.50 5.98 6.11 18.20 
djpeg 2.81 3.57 4.28 4.96 5.22 5.29 3.78 4.22 4.22 8.62 
lame 1.20 1.52 2.81 3.82 4.49 4.88 4.01 6.56 6.63 8.80 
tiff2bw 76.31 78.04 84.28 105.04 128.84 134.23 2.55 2.14 2.10 14.28 
tiff2rgba 5.98 79.81 91.24 107.49 127.05 139.57 2.79 2.10 2.09 4.06 
tiffmedian 8.64 8.70 8.74 8.81 8.87 8.89 4.37 4.40 4.53 11.16 
tiffdither 2.61 6.08 7.21 8.69 9.65 10.06 4.41 4.51 4.51 7.87 
mad 1.30 1.59 1.96 2.07 2.35 2.64 3.60 4.08 4.22 13.47 
sha 6.58 7.94 9.38 10.79 11.36 11.36 8.36 44.91 45.61 172.71 
bf_e 1.58 1.95 2.38 2.61 2.75 2.91 4.86 7.58 7.83 16.35 
rijndael_e 1.10 1.10 1.10 1.13 1.29 2.06 3.22 4.24 4.27 7.31 
ghostscript 1.07 1.19 1.56 2.19 2.93 5.27 18.58 27.21 27.46 47.42 
rsynth 1.22 1.36 1.76 3.81 8.30 32.43 21.46 24.44 25.27 57.40 
stringsearch 1.80 2.04 2.70 4.13 4.44 5.16 8.57 11.12 11.23 15.03 
adpcm_c 3.13 3.13 3.13 3.13 3.13 3.13 3.64 6.57 7.15 12.27 
gsm_d 2.67 4.48 11.30 13.60 14.81 16.78 18.05 21.60 23.29 63.53 
TOTAL 1.66 2.04 2.80 3.77 4.67 6.12 5.51 6.78 6.90 13.29 

 



3.3. Hardware Complexity 
So far we have shown that the proposed algorithms indeed achieve a good compression 
ratio ensuring that a small trace port would suffice. In addition, the compressed output 
traces are suitable for further compression in software, which allows the design of exter-
nal trace units that can capture traces over prolonged periods of time for experimental 
systems (the results are not shown due to page limitation). 

The simple hardware structures guarantee low latency of the proposed compression. 
To verify that we can perform runtime compression without stalling the processor, we ex-
tended the SimpleScalar full system simulator to support our runtime compressor. In ad-
dition to verifying the feasibility of the proposed system, this simulator is used to deter-
mine the minimal necessary depth of the instruction stream buffer (Figure 2) and the data 
address buffer (Figure 1). We assume that the stream cache latency is 1 clock cycle for 
hits and 2 clock cycles for misses. The DASC latency is 2 clock cycles for both hits and 
misses. The modeled processor corresponds to the XScale processor. The results indicate 
that the instruction stream buffer needs only 2 entries, while the data address buffer needs 
8 entries. 

Table 5 provides an estimate of 
the hardware complexity of the 
proposed structures. The overall 
size corresponds to 7629 bytes, 
which is several times smaller than 
L1 processor caches, giving further 
evidence that the structures can op-
erate at CPU clock frequencies. 

4. Conclusion 
This paper presents a set of algorithms for runtime compression of instruction and data 
address traces. Based on these algorithms we propose an on-chip hardware compressor 
capable of unobtrusive real-time instruction and data address trace compression. It 
achieves excellent compression ratios, comparable to general-purpose compression in 
software, at minimal hardware complexity. 
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