

Manuscript received December 15, 2004.
A. Milenkovic is with the Electrical and Computer Engineering

Department, University of Alabama in Huntsville, Huntsville, AL 35899 USA
(phone: 256-824-6830; fax: 256-824-6803; e-mail: milenka@ece.uah.edu).

M. Milenkovic is with IBM, Austin, TX 78758 USA (e-mail:
milena@computer.org).

E. Jovanov is with the Electrical and Computer Engineering Department,
University of Alabama in Huntsville, Huntsville, AL 35899 USA (e-mail:
jovanov@ece.uah.edu).

Abstract—Embedded system designers face a unique set of

challenges in making their systems more secure, as these systems
often have stringent resource constraints or must operate in
harsh or physically insecure environments. One of the security
issues that have recently drawn attention is software integrity,
which ensures that the programs in the system have not been
changed either by an accident or an attack. In this paper we
propose an efficient hardware mechanism for runtime
verification of software integrity using encrypted instruction
block signatures. We introduce several variations of the basic
mechanism, and give details of three techniques that are most
suitable for embedded systems. Performance evaluation using
selected MiBench, Mediabench, and Basicrypt benchmarks
indicates that the considered techniques impose a relatively small
performance overhead. The best overall technique has
performance overhead in the range 0-8%, when protecting 128-
byte instruction blocks with 16-byte signatures. With 64-byte
instruction blocks, the overhead is in the range 0-15%; the
average overhead with 8 KB cache is 1%. With additional
investment in a signature cache, this overhead can be almost
completely eliminated.

Index Terms—Computer architecture, embedded systems,
secure computing, processor design, performance evaluation,
security attacks, decryption.

I. INTRODUCTION
HE art of war teaches us to rely not on the likelihood
of the enemy’s not coming, but on our own readiness

to receive him; not on the chance of his not attacking, but
rather on the fact that we have made our position
unassailable.”
The Art of War by Sun Tzu

Embedded systems have become ubiquitous in modern
society, finding their place in a broad range of applications,
from military to health monitoring. Economic and technology
trends will further increase our reliance on the embedded
systems as we move toward new applications featuring smart
environments, built on highly interconnected and deeply
embedded computing systems. These trends further
underscore the utmost importance of embedded system

security. Failing to resist to attacks can incur significant direct
costs as well as costs in lost revenue opportunities.

A very large group of malicious attacks on applications
running on general-purpose processors comprises of different
techniques that impair the software integrity, by injecting and
then executing the malicious code instead of regularly
installed programs. The most widely known type of such
attacks is so-called stack smashing. In this attack an attacker
overflows a buffer stored on the stack with a malicious code
sequence and replaces a valid return address with the
malicious code address [1]. Various other examples of attacks
exist, such as heap overflow and format string attacks [2].

Applications targeting embedded systems may suffer from
the same vulnerabilities as applications running on general-
purpose platforms. For example, one recent Cyber Security
Bulletin from United States Computer Emergency Readiness
Team (US-CERT) reports multiple buffer overflow
vulnerabilities in a Bluetooth connectivity program for
Personal Digital Assistants (PDAs) [3]. Another US-CERT
Cyber Security Bulletin indicates an emerging trend of mobile
phone viruses [4]. As the communication and computation
capabilities of smart phones, PDAs, and other embedded
systems continue to grow, so will grow the number of
malicious attacks trying to exploit code vulnerabilities.

The multitude of code injection attacks on general-purpose
processors prompted a large number of predominantly
software-based counter-measures. The software-based
techniques can be classified into static techniques, which
detect security defects in compile time, and dynamic
techniques, which augment the code to detect attacks in
runtime. Several hardware-supported techniques have also
been proposed recently. For example, hardware protection
from buffer overflow has already found its way in main
stream general-purpose processors, AMD’s Athlon-64 and
Intel’s Itanium [5].

An acceptable performance overhead of a defense
technique in a high-speed general-purpose processor may
translate into an undesirable energy and performance
overhead in an embedded system. Whereas static software
techniques can be readily applied to embedded systems
software, the inherent overhead of the most of dynamic
techniques makes them a poor choice for embedded systems.
Hardware techniques have the potential to improve resilience
to code injection attacks with less power and performance
overhead. Hardware design of embedded systems is not
encumbered by legacy issues and complexity of general-

An Efficient Runtime Instruction Block
Verification for Secure Embedded Systems

Aleksandar Milenkovic, Milena Milenkovic, and Emil Jovanov

“T

purpose platforms, so the hardware support for different
security layers can be implemented relatively easily. For
example, ARM’s TrustZone [6] secures data on a chip by
integrating several security features with the processor core.
However, most of the existing hardware techniques are attack-
specific. We believe that there is a need for a new hardware
security layer to prevent the whole class of code injection
attacks.

In this paper we propose novel hardware-supported
techniques to ensure software integrity in embedded systems.
All proposed techniques employ a common mechanism:
instruction blocks are signed using secret hardware keys
during secure installation process, and signatures are stored
together with the code. During program execution, signatures
are recalculated from instructions and compared with the
stored values. If two values do not match, the software
integrity of the application does not hold any more, and the
application is terminated by the operating system. We classify
all such techniques and evaluate three that look the most
promising for embedded systems in terms of added
complexity, performance overhead, and power consumption:
SIGCED, SIGCEK, and SIGCEV. With these techniques the
protected instruction block is of the size of a cache block, the
block signatures are embedded in the code, and a signature is
verified only at an instruction cache (I-cache) miss. None of
the three considered techniques require compiler support. The
SIGCED technique discards signatures after successful
verification. Instruction addresses are translated in such a way
that both the processor and the I-cache see instructions at the
addresses as they would appear without embedded signatures.
With the signature size of 16 B, this technique has 0-8%
performance overhead when the protected block size is 128 B,
and 0-15% when the protected block size is 64 B, depending
on the benchmark, the instruction cache size, the memory bus
width, and the speed of the processor core relative to the
memory speed. The performance and power overhead may be
reduced if signatures are kept in a signature cache (S-cache),
as in the SIGCEK technique. An S-cache that is 25% of the
size of the corresponding I-cache may reduce the signature
verification overhead for up to 90%. The third technique, the
SIGCEV, also discards signatures, but instructions are stored
in the I-cache without address translation. With the same
cache line address aligning, the SIGCEV I-cache is actually
smaller than the original I-cache. The code is mapped into the
I-cache in a different way, so for some benchmarks the
performance with the SIGCEV even improves, whereas for
others the performance significantly deteriorates due to more
I-cache misses. Each of the three techniques is most suitable
for a particular hardware budget: if the hardware budget is
very low, the smaller SIGCEV I-cache might be an acceptable
solution. Otherwise, the consistent small overhead of the
SIGCED technique makes it a perfect candidate for efficient
runtime verification of software integrity. With larger I-caches
the performance overhead of this technique is close to 0%.
Finally, if a hardware budget is flexible but does not allow

doubling the I-cache size, extra area on the chip is well
invested into the S-cache of the SIGCEK technique.

This paper is organized as follows. Section II describes the
proposed architectures for instruction block verification.
Section III describes the experimental methodology and
Section IV discusses the results of the performance analysis.
Section V describes the related work and the last section
concludes the paper.

II. ARCHITECTURES FOR INSTRUCTION BLOCK VERIFICATION
In this section we first introduce the basic mechanism

common to all techniques for instruction block verification
discussed in this paper. We then give a taxonomy of different
techniques and discuss pros and cons. Finally, we present a
detailed description of three techniques evaluated in this
paper.

A. Basic Mechanism
 For Runtime Instruction Block Verification

All proposed architectures for instruction block verification
have the same basic mechanism (Fig. 1) and require minimal
or no compiler support.

Secure Installation. During a secure installation process,
signatures are calculated for each instruction block and added
to the binary program. The signature of an instruction block
should be relatively fast to calculate and verify. On the other
hand, it should be very hard, preferably impossible, for an
attacker to generate a correct signature for the code that he/she
wants to inject. Consequently, we decided to use an extended
version of a Multiple Input Shift Register (MISR) and
Advance Encryption Standard (AES) [7] to generate and
verify signatures. MISRs are frequently used in VLSI testing,
since they compress an array of data under test into one
signature, which is then compared to the signature of a known
correctly functioning component. A signature is obtained in
the following way: all instructions in the instruction block
pass through a MISR. A MISR is essentially an array of D
flip-flops with linear feedback coefficients (Fig. 2): a new
value of MISR is function of the current value and value of
incoming instructions. After each instruction block, the MISR
is initialized to a predefined start value, e.g., K0K1K2K3 in Fig.
2. Linear feedback connections and the start value are
determined by a secret processor key hidden in hardware. An
attacker could discover the MISR secret keys if he/she
manages to read the stored signatures, and compare them to
the corresponding instruction blocks. However, in our
approach the signatures are further encrypted using AES,
which is proved to be secure. The AES key is also stored in
hardware and thus hidden from attacker.

Program Execution. Signatures are verified in parallel with
program execution using a dedicated hardware resource
Instruction Block Signature Verification Unit (IBSVU, Fig.
3). Since the I-cache is a read-only resource, instruction block
signatures are verified only on I-cache misses. Fetched
instructions pass through a MISR register with the linear
coefficients used during secure installation, while

concurrently the corresponding signature fetched from
memory is decrypted. Hence, the decryption time is partially
or completely overlapped with the instruction block fetch
phase. The decrypted signature is compared to the final MISR
calculation: if the two values match, the instruction block is
properly installed and can be trusted. If the values differ, the
instruction block includes injected code, so a trap to the
operating system is asserted. The operating system than kills
the process whose code integrity cannot be guaranteed and
possibly audits the event.

An embedded system might be designed to run only in the
protected mode where all executing instruction blocks must be
signed, as described above. However, some applications do
not need instruction block protection. For example, some
components of the operating system may not accept external
inputs from untrustworthy channels and thus are not in danger
from code injection attacks. Such programs may be installed
without signatures and executed in the unprotected mode. The
information about required execution mode is added to the
program header.

...
inc r0
st r2,(r3)
mul r3,3
st r2,(r3)
ld r1,(r3)
add r1,r2
jmp (r1)
mov r2, r3
...

...

&-!//+)@

inc r0

st r2,(r3)

mul r3,3

st r2,(r3)

:’-|{]*+)@

ld r1,(r3)

add r1,r2

jmp (r1)

mov r2, r3

...

Secure
Installation

Program
Execution

...
&-!//+)@
inc r0
st r2,(r3)
mul r3,3
st r2,(r3)
...

MISRMISR

AESAES

MISRMISR

AESAES
MISRMISR

AESAES

Original Code Signed Code

=?

S-match
Fig. 1 Mechanism for trusted instruction execution

K0 K1 K2 K3

D

ld

Q

Q

S

R

0

1
D

ld

Q

Q

S

R

0

1
D

ld

Q

Q

S

R

0

1
D

ld

Q

Q

S

R

0

1

I0 I1 I2 I3

Init Init Init Init
Fig. 2 An implementation of a 4-bit MISR

L1I

L1DMMU

Datapath

FPUs IF

Control IBSVU

Processor

Fig. 3 Processor modifications

B. Taxonomy of Techniques
For Runtime Instruction Block Verification

Instruction block verification techniques can be classified
according to the following criteria:

• type of protected instruction blocks,
• signature placement,
• signature handling after verification,
• signature visibility to the I-cache.
The taxonomy of instruction block verification techniques

is given in Fig. 4. The name of a verification technique starts
with SIG, and the rest of the name specifies the categories to
which the technique belongs. For example, the SIGCED
technique protects instruction blocks of the size equal to the
size of an I-cache line (C) with signatures embedded in the
code (E) and disposed after verification (D).

A protected block can be of variable or fixed size. With
variable-size blocks, one signature protects a logical code unit
such as a basic block or an instruction stream (dynamic basic
block). With fixed-size blocks, one signature protects a
physical code unit of the size equal to the size of one or more
I-cache lines.

Verification techniques can be further classified depending
on the placement of signatures in a binary file. A signature can
be embedded in the code, i.e., placed before or after the
instruction block it protects. Another option is to store all
signatures in a separate table, i.e., a separate code section.

A basic block protection technique with embedded
signatures must keep signatures together with the instructions
in the I-cache, since embedded signatures cannot be extracted
from the code in the fetch stage without decoding [8]. The
name of this technique in our taxonomy is SIGBEC. With the
SIGBEC technique, the instruction decoder must be able to
tell the difference between a signature and a regular
instruction. This can be achieved by reserving one instruction
bit for the signature flag, or by using a special opcode that
indicates to the decoder that instruction words immediately
following it represent a signature.

Basic block protection techniques with signatures stored in
the separate code section work in the following way. When
the instruction decoder detects the end of a basic block that
caused at least one cache miss, the signature of that block
must be fetched from the signature code section, decrypted,
and compared to the calculated signature. These techniques
can be classified depending on whether a decrypted signature
is kept in a dedicated S-cache after verification (SIGBTK) [9],
or it is disposed of (SIGBTD). With the SIGBTD technique,
there is no overhead for signature fetch from memory if a
signature that needs to be verified is found in the S-cache.

In all techniques with protected basic blocks, signatures can
be verified after decode stage, i.e., when the last instruction in
a basic block has been decoded. These techniques require
compiler support, since disassembling in general case cannot
extract the basic block list from the executable code with
100% accuracy [10]. However, the required support is
relatively simple, since the program compilation process only

needs to generate a list of all basic blocks in the code and to
append it to the executable. Embedded signatures are
converted to no-ops in the decode stage, so they are visible
only to the dedicated signature verification unit and not to the
rest of the processor core. However, instruction addresses will
change due to embedded signatures, so the installation process
must recalculate all target addresses. Hence, the list of basic
block must also include target addresses. Further description
and evaluation of these techniques can be found in [8], [9].

Compiler support is not necessary for techniques protecting
instruction blocks of a fixed size. Moreover, the signatures
can be verified in parallel with the fetch stage, since the exact
placement of signatures and protected blocks is known in
advance. Embedded cache line signatures are not visible to the
processor, i.e., the processor is aware only of the executable
code. This invisibility is achieved with the use of a relatively
simple address translation, so that the processor “sees”
instruction addresses as if there were no embedded signatures.
The address translation can be done before or after the
instructions are stored in the I-cache, that is, the signatures can
be hidden from the I-cache or visible to it (SIGCEV in our
taxonomy). If signatures are hidden from the I-cache, they can
be disposed of after verification (SIGCED) or kept in the S-
cache (SIGCEK). As in the previously described techniques,
cache line signatures placed in a separate code section can be
discarded after verification (SIGCTD) or kept in the S-cache
(SIGCTK).

Table 1 illustrates the most important pros and cons of the
proposed techniques. Relevant parameters include the need for
compiler support; hardware complexity, i.e., the estimated
area on the chip required by a particular technique; the
projected performance overhead, based on the delays that a
technique introduces to program execution; and the
requirement to change the instruction set architecture (ISA).

basic block

embedded

cache line(s)Protected block

S-Placement S-Placement

SIGBEC

keep

table

SIGBTD

dispose

SIGBTK

keep

basic block,
embedded,
keep in
I-cache

basic block,
table, verify
& dispose

basic block,
table, verify
& keep in
S-cache

S-Visibility S-Handling

embedded table

SIGCEV

visible to
I-cache

cache line,
embedded,
visible to
I-cache

S-Handling
dispose

hidden from
I-cache

keep

cache line,
embedded,
hidden,
verify &
dispose

dispose keep

cache line,
embedded,
hidden,
verify &
keep in
S-cache

cache line,
table,
verify &
dispose

cache line,
table,
verify &
keep in
S-cache

S-Handling S-Handling

SIGCED SIGCEK SIGCTD SIGCTK

Fig. 4 Taxonomy of proposed instruction block verification techniques

Table 1 Pros and cons of different techniques

 Compiler
support

Hardware
complexity

Projected
performance

overhead

ISA
change

SIGBEC Yes Low Medium Yes
SIGBTD Yes Low Medium No
SIGBTK Yes Medium Low No

SIGCEV No; may
be used Low Low to

medium No

SIGCED No; may
be used Low Low to

medium No

SIGCEK No; may
be used Medium Low No

SIGCTD No Low Low to
medium No

SIGCTK No Medium Low No

As explained before, the techniques protecting the basic
blocks, SIGBEC, SIGBTD, and SIGBTK, require compiler
support, while the techniques protecting cache lines, SIGC, do
not. However, the SIGCE techniques (protected cache lines
with embedded signatures) may benefit from compiler
support. The branch target addresses change due to embedded
signatures, so either a compiler recalculates all target
addresses, or address translation is done in hardware. In the
rest of the paper we assume that SIGCE techniques use
hardware address translation.

All proposed techniques require a relatively simple
processor modification: a dedicated processor resource for
signature verification, the IBSVU (Fig. 3). The IBSVU
encompasses registers for buffering instructions and
signatures, support for AES decryption, MISR, and control
logic. Techniques that keep signatures in a signature cache
require additional on-chip area, so they are marked as having
Medium hardware complexity in Table 1: SIGBTK, SIGCEK,
and SIGCTK.

The overhead of fetching a signature from the memory and
its decryption is avoided if the signature is found in the S-
cache, so the techniques with the S-cache have a low
projected performance overhead. The SIGBEC and SIGBTD
techniques have potentially higher performance overhead than
the corresponding SIGC techniques. With the SIGBEC
embedded basic block signatures may reduce the number of
cache hits, leading to a medium performance overhead [8].
With the SIGCTD the access function of a table of instruction
block signatures in memory is relatively simple, whereas with
the SIGBTD a more complex hash function must be used to
access a table of basic block signatures, thus adding additional
latency.

The advantage of the basic block protection techniques is
that only instructions that will be executed are verified,
whereas only a portion of instructions in a cache line might be
really needed. All techniques but one, the SIGBEC, do not
require the change of the processor instruction set.

The techniques with protected cache line blocks and
embedded signatures (SIGCE) are the most suitable for
embedded systems. These techniques do not require compiler
support and use simpler algorithms than techniques with
signatures stored in a table, so they are simpler to implement
and less expensive.

C. Details of SIGCE techniques
In this section we will explain details of three SIGCE

techniques. These techniques are:
• SIGCED – signatures are invisible to the I-cache and

discarded after verification;
• SIGCEK – signatures are invisible to the I-cache and

kept in the S-cache;
• SIGCEV – signatures are visible to the I-cache.
We assume that all three techniques do not use compiler

support, i.e., the original binary is modified during the secure
installation process only by inserting signatures and necessary
padding. If the last instruction block is shorter than the cache
line, it is padded by instructions that do not change the state of
the processor. If the code with embedded signatures is larger
than a page size, it must be page aligned, so additional
padding is necessary for each page but the last.

1) SIGCED

The flow of the instruction fetch phase is depicted in Fig. 5.
The value of the next program counter (PC) is used to access
the I-cache. Note that without loss of generality we assume
that the I-cache is indexed by virtual addresses and virtually
tagged. This is a frequent case in embedded processor caches,
for example in Intel’s Xscale processor [11]. In the case of a
cache hit, the instruction is fetched from the I-cache and there
is no need for instruction verification. In the case of an I-
cache miss, we need to calculate the address of the instruction
block to be fetched in the virtual memory. The instruction
block address has changed because of signature embedding
and added padding. If the padding is not necessary, i.e., one
memory page can be completely filled with the protected
instruction blocks and corresponding signatures, the true
virtual address tPCtemp can be calculated as in (1). The value
SigSize is the signature size, BlockSize is the protected block
size, and TextBase is the starting address of the text segment
for a given program.

)
BlockSize

ePC-TextBas(SigSize PCtPCtemp 1+⋅+= (1)

The size of the padding PagePad is given in (2), with
PageSize denoting the memory page size. The final true
address tPC can be calculated as in (3).

)(mod SigSizeBlockSizePageSizePagePad += (2)

PagePad
PagePadPageSize-

xtBasetPCtemp-TetPCtemptPC ⋅+= (3)

For example, consider a case where the I-cache line is
128 B, the signature size is 16 B, the page size is 4096 B, the

TextBase address is 131072, and the value of the PC of the
instruction to be fetched as seen by the processor is 135200.
In the original code without signatures, the size of a page is
equal to the size of 32 instruction blocks. In the signed code,
the size of a protected block together with its signature is
144 B. Hence, 28 signed blocks can fit in one page, filling
4032 out of 4096 B. Since one instruction block cannot be
split between two pages, the code must be padded so that the
remaining 64 B in a page are unused. All instruction blocks
must have the same size, so if the last instruction block in a
binary is shorter than the I-cache block, it is padded with
randomly chosen instructions that do not change the state of
the processor.

When a correct virtual address is calculated, the translation
look-aside buffer (TLB) is accessed for virtual to physical
address translation. In all considered SIGCE techniques a
signature is inserted into the code just before the
corresponding protected instruction block, so the signature
can be fetched first. While instructions of a protected basic
block are being fetched, the signature is decrypted using a key
hidden in the hardware. Each fetched instruction passes
through the MISR register, and the final MISR output is
compared to the decrypted signature. If the calculated and the
decrypted signature differ, a trap to operating system is
asserted; otherwise, the instructions proceed with execution.

If the time needed to fetch a cache line from memory is
greater than or equal to the decryption time, the decryption
latency is hidden. The MISR calculation is completely
overlapped with instruction fetch. Since the instruction
addresses in the I-cache are the same as without signatures,
the number of cache misses for the code with embedded
signatures is the same as for the original code. Hence, the
performance overhead of the SIGCED technique is due only
to the additional number of processor cycles during instruction
fetch, tFetchOverhead: the number of cycles needed for address
translation tTrans and time needed to fetch a signature from the
memory, tSigFetch, as shown in (4). The MemBusWidth value is
the width of the data bus between memory and the I-cache in
bytes. The tDbus value is the time needed for one data bus
transfer.

DbusTrans

SigFetchTransedFetchOverh

t
hMemBusWidt

SigSizet

ttt

⋅+=

+=
 (4)

The signature verification is done by the IBSVU, as
illustrated in Fig. 6. Signature bytes are stored only in the
SIGM buffer and then decrypted, while instruction bytes go to
both the MISR logic and to the I-cache. An internal IBSVU
signal, sig, controls the path of data from the data bus.

I-Cache Miss?

Address Translation

Go to decode
& execute

Virtual to Physical Address Translation

Decrypt Signature
from Memory

Using a Hidden Key
Calculate Instruction

Block Signature Using
MISR and a Hidden Key

Decrypted Signature == Calculated Signature

Trap OS
Yes

I-Cache Lookup(PC)

Fetch Signature

Fetch Instructions

Cache Line Fetched

No

No

No

Yes

Yes

Go to decode
& execute
Fig. 5 SIGCED: Signature verification control flow.

Dotted lines indicate parallel tasks: AES decryption and MISR calculation are done concurrently with instruction block fetch.
Shaded blocks indicate steps needed to support instruction block verification.

……

……

……

……

Data bus

SIGM

AES
Decrypt

……

……

……

……

MISR
I-Cache

sig

sig

=?

S-match

Fig. 6 SIGCED: Instruction Block Signature Verification
Unit

2) SIGCEK

A portion of the SIGCED overhead can be avoided if
signatures are not discarded after verification, but kept in a
dedicated cache-like processor resource – the S-cache. Fig. 7
shows the flow of the instruction fetch process for the
SIGCEK technique. With this technique, an I-cache lookup is
performed together with the corresponding S-cache lookup. In
the case of an I-cache miss, the instruction block signature is
fetched only if it is not found in the S-cache. Otherwise, if the
decrypted signature is in the S-cache, the fetch performance
overhead tFetchOverhead in (4) is reduced to the number of cycles
needed for address translation tTrans. The SIGCEK technique
has the potential to reduce not only the performance overhead
of instruction signature verification, but also to reduce the
power overhead due to signature decryption, since a cached
signature is already decrypted. Fig. 8 shows a block-scheme
of the IBSVU for the SIGCEK technique. A signature read
from the memory and decrypted or read from the S-cache is
compared to the final MISR output.

I-Cache Miss?

Address Translation

Virtual to Physical Address Translation

Decrypt Signature
from Memory

Using a Hidden KeyCalculate Instruction
Block Signature Using

MISR and a Hidden Key

Trap OS
Yes

I-Cache Lookup (PC)
S-Cache Lookup (PC)

Fetch Signature

Fetch Instructions

Cache Line Fetched

No

No

No

Yes

S-Cache Miss?

Yes

No

Yes

Decrypted Signature == Calculated Signature

Go to decode
& execute

Go to decode
& execute

Fig. 7 SIGCEK: Signature verification control flow
Dotted lines indicate parallel tasks: AES decryption and MISR calculation are done concurrently with instruction block fetch.

Shaded blocks indicate steps needed to support instruction block verification

…… ……
…… ……

……

……

……

……

SIGM

AES
Decrypt

……

……

……

……

MISR

…… ……

S-Cache I-Cache

S-cache_hit

sig

sig

Data bus

=?

S-match

Fig. 8 SIGCEK: Instruction Block Signature Verification Unit

3) SIGCEV

In all three SIGCE techniques, the virtual addresses of
instructions as seen by the processor are the same for the code
with and without embedded signatures. It means that after
address translation a virtual address of an instruction in the
protected code is equal to the virtual address of that
instruction in the original code. However, the instructions can
be stored in the instruction cache with or without address
translation. Two previous techniques, the SIGCED and
SIGCEK, use translated virtual addresses in the cache, so both
the processor and the cache see only the original virtual
addresses. Another option is the SIGCEV technique:
translated addresses are used only in the processor, and the
instruction cache sees the non-translated virtual address space
that includes the signatures and padding. Hence, in the
SIGCEV, the address translation must be done before each I-
cache lookup. The advantage of this technique is that the
translation in most cases can be done in advance, together
with the prediction of the next instruction address. The only
case when the performance overhead due to the translation
cannot be hidden is when a branch is mispredicted.

A simple and fast cache access mechanism requires both the
cache line size and a cache line address to be a power of two.
Hence, in the SIGCED and SIGCEK techniques, the size of a
protected block is the power of two. Since instructions in the
SIGCEV technique are stored in the I-cache using non-
translated virtual addresses, the sum of sizes of a protected
block and its signature is a power of two. For example, if an I-
cache line size is 128 bytes and cache line addresses are
aligned at 128 bytes, we can store 128 instruction bytes in one
cache line in the SIGCED and SIGCEK, and 128 – SigSize
bytes in the SIGCEV cache. Although signatures are visible to
the SIGCEV I-cache, they are never stored in the cache, so the
cache line size and cache size are actually smaller then the
corresponding SIGCED/SIGCEK values with same cache line
alignment. Another consequence of the requirement that the

sum of the protected block size and signature size is a power
of two is that the SIGCEV technique does not require page
alignment padding, thus simplifying address translation.

III. EXPERIMENTAL METHODOLOGY
We analyze performance of the SIGCEK, SIGCED, and

SIGCEV techniques relative to the Base configuration; the
Base system does not include signature verification. As a
measure of performance we use the average number of
processor cycles needed for one instruction (CPI). We also
consider the code size increase for different protected block
sizes.

Experimental environment includes a program for
emulating the secure installation and modified SimpleScalar
ARM simulators [12] for each considered technique. To
emulate the secure installation process, we have developed a
program that embeds instruction block signatures and
necessary padding in code (executable) sections of programs
in the ELF format. To evaluate the proposed techniques, we
modified the SimpleScalar ARM simulators to be able to
execute signed ELF binaries. We also added latencies due to
the signature verification and the address translation, and the
S-cache for the SIGCEK.

In order to evaluate sensitivity of the proposed techniques
to different system configurations, we varied the following
simulation parameters:

• the I-cache size (1, 2, 4, and 8 KB);
• the I-cache line size (64 and 128 bytes);
• the width of a bus between memory and the I-cache

(32 and 64 bits);
• the speed of processor core relative to memory (fast and

slow).
The D-cache (data cache) and I-cache have the same size

and organization. The values of other simulator parameters are
shown in Table 2. We assume that the AES decryption latency
with a 128-bit key is 12 cycles for slow, and 22 cycles for fast

processor core, which are the speeds that can be achieved with
current optimized ASIC solutions [13]. Since a signature is
inserted at the beginning of the corresponding protected
instruction block, signature decryption is finished before the
protected block is fetched, so the decryption latency is hidden
in all evaluated system configurations.

Table 2 Simulator parameters
Simulator parameter Value

Branch predictor type Bimodal
Branch predictor table size 128 entries, direct-mapped
Return address stack size 8 entries
Instruction decode bandwidth 1 instruction/cycle
Instruction issue bandwidth 1 instruction/cycle
Instruction commit bandwidth 1 instruction/cycle
Pipeline with in-order issue True

I-cache/D-cache 4-way, FIFO replacement,
first level only

I-TLB/D-TLB 32 entries, fully associative,
FIFO replacement

Execution units 1 floating point, 1 integer
Memory fetch latency
(first chunk/other chunks)

12/3 cycles for slow core,
24/6 cycles for fast core

Branch mispediction latency 2 cycles for slow core,
3 cycles for fast core

TLB latency 30 cycles for slow core,
60 cycles for fast core

Table 3 Benchmark description

Benchmark Suite Description
blowfish_dec MiBench Blowfish decryption
blowfish_enc MiBench Blowfish encryption
cjpeg MiBench JPEG compression
djpeg MiBench JPEG decompression
ecdhb Basicrypt Diffie-Hellman key exchange
ecdsignb Basicrypt Digital signature generation
ecdsverb Basicrypt Digital signature verification
ecelgdecb Basicrypt El-Gamal decryption
ecelgencb Basicrypt El-Gamal encryption
ispell MiBench Spell checker
mpeg2_enc MediaBench MPEG2 compression
qsort MiBench Quicksort
rijndael_dec MiBench Rijndael decryption
rijndael_enc MiBench Rijndael encryption
stringsearch MiBench String search

We used benchmarks from several benchmark suites for
embedded systems: MiBench [14], MediaBench [15],
Basicrypt [16] (Table 3). All benchmarks but mpeg2_enc use
the largest possible provided input. Mpeg2_enc uses the
provided test input. Table 4 shows the total size of the original
binary and the total size of the executable code sections in
bytes, and the number of executed instructions. In a binary file
with embedded signatures, only the size of executable code
sections will change, depending on the technique used and the
size of the protected blocks and signatures.

Since the signature verification is done only at an I-cache
miss, the benchmarks are selected so that most of them have a
relatively high number of I-cache misses for at least some of
the simulated cache sizes. Table 5 shows the number of I-

cache misses per 1000 instructions, for cache lines of 64 and
128 B, and cache sizes of 1, 2, 4, and 8 KB. Since all
benchmarks have very low I-cache miss rate in a 8 KB cache,
this was the largest cache size that we simulated. The size of
the MISR and generated signatures is 128 bits (16 bytes),
which is a minimum size for AES encryption.

Table 4. Benchmark code size and executed instructions

Benchmark Code size
[B]

Text segment
size [B]

Executed
instructions

 [million]
blowfish_dec 1,032,731 190,900 544.0
blowfish_enc 1,032,731 190,900 544.0
cjpeg 1,261,485 298,916 104.6
djpeg 1,274,670 311,108 23.4
ecdhb 1,102,298 258,188 122.5
ecdsignb 1,254,373 310,068 131.3
ecdsverb 1,254,519 310,212 171.9
ecelgdecb 1,102,207 258,092 92.4
ecelgencb 1,102,271 258,156 180.2
ispell 1,238,144 240,972 817.7
mpeg2_enc 1,318,326 317,504 127.5
qsort 1,180,697 252,284 737.9
rijndael_dec 1,045,273 199,364 307.9
rijndael_enc 1,045,273 199,364 320.0
stringsearch 1,025,446 188,484 3.7

Table 5. I-cache misses per 1000 instructions for the Base
case

Benchmark Cache line 64 B Cache line 128 B
 1 K 2 K 4 K 8 K 1 K 2 K 4 K 8 K

blowfish_dec 22.2 5.6 0.1 0.0 13.7 3.8 0.8 0.0
blowfish_enc 22.2 4.6 0.1 0.0 12.9 3.8 0.8 0.0
cjpeg 6.2 1.6 0.3 0.1 6.6 1.7 0.3 0.1
djpeg 8.4 4.0 1.1 0.2 6.2 2.9 1.0 0.2
ecdhb 20.3 6.0 2.3 0.1 14.6 6.2 1.6 0.2
ecdsignb 15.9 4.6 1.7 0.1 17.3 4.8 1.2 0.1
ecdsverb 21.3 5.2 2.0 0.3 16.9 5.3 1.5 0.3
ecelgdecb 26.2 0.3 0.0 0.0 22.4 2.5 0.0 0.0
ecelgencb 23.4 3.2 1.1 0.1 18.7 4.4 0.8 0.1
ispell 61.7 51.1 21.7 2.9 40.4 35.7 20.9 3.5
mpeg2_enc 1.8 0.8 0.3 0.2 2.1 0.6 0.3 0.1
qsort 44.2 29.4 22.2 5.4 32.8 21.1 15.3 7.4
rijndael_dec 70.6 68.6 68.0 6.6 41.6 40.3 37.6 9.9
rijndael_enc 73.7 70.5 68.0 8.1 42.6 39.4 38.1 11.2
stringsearch 55.3 35.4 12.9 3.7 38.0 24.3 10.6 1.9

IV. RESULTS
We first evaluated the code size increase due to embedded

signatures. For 128 B cache lines, the signatures increase the
size of executable code sections by 12.5% for the SIGCED
and SIGCEK techniques. With the SIGCEV the executable
code is increased by 14.28%. However, an ELF binary
typically includes other sections, such as headers, initialized
data, symbol table, and debugging information, so the impact
of signatures on the total binary size will be smaller. In our
benchmarks compiled with the ARM gcc cross-compiler and
the –static option, the code sections do not make more than
25% of the total binary, so the total program size increases

from 2.6 to 3.5% only. With 64 B cache line, the total
program size for considered benchmarks increases 4.7-6.3%
for the SIGCED and 6.1-8.3% for the SIGCEV technique.

The results of the performance analysis are presented as
follows. We first analyze the performance overhead of the
SIGCED, SIGCEK, and SIGCEV techniques assuming the
initial configuration with a slow processor core and a 32-bit
memory data bus. Next, we examine performance of the
SIGCEK technique as a function of the size of the S-cache.
Finally, we explore how performance of the SIGCED and
SIGCEV techniques depends on changes of the processor core
speed, memory bus width, and the size of protected blocks.

A. Performance overhead with slow core, 32-bit bus,
and 128 B I-cache line

Fig. 9 and Fig. 10 show the SIGCED, SIGCEK, and
SIGCEK CPI normalized to the Base case, for I-cache sizes of
1 K and 4 K. The CPI for the Base case is given in Table 6.

Cache line 128B, size 1K, 32-bit bus, slow core

0.90
0.95

1.00
1.05
1.10

1.15
1.20
1.25

1.30
1.35

blo
wfis

h_
dec

blo
wfis

h_
enc

cjp
eg

djp
eg

ec
dh

b

ec
ds

ignb

ec
ds

ve
rb

ec
elg

de
cb

ec
elg

en
cb

isp
ell

mpe
g2_

en
c

qs
ort

rijn
dae

l_d
ec

rijn
dae

l_e
nc

str
ings

earc
h

av
era

ge

C
PI

 n
or

m
al

iz
ed

 to
 B

as
e SIGCED

SIGCEK
SIGCEV

 Fig. 9 CPI normalized to the Base for slow processor core,

32-bit memory bus, cache size 1 K, cache line 128 B

Cache line 128B, size 4K, 32-bit bus, slow core

0.90
0.95

1.00
1.05

1.10
1.15

1.20
1.25

1.30
1.35

blo
wfis

h_
dec

blo
wfis

h_
enc

cjp
eg

djp
eg

ec
dh

b

ec
ds

ignb

ec
ds

ve
rb

ec
elg

de
cb

ec
elg

en
cb

isp
ell

mpe
g2_

en
c

qs
ort

rijn
dae

l_d
ec

rijn
dae

l_e
nc

str
ings

earc
h

av
era

ge

C
PI

 n
or

m
al

iz
ed

 to
 B

as
e SIGCED

SIGCEK
SIGCEV

Fig. 10 CPI normalized to the Base for slow processor core,

32-bit memory bus, cache size 4 K, cache line 128 B

The results indicate a very low performance overhead of the
SIGCED technique. Even with the small 1 K I-cache, this
technique increases CPI in the range 0.8-7.4%, with 8 out of
15 benchmarks having more than 5% increase. With the 4 K I-
cache, CPI increases for more than 5% for only 3 benchmarks,
since the influence of signature verification overhead is
reduced with I-cache miss reduction.

The absolute CPI increase for the SIGCED technique
depends on the number of I-cache misses given in Table 5:
more cache misses means more signature verifications, that is,
increased performance overhead. However, the CPI
normalized to the Base case does not follow the number of I-
cache misses, since for an application with a relatively large
number of I-cache misses a relative CPI increase may be
smaller than for an application with fewer cache misses. For
example, with the 1 K I-cache rijndael_enc has a 3% CPI
increase and ecdhb has a 5.8% increase, whereas rijndael_enc
has 42.58 I-cache misses per 1000 instructions, and ecdhb
only 14.57. This can be easily explained by the fact that the
Base CPI for this system configuration is 15.51 for
rijndael_enc and 3.28 for ecdhb, and the absolute CPI
increase with the SIGCED technique is 0.19 for ecdhb and
0.47 for rijndael_enc.

Table 6 CPI for the Base configuration, cache line 128 B,
memory bus 32 bits, slow processor core

Benchmark 1 K 2 K 4 K 8 K
blowfish_dec 5.49 4.55 3.03 2.30
blowfish_enc 5.42 4.55 3.03 2.30
cjpeg 5.21 3.64 2.99 1.81
djpeg 8.39 5.17 3.41 1.86
ecdhb 3.28 2.28 1.77 1.62
ecdsignb 3.36 2.21 1.81 1.70
ecdsverb 3.37 2.26 1.83 1.71
ecelgdecb 4.20 1.99 1.78 1.78
ecelgencb 3.80 2.14 1.77 1.70
ispell 9.57 7.93 5.48 2.65
mpeg2_enc 3.39 2.42 1.75 1.52
qsort 5.59 3.97 3.16 2.31
rijndael_dec 15.65 12.88 9.06 4.47
rijndael_enc 15.51 12.51 8.89 4.41
stringsearch 7.95 5.57 3.18 2.00

As explained in Section II, the SIGCED overhead can be

reduced if signatures are kept in the S-cache, i.e., with the
SIGCEK technique. In order to be able to keep some
signatures when the corresponding protected blocks are
evicted from the I-cache, the S-cache must have greater
associativity and/or more entries than the I-cache. The S-
caches in Fig. 9 and Fig. 10 have twice as many entries as the
corresponding I-caches, fully associative organization, and the
LRU replacement policy. The total size of the S-cache is ¼ of
the I-cache size. The SIGCEK CPI increase is in the range
0.3-4.8% with the 1 K I-cache and 0.006-2.5% with the 4 K I-
cache. The SIGCEK reduces the performance overhead of the
SIGCED for 8-91% and 50-92% with the 1 K and 4 K I-
cache, respectively.

The normalized CPI for the SIGCEV technique is in the
range 0.95-1.14 with 1 K I-cache, and 0.99-1.33 with the 4 K
I-cache. The SIGCEV protected block size in these
experiments is 112 B, so the actual I-cache size is 0.875 of the
Base I-cache size. Since the SIGCEV I-cache is smaller, for
most benchmarks it has more cache misses than the Base I-
cache (Table 5, Table 7). The large SIGCEV performance

overhead of 14% for mpeg2_enc with 1 K I-cache and 33%
for stringsearch with the 4 K I-cache is due to the significant
relative increase in the number of cache misses.

However, the SIGCEV may have even a lower CPI than the
Base case. The SIGCEV I-cache has a different mapping
function, so the number of I-cache misses may be lower,
especially in small caches with more capacity misses. If such a
benchmark also has a relatively low branch misprediction rate,
the SIGCEV might marginally outperform the Base case. This
is the case with the ecdsignb and ecdsverb benchmarks with
the 1 K I-cache, and blowfish with the 4 K I-cache. It should
be noted that the difference in the number of I-cache misses
between the Base case and the SIGCED may be reduced if
both the original code and the code with signatures are
transformed to optimally use available cache resources, as
described in [17].

It is interesting to note that the SIGCEV technique
outperforms the SIGCED for 11 out of 15 benchmarks with
the 1 K I-cache. This is due to the relatively large number of
cache misses in such a small cache, and to the different
instruction block address translation in the SIGCED and
SIGCEV techniques. With the SIGCEV, the address
translation latency is hidden except when a branch is
mispredicted, and it is never hidden with the SIGCED. Hence,
the overhead of the increased number of I-cache misses in the
SIGCEV may be less than the overhead of the address
translation in the SIGCED. For example, for ecelgdecb and
1 K I-cache the SIGCED has 4.48 CPI, and the SIGCEV has
4.23 CPI. The number of I-cache misses is 22.4 per 1000
instructions with the SIGCED, and only slightly larger with
the SIGCEV, 23.7 per 1000 instructions.

Table 7. I-cache misses per 1000 instructions for SIGCEV

Benchmark Cache line 64 B Cache line 128 B
 1 K 2 K 4 K 8 K 1 K 2 K 4 K 8 K
blowfish_dec 29.2 16.7 0.1 0.0 14.9 9.8 0.8 0.0
blowfish_enc 28.5 14.4 3.1 0.0 15.0 6.9 0.8 0.0
cjpeg 10.8 3.3 0.4 0.1 8.8 2.1 0.3 0.1
djpeg 21.5 6.9 2.6 0.3 7.0 3.5 1.5 0.2
ecdhb 30.7 13.7 4.9 0.5 17.2 8.7 2.2 0.2
ecdsignb 24.2 10.8 3.8 0.4 13.5 6.7 1.7 0.2
ecdsverb 25.9 11.5 4.2 0.7 14.5 7.2 1.9 0.3
ecelgdecb 40.5 9.1 0.2 0.0 23.7 6.9 0.1 0.0
ecelgencb 35.8 11.5 2.6 0.3 20.5 7.8 1.2 0.1
ispell 76.1 65.8 32.8 6.9 48.1 42.9 23.3 5.9
mpeg2_enc 8.7 1.3 0.6 0.2 6.9 0.8 0.3 0.1
qsort 52.4 38.9 29.0 13.5 31.7 25.1 18.0 9.7
rijndael_dec 89.7 85.8 85.8 33.8 44.2 41.6 40.3 10.0
rijndael_enc 88.9 87.0 86.4 45.6 47.0 43.8 41.3 22.9
stringsearch 69.0 43.6 19.5 0.3 44.4 32.9 20.8 5.5

B. Sensitivity of SIGCEK to the S-cache size

The very low performance overhead of the SIGCEK
technique with the S-cache parameters as described in the
previous section prompted us to experiment with a smaller S-
cache. We call the S-cache used in the previous experiments

(Fig. 9, Fig. 10) the medium-size S-cache. A small-size S-
cache in our further experiments is half of the size of the
medium S-cache. That is, the small S-cache has the same
number of entries as the I-cache, fully associative
organization, and the LRU replacement policy. The size of the
small S-cache is 1/8 of the corresponding I-cache size.

Fig. 11 shows the CPI for the SIGCEK with the small S-
cache normalized to the SIGCEK CPI with the medium S-
cache, for two system configurations (1 K and 4 K I-cache).
Although investing more hardware resources into the S-cache
always reduces performance overhead, we can observe that in
some cases the medium-size S-cache only marginally
outperforms the small S-cache, e.g., for cjpeg with the 4 K I-
cache and for rijndael_dec with the 1 K I-cache. This can
happen due to one of the two following reasons. If a
benchmark has a very low I-cache miss rate for a certain cache
size, e.g. cjpeg with 4 K I-cache (Table 5), employing a
medium-size S-cache will not significantly influence the CPI,
since most cache misses are cold misses. If a benchmark has a
relatively large miss rate for both the considered cache size
and the next larger size, e.g., rijndael_dec with the 1 K
I-cache, the medium-size S-cache impact will also be low,
since it will not be able to retain the signatures of evicted
cache blocks. In the future work we plan to explore possible
ways to increase the S-cache hit rate. One solution would be
to use a different replacement policy, for example to replace a
signature whose corresponding I-cache block was the least
recently evicted.

SIGCEK: small S-cache, I-cache line 128B,
32-bit bus, slow core

0.99

1.00

1.01

1.02

1.03

1.04

1.05

1.06

blo
wfis

h_
dec

blo
wfis

h_
enc

cjp
eg

djp
eg

ec
dh

b

ec
ds

ignb

ec
ds

ve
rb

ec
elg

de
cb

ec
elg

en
cb

isp
ell

mpe
g2_

en
c

qs
ort

rijn
dae

l_d
ec

rijn
dae

l_e
nc

str
ings

earc
h

av
era

ge

C
PI

 n
or

m
al

iz
ed

 to
 S

IG
C

EK
w

ith
 m

ed
iu

m
 S

-c
ac

he

1K
4K

Fig. 11 SIGCEK: small vs. medium-size S-cache

C. Sensitivity of SIGCED and SIGCEV to core speed,
 memory bus width, and protected block size

The number of processor cycles needed for the signature
fetch will decrease with the wider data memory bus, and
increase with the faster processor core, so we may expect
similar behavior from total signature verification overhead.
Another interesting parameter is the cache line size. Although
the size of a program with shorter protected blocks will
increase more due to embedded signatures, such program may
have a lower CPI if the number of I-cache misses is reduced
with shorter cache lines. We performed experiments with all
possible variations of these parameters, that is, with slow and

fast core, 32- and 64-bit memory bus, 64 and 128 B I-cache
block, and various I-cache sizes.

We may group the benchmarks in two groups according to
the number of cache misses with all considered cache sizes.
The influence of the bus width, the core speed, and the cache
line size will be discussed for one benchmark from each
group: ecdhb with a relatively low number of cache misses,
and rijndael_enc which is one of the two benchmarks with the
largest number of cache misses per 1000 instructions for each
cache size and line size (Table 5).

Fig. 12 and Fig. 13 show the SIGCED CPI normalized to
the Base case for ecdhb and rijndael_enc. As expected, the
SIGCED technique has the largest impact on performance
with the 64 B cache line size, the 32-bit bus, and a fast
processor core. However, even with this system configuration
the SIGCED performance overhead is never more than 13%
for both benchmarks. If the number of I-cache misses is very
low, as it is for ecdhb in the 8 K I-cache, the SIGCED
overhead does not depend on system parameters, since it is
always close to zero.

ecdhb: SIGCED

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

32/slow 64/slow 32/fast 64/fast 32/slow 64/slow 32/fast 64/fast

System configuration: data bus width/processor core speed

C
PI

 n
or

m
al

iz
ed

 to
 B

as
e

1K
2K
4K
8K

Line size 64B Line size128B

Fig. 12 SIGCED: CPI normalized to the Base, ecdhb

rijndael_enc: SIGCED

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

32/slow 64/slow 32/fast 64/fast 32/slow 64/slow 32/fast 64/fast

System configuration: data bus width/processor core speed

C
PI

 n
or

m
al

iz
ed

 to
 B

as
e

1K
2K
4K
8K

Line size 64B Line size128B

Fig. 13 SIGCED: CPI normalized to the Base, rijndael_enc

It is interesting to note that the normalized SIGCED CPI
decreases with larger caches for ecdhb and not for
rijndael_enc. The rijndael_enc benchmark has a very large
number of I-cache capacity misses in 1, 2, and 4 K caches,
such that the number of I-cache misses is only slightly
reduced with the cache size increase before the 8 K size
(Table 5). Hence, the absolute overhead of the SIGCED
technique does not considerably decrease with the cache size

increase. However, even a relatively small reduction in the
number of cache misses significantly improves the Base CPI,
so the normalized CPI for the SIGCED actually grows, up to
the 4 K cache size.

Fig. 14 and Fig. 15 show the SIGCEV CPI normalized to
the Base case for ecdhb and rijndael_enc. For both
benchmarks the SIGCEV has more I-cache misses than the
Base case (Table 5, Table 7), so it always has lower
performance. For both benchmarks the SIGCEV is more
sensitive to configuration change than the SIGCED, since a
narrower bus and a faster core increase both the cache miss
latency and the latency due to signature fetch. Similarly to the
SIGCED, the SIGCEV with longer cache line has smaller
performance overhead.

The rijndael_enc benchmark has a very large SIGCEV
performance overhead with the 8 K I-cache. This happens
because the number of I-cache misses has doubled compared
to the Base case. Moreover, there is a sharp drop in the Base
CPI for 8 K I-cache (Table 6), so the relative CPI increase is
even more noticeable.

ecdhb: SIGCEV

0.90
1.00
1.10
1.20
1.30
1.40
1.50
1.60
1.70
1.80
1.90
2.00

32/slow 64/slow 32/fast 64/fast 32/slow 64/slow 32/fast 64/fast

System configuration: data bus width/processor core speed

C
PI

 n
or

m
al

iz
ed

 to
 B

as
e

1K
2K
4K
8K

Line size 64B Line size128B

Fig. 14 SIGCEV: CPI normalized to the Base, ecdhb

rijndael_enc: SIGCEV

0.90
1.00
1.10
1.20
1.30
1.40
1.50
1.60
1.70
1.80
1.90
2.00

32/slow 64/slow 32/fast 64/fast 32/slow 64/slow 32/fast 64/fast

System configuration: data bus width/processor core speed

C
PI

 n
or

m
al

iz
ed

 to
 B

as
e

1K
2K
4K
8K

Line size 64B Line size128B

Fig. 15 SIGCEV: CPI normalized to the Base, rijndael_enc

We may conclude that if an embedded system has a low
hardware budget, the SIGCEV technique has the best price-
performance tradeoff, since in small caches it outperforms the
SIGCED for most benchmarks and employs less hardware
resources. However, the SIGCED is better for systems with
larger caches. With 25% larger hardware budget invested in
the S-cache, the SIGCEK technique has a very low

performance overhead across all considered system
configurations.

V. RELATED WORK
Techniques for countering code injection attacks can be

classified in two categories: those that are software-based and
those that require some hardware support. The software
techniques can be further classified into static techniques and
dynamic techniques.

Static code analysis can find a significant number of
security flaws and suggest where changes in the code should
be made. However, it is impossible to discover all
vulnerabilities in any given program, since the problem of
static analysis is generally undecidable [18]. Completely
automated tools for detection of security-related flaws must
choose between precise but not scalable analysis and
lightweight analysis that may produce a lot of false positives
and false negatives [19]. The need for precise automated
analysis can be alleviated if programmers adds specially
formulated comments about constraints [20], [21], but adding
annotations can be as error prone as programming itself and
puts additional burden on programmers.

Dynamic software techniques encompass several groups of
techniques that detect and/or prevent attacks in run-time. One
group of techniques augments the code with various run-time
checks [10], [22], [23], [24], [25]. Another group comprises of
“safe dialects” of language C, which restrict the use of unsafe
constructs, perform static analysis and/or runtime checks,
and use garbage collection or region-base memory
management [26], [27], [28]. Another approach is
obfuscation: segment addresses, jump addresses, or the
complete code can be scrambled, making it difficult for an
attacker to succeed [29], [30], [31], [32]. Several researchers
suggest intrusion detection by monitoring the program
behavior, such as monitoring the sequences of system calls of
a program [33], [34], or the values of monitoring performance
registers [35]. Dynamic software techniques often require
recompilation, so they are not readily applicable to legacy
code. Moreover, since these techniques increase the code size
and the number of instructions executed, they may incur
significant performance and power overhead.

Some of the performance overhead may be reduced with
hardware support. Xu et al. propose an architectural support
against the stack smashing attack: a return address is saved on
both the Secure Return Address Stack and on the “regular”
stack [36]. An attack is detected if the two addresses do not
match. Similar efforts expand this idea [37], [38]. [39]. The
secure stack does not have to be implemented in hardware:
with the Dynamic Instruction Stream Editing (DISE), the
‘shadow” stack is kept in a protected area on the heap [40].
DISE is a one-to-many instruction macro expander with
programmable rewriting rules: to protect return addresses
from the attack, call and return instructions are dynamically
rewritten in the runtime to write/verify data from the shadow
stack. Another approach is to achieve redundancy of return

addresses not by duplicating stack, but by replicating cache
lines with return address [41]. When a return is executed, the
value of replicated data is compared to the return address. The
main drawback of these techniques is that they provide
protection from only one type of attack. Techniques such as
specific randomized instruction sets for each process may
prevent code injection in general [42], but at the price of a
significant increase in execution time.

A successful buffer overflow attack can overwrite not only
return addresses on the stack, but any function pointer. Tuck
et al. [43] propose to protect code pointers from both read and
write buffer overflow attacks by encrypting them. Code
pointers are encrypted and decrypted using special
instructions, encrypt-stores and decrypt-loads. The authors
propose three levels of encryption: XOR with a secret key,
XOR with a value from random permutation table, or a Feistel
network. Decrypted values are cached in the L1 cache
memory. Another technique, HSAP, also encrypts function
pointers, but only using a simple XOR with a secret key [44].
The HSAP also protects from stack smashing by
implementing a hardware boundary check for stack variables.

A framework that encompasses secure installation and
secure program execution was first proposed by Kirovski et al.
(Secure Program Execution Framework, SPEF [45]).
However, our work expands their initial idea and offers a
more efficient implementation. Kirovski et. al do not store the
calculated instruction block signature as we do, but transform
instruction blocks according to the encrypted hash values of
transformation invariants. During installation, a
transformation-invariant (TI) hash value is calculated for each
instruction block and is encrypted using AES and a secret
processor key; the encrypted hash value determines the
transformation of the instruction block. The chosen
transformation belongs to a set of transformations that do not
change the correct program behavior, such as instruction
scheduling, basic block reordering, branch-type selection, and
register permutation. During execution, the verifier
component calculates the TI hash for every instruction block
that is fetched after an I-cache miss. It then encrypts the
hashed value, and verifies whether the obtained
transformation is equal to the actual code. The performance
overhead can be reduced if TI hash values are kept in the TI-
cache. The advantage of this approach is a minimal increase in
the code size. However, our techniques are less complex than
SPEF, so they have less performance overhead: for
MediaBench benchmarks, the authors report overhead 12.7-
24.7%, and 7.5-17% with a TI-cache. Moreover, on average
there is less possible transformations of a given instruction
block than possible signatures generated with our approach, so
using 16-byte signatures appears to be more cryptographically
secure. Finally, some of the SPEF code transformations
require compiler support, whereas our signature techniques do
not.

Another interesting approach is to tag all data coming from
“the outside world” (e.g., I/O channels) as spurious and to
prevent execution of any control transfer instruction if the

target address depends on spurious data [46]. This approach
may generate some false positives, since the target address
may be input-dependant, for example in switch constructs.
Generally, input data can propagate to a target address through
a series of calculations, so this technique requires a relatively
complex data dependency analysis. A similar approach,
Minos, [47] augments every memory word with an integrity
bit. The integrity bit is set by kernel and determines the trust
the kernel has in that data. The low trust data cannot be used
for control transfers.

The code integrity in run-time can be successfully protected
if all instruction blocks are signed with a cryptographically
secure signature. We did a preliminary research on protection
of basic blocks and cache blocks using signatures [8], [9].
Kirovski et al. also propose to sign all cache blocks and to
verify signatures in run-time [48]. An instruction block
signature is obtained by encrypting the instruction block using
a 128-bit Rijndael cipher, and then XOR-ing the 16-byte sub-
blocks. The overhead of Rijndael decryption implemented in
hardware can be hidden if the instructions in an instruction
block can be reordered in such a way that critical instructions
such as stores are executed after decryption delay time.

Signatures of instruction blocks of various granularity are
frequently used in fault-tolerant computing [49], and Joseph
and Avizienis proposed the idea of a virus protection
technique using an extended Program Flow Monitor [50].
However, the paper does not include any implementation
details or evaluation.

VI. CONCLUSION
In this paper we propose and analyze three hardware-

supported techniques for runtime instruction block
verification: SIGCED, SIGCEK, and SIGCEV. These
techniques provide complete software integrity with minimal
to modest hardware investments and no compiler support. If
chosen according to the available hardware budget, the three
proposed techniques do not impose significant burden on the
overall performance. The SIGCEV should be implemented
with small caches, the SIGCED with a medium-size hardware
budget, and the SIGCEK if the budget allows the S-cache.

Another contribution of this paper is a taxonomy of all
possible techniques for runtime instruction block verification.
Techniques are classified according to the type of protected
instruction blocks (variable vs. fixed size), placement of
instruction block signatures (embedded vs. table), signature
handling (dispose after verification or keep in the S-cache),
and signature visibility (visible vs. hidden from the I-cache).

Future work will evaluate the power overhead of the
proposed techniques. We will also evaluate other possible
implementations, such as protecting more than one cache
block with the same signature, and using other replacement
policies for the S-cache. Another interesting question is
whether the proposed basic mechanism can be extended to
cover other classes of attacks, such as return-into-libc.
Although the main goal of the proposed mechanism is to

prevent code injection attacks, it can be applied to other
purposes, such as fault-tolerant execution, virus protection,
and protection from software tampering.

REFERENCES
[1] A. One, "Smashing the Stack for Fun and Profit," Phrack

Magazine, vol. 7, November 1996.
[2] T. Newsham, "Format String Attacks," September 2000,

<http://www.securityfocus.com/guest/3342>
(Available January 2004).

[3] US-CERT, "Cyber Security Bulletin Sb04-231,"
<http://www.us-cert.gov/cas/bulletins/SB04-231.html>
(Available November 2004).

[4] US-CERT, "Cyber Security Bulletin Sb04-175,"
<http://www.us-cert.gov/cas/body/bulletins/SB04-175_H.html>
(Available November 2004).

[5] L. Garber, "New Chips Stop Buffer Overflow Attacks," IEEE
Computer, vol. 37, October 2004, pp. 28.

[6] T. Alves and D. Felton, "Trustzone: Integrated Hardware and
Software Security," I.Q. Publication, vol. 3, November 2004.

[7] NIST, "Fips Pub 197: Advanced Encryption Standard (AES),"
2001.

[8] M. Milenkovic, A. Milenkovic, and E. Jovanov, "Using Instruction
Block Signatures to Counter Code Injection Attacks," in Workshop
on Architectural Support for Security and Anti-Virus (WASSA),
Boston, MA, USA, 2004, pp. 104-113.

[9] M. Milenkovic, A. Milenkovic, and E. Jovanov, "A Framework for
Trusted Instruction Execution Via Basic Block Signature
Verification," in 42nd Annual ACM Southeast Conference,
Huntsville, AL, USA, 2004, pp. 191-196.

[10] M. Prasad and T.-c. Chiueh, "A Binary Rewriting Defense against
Stack-Based Buffer Overflow Attacks," in Usenix Annual
Technical Conference, San Antonio, TX, USA, 2003, pp. 211-224.

[11] "Intel Xscale® Core Developer’S Manual,"
<http://www.intel.com/design/intelxscale/>
(Available December 2004).

[12] D. Burger and T. Austin, "The SimpleScalar Tool Set Version 2.0,"
University of Wisconsin, Technical Report CS-TR-97-1342, 1997.

[13] "Enhanced AES (Rijndael) Ip Core," <http://www.asics.ws>
(Available December 2004).

[14] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T.
Mudge, and R. B. Brown, "MiBench: A Free, Commercially
Representative Embedded Benchmark Suite," in IEEE 4th Annual
Workshop on Workload Characterization, Austin, TX, USA, 2001.

[15] C. Lee, M. Potkonjak, and W. H. Mangione-Smith, "MediaBench:
A Tool for Evaluating and Synthesizing Multimedia and
Communications Systems," IEEE Micro, vol. 30, December 1997,
pp. 330-335.

[16] I. Branovic, R. Giorgi, and E. Martinelli, "A Workload
Characterization of Elliptic Curve Cryptography Methods in
Embedded Environments," ACM SIGARCH Computer
Architecture News, vol. 32, June 2004, pp. 27-34.

[17] S. Bartolini and C.A. Prete, "A Cache-Aware Program
Transformation Technique Suitable for Embedded Systems,"
Information and Software Technology, vol. 44, 2002, pp. 783-795.

[18] W. Landi, "Undecidability of Static Analysis," ACM Letters on
Programming Languages and Systems (LOPLAS), vol. 1,
December 1992, pp. 323-337.

[19] D. Wagner, J. S. Foster, E. A. Brewer, and A. Aiken, "A First Step
Towards Automated Detection of Buffer Overrun Vulnerabilities,"
in Network and Distributed System Security Symposium (NDCS),
San Diego, CA, USA, 2000.

[20] D. Larochelle and D. Evans, "Statically Detecting Likely Buffer
Overflow Vulnerabilities," in 10th USENIX Security Symposium,
Washington, DC, USA, 2001, pp. 177-189.

[21] N. Dor, M. Rodeh, and M. Sagiv, "CSSV: Towards a Realistic
Tool for Statically Detecting All Buffer Overflows in C," in ACM
SIGPLAN 2003 Conference on Programming Language Design
and Implementation, San Diego, CA, USA, 2003, pp. 155-167.

[22] J. L. Steffen, "Adding Run-Time Checking to the Portable C

Compiler," Software—Practice & Experience, vol. 22, April 1992,
pp. 305-316.

[23] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A.
Grier, P. Wagle, Q. Zhang, and H. Hinton, "StackGuard:
Automatic Adaptive Detection and Prevention of Buffer Overflow
Attacks," in 7th USENIX Security Conference, San Antonio, TX,
USA, 1998, pp. 63-78.

[24] K.-s. Lhee and S. J. Chapin, "Type-Assisted Dynamic Buffer
Overflow Detection," in 11th USENIX Security Symposium, San
Francisco, CA, USA, 2002, pp. 81-88.

[25] C. Fetzer and Z. Xiao, "Detecting Heap Smashing Attacks through
Fault Containment Wrappers," in 20th IEEE Symposium on
Reliable Distributed Systems, New Orleans, LA, USA, 2001,
pp. 80-89.

[26] T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney, and
Y. Wang, "Cyclone: A Safe Dialect of C," in USENIX Annual
Technical Conference, Monterey, CA, USA, 2002, pp. 275-288.

[27] G. C. Necula, S. McPeak, and W. Weimer, "CCured: Type-Safe
Retrofitting of Legacy Code," in 29th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, Portland,
OR, USA, 2002, pp. 128-139.

[28] D. Dhurjati, S. Kowshik, V. Adve, and C. Lattner, "Memory Safety
without Runtime Checks or Garbage Collection," in 2003 ACM
SIGPLAN Conference on Language, Compiler, and Tool Support
for Embedded Systems, San Diego, CA, USA, 2003, pp. 69-80.

[29] S. Bhatkar, D. C. DuVarney, and R. Sekar, "Address Obfuscation:
An Approach to Combat Buffer Overflows, Format-String Attacks,
and More," in 12th USENIX Security Symposium, Washington,
DC, USA, 2003, pp. 105-120.

[30] P. Busser, "Memory Protection with PaX and the Stack Smashing
Protector: Breaking out Peace," Linux Magazine March 2004,
pp. 36-39.

[31] E. G. Barrantes, D. H. Ackley, T. S. Palmer, D. Stefanovic, and
D. D. Zovi, "Randomized Instruction Set Emulation to Disrupt
Binary Code Injection Attacks," in 10th ACM Conference on
Computer and Communication Security, Washington, DC, USA,
2003, pp. 281-289.

[32] C. Cowan, S. Beattie, J. Johansen, and P. Wagle, "Pointguard™:
Protecting Pointers from Buffer Overflow Vulnerabilities," in 12th
USENIX Security Symposium, Washington, DC, USA, 2003,
pp. 91-104.

[33] C. Warrender, S. Forrest, and B. Pearlmutter, "Detecting Intrusions
Using System Calls: Alternative Data Models," in IEEE
Symposium on Security and Privacy, Oakland, CA, USA, 1999, pp.
133-145.

[34] R. Sekar, T. Bowen, and M. Segal, "On Preventing Intrusions by
Process Behavior Monitoring," in 8th USENIX Security
Symposium, Washington, DC, USA, 1999, pp. 29-40.

[35] D. L. Oppenheimer and M. R. Martonosi, "Performance
Signatures: A Mechanism for Intrusion Detection," in 1997 IEEE
Information Survivability Workshop, San Diego, CA, USA, 1997.

[36] J. Xu, Z. Kalbarczyk, S. Patel, and R. K. Iyer, "Architecture
Support for Defending against Buffer Overflow Attacks," in
Workshop on Evaluating and Architecting System dependability
(EASY), San Jose, CA, USA, 2002.

[37] R. B. Lee, D. K. Karig, J. P. McGregor, and Z. Shi, "Enlisting
Hardware Architecture to Thwart Malicious Code Injection," in
Security in Pervasive Computing, Boppard, Germany, 2003,
pp. 237-252.

[38] H. Ozdoganoglu, C. E. Brodley, T. N. Vijaykumar, B. A.
Kuperman, and A. Jalote, "SmashGuard: A Hardware Solution to
Prevent Security Attacks on the Function Return Address," Purdue
University, TR-ECE 03-13, November 22, 2003.

[39] D. Ye and D. Kaeli, "A Reliable Return Address Stack:
Microarchitectural Features to Defeat Stack Smashing," in
Workshop on Architectural Support for Security and Anti-Virus
(WASSA), Boston, MA, USA, 2004, pp. 69-76.

[40] M. Corliss, E. C. Lewis, and A. Roth, "Using Dise to Protect
Return Addresses from Attack," in Workshop on Architectural
Support for Security and Anti-Virus (WASSA), Boston, MA, USA,
2004, pp. 61-68.

[41] K. Inoue, "Energy-Security Tradeoff in a Secure Cache
Architecture against Buffer Overflow Attacks," in Workshop on
Architectural Support for Security and Anti-Virus (WASSA),
Boston, MA, USA, 2004, pp. 77-85.

[42] G. S. Kc, A. D. Keromytis, and V. Prevelakis, "Countering Code-
Injection Attacks with Instruction-Set Randomization," in 10th
ACM Conference on Computer and Communication Security,
Washington, DC, USA, 2003, pp. 272-280.

[43] N. Tuck, B. Calder, and G. Varghese, "Hardware and Binary
Modification Support for Code Pointer Protection from Buffer
Overflow," in 37th Annual ACM/IEEE International Symposium
on Microarchitecture (MICRO), Portland, OR, USA, 2004,
pp. 209-220.

[44] Z. Shao, Q. Zhuge, Y. He, and E. H.-M. Sha, "Defending
Embedded Systems against Buffer Overflow Via
Hardware/Software," in 19th Annual Computer Security
Applications Conference (ACSAC 2003), Las Vegas, NV, USA,
2003, pp. 352-363.

[45] D. Kirovski, M. Drinic, and M. Potkonjak, "Enabling Trusted
Software Integrity," in 10th International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS-X), San Jose, CA, USA, 2002, pp. 108-120.

[46] G. E. Suh, J. W. Lee, and S. Devadas, "Secure Program Execution
Via Dynamic Information Flow Tracking," in 11th Architectural
Support for Programming Languages and Operating Systems
(ASPLOS), Boston, MA, USA, 2004, pp. 85-96.

[47] J. R. Crandall and F. T. Chong, "Minos: Control Data Attack
Prevention Orthogonal to Memory Model," in 37th Annual
IEEE/ACM International Symposium on Microarchitecture
(MICRO), Portlant, OR, USA, 2004, pp. 221-232.

[48] M. Drinic and D. Kirovski, "A Hardware-Software Platform for
Intrusion Prevention," in 37th Annual ACM/IEEE International
Symposium on Microarchitecture (MICRO), Portland, OR, USA,
2004, pp. 233-242.

[49] A. Mahmood and E. J. McCluskey, "Concurrent Error Detection
Using Watchdog Processors-a Survey," IEEE Transactions on
Computers, vol. 37, Feb. 1988, pp. 160-174.

[50] M. K. Joseph and A. Avizienis, "A Fault Tolerance Approach to
Computer Viruses," in IEEE Symposium on Security and Privacy,
Oakland, CA, USA, 1988, pp. 52-58.

