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Abstract—Embedded system designers face a unique set of 

challenges in making their systems more secure, as these systems 
often have stringent resource constraints or must operate in 
harsh or physically insecure environments. One of the security 
issues that have recently drawn attention is software integrity, 
which ensures that the programs in the system have not been 
changed either by an accident or an attack. In this paper we 
propose an efficient hardware mechanism for runtime 
verification of software integrity using encrypted instruction 
block signatures. We introduce several variations of the basic 
mechanism, and give details of three techniques that are most 
suitable for embedded systems. Performance evaluation using 
selected MiBench, Mediabench, and Basicrypt benchmarks 
indicates that the considered techniques impose a relatively small 
performance overhead. The best overall technique has 
performance overhead in the range 0-8%, when protecting 128-
byte instruction blocks with 16-byte signatures. With 64-byte 
instruction blocks, the overhead is in the range 0-15%; the 
average overhead with 8 KB cache is 1%. With additional 
investment in a signature cache, this overhead can be almost 
completely eliminated. 
 

Index Terms—Computer architecture, embedded systems, 
secure computing, processor design, performance evaluation, 
security attacks, decryption. 
 

I. INTRODUCTION 
HE art of war teaches us to rely not on the likelihood 
of the enemy’s not coming, but on our own readiness 

to receive him; not on the chance of his not attacking, but 
rather on the fact that we have made our position 
unassailable.”  
The Art of War by Sun Tzu 

Embedded systems have become ubiquitous in modern 
society, finding their place in a broad range of applications, 
from military to health monitoring. Economic and technology 
trends will further increase our reliance on the embedded 
systems as we move toward new applications featuring smart 
environments, built on highly interconnected and deeply 
embedded computing systems. These trends further 
underscore the utmost importance of embedded system 

 
 

security. Failing to resist to attacks can incur significant direct 
costs as well as costs in lost revenue opportunities.  

A very large group of malicious attacks on applications 
running on general-purpose processors comprises of different 
techniques that impair the software integrity, by injecting and 
then executing the malicious code instead of regularly 
installed programs. The most widely known type of such 
attacks is so-called stack smashing. In this attack an attacker 
overflows a buffer stored on the stack with a malicious code 
sequence and replaces a valid return address with the 
malicious code address [1]. Various other examples of attacks 
exist, such as heap overflow and format string attacks [2]. 

Applications targeting embedded systems may suffer from 
the same vulnerabilities as applications running on general-
purpose platforms. For example, one recent Cyber Security 
Bulletin from United States Computer Emergency Readiness 
Team (US-CERT) reports multiple buffer overflow 
vulnerabilities in a Bluetooth connectivity program for 
Personal Digital Assistants (PDAs) [3]. Another US-CERT 
Cyber Security Bulletin indicates an emerging trend of mobile 
phone viruses [4]. As the communication and computation 
capabilities of smart phones, PDAs, and other embedded 
systems continue to grow, so will grow the number of 
malicious attacks trying to exploit code vulnerabilities. 

The multitude of code injection attacks on general-purpose 
processors prompted a large number of predominantly 
software-based counter-measures. The software-based 
techniques can be classified into static techniques, which 
detect security defects in compile time, and dynamic 
techniques, which augment the code to detect attacks in 
runtime. Several hardware-supported techniques have also 
been proposed recently. For example, hardware protection 
from buffer overflow has already found its way in main 
stream general-purpose processors, AMD’s Athlon-64 and 
Intel’s Itanium [5].  

An acceptable performance overhead of a defense 
technique in a high-speed general-purpose processor may 
translate into an undesirable energy and performance 
overhead in an embedded system. Whereas static software 
techniques can be readily applied to embedded systems 
software, the inherent overhead of the most of dynamic 
techniques makes them a poor choice for embedded systems. 
Hardware techniques have the potential to improve resilience 
to code injection attacks with less power and performance 
overhead. Hardware design of embedded systems is not 
encumbered by legacy issues and complexity of general-
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purpose platforms, so the hardware support for different 
security layers can be implemented relatively easily. For 
example, ARM’s TrustZone [6] secures data on a chip by 
integrating several security features with the processor core. 
However, most of the existing hardware techniques are attack-
specific. We believe that there is a need for a new hardware 
security layer to prevent the whole class of code injection 
attacks.  

In this paper we propose novel hardware-supported 
techniques to ensure software integrity in embedded systems. 
All proposed techniques employ a common mechanism: 
instruction blocks are signed using secret hardware keys 
during secure installation process, and signatures are stored 
together with the code. During program execution, signatures 
are recalculated from instructions and compared with the 
stored values. If two values do not match, the software 
integrity of the application does not hold any more, and the 
application is terminated by the operating system. We classify 
all such techniques and evaluate three that look the most 
promising for embedded systems in terms of added 
complexity, performance overhead, and power consumption: 
SIGCED, SIGCEK, and SIGCEV. With these techniques the 
protected instruction block is of the size of a cache block, the 
block signatures are embedded in the code, and a signature is 
verified only at an instruction cache (I-cache) miss. None of 
the three considered techniques require compiler support. The 
SIGCED technique discards signatures after successful 
verification. Instruction addresses are translated in such a way 
that both the processor and the I-cache see instructions at the 
addresses as they would appear without embedded signatures. 
With the signature size of 16 B, this technique has 0-8% 
performance overhead when the protected block size is 128 B, 
and 0-15% when the protected block size is 64 B, depending 
on the benchmark, the instruction cache size, the memory bus 
width, and the speed of the processor core relative to the 
memory speed. The performance and power overhead may be 
reduced if signatures are kept in a signature cache (S-cache), 
as in the SIGCEK technique. An S-cache that is 25% of the 
size of the corresponding I-cache may reduce the signature 
verification overhead for up to 90%. The third technique, the 
SIGCEV, also discards signatures, but instructions are stored 
in the I-cache without address translation. With the same 
cache line address aligning, the SIGCEV I-cache is actually 
smaller than the original I-cache. The code is mapped into the 
I-cache in a different way, so for some benchmarks the 
performance with the SIGCEV even improves, whereas for 
others the performance significantly deteriorates due to more 
I-cache misses. Each of the three techniques is most suitable 
for a particular hardware budget: if the hardware budget is 
very low, the smaller SIGCEV I-cache might be an acceptable 
solution. Otherwise, the consistent small overhead of the 
SIGCED technique makes it a perfect candidate for efficient 
runtime verification of software integrity. With larger I-caches 
the performance overhead of this technique is close to 0%. 
Finally, if a hardware budget is flexible but does not allow 

doubling the I-cache size, extra area on the chip is well 
invested into the S-cache of the SIGCEK technique. 

This paper is organized as follows. Section II describes the 
proposed architectures for instruction block verification. 
Section III describes the experimental methodology and 
Section IV discusses the results of the performance analysis. 
Section V describes the related work and the last section 
concludes the paper.  

II. ARCHITECTURES FOR INSTRUCTION BLOCK VERIFICATION 
In this section we first introduce the basic mechanism 

common to all techniques for instruction block verification 
discussed in this paper. We then give a taxonomy of different 
techniques and discuss pros and cons. Finally, we present a 
detailed description of three techniques evaluated in this 
paper. 

A. Basic Mechanism 
 For Runtime Instruction Block Verification 

All proposed architectures for instruction block verification 
have the same basic mechanism (Fig. 1) and require minimal 
or no compiler support.  

Secure Installation. During a secure installation process, 
signatures are calculated for each instruction block and added 
to the binary program. The signature of an instruction block 
should be relatively fast to calculate and verify. On the other 
hand, it should be very hard, preferably impossible, for an 
attacker to generate a correct signature for the code that he/she 
wants to inject. Consequently, we decided to use an extended 
version of a Multiple Input Shift Register (MISR) and 
Advance Encryption Standard (AES) [7] to generate and 
verify signatures. MISRs are frequently used in VLSI testing, 
since they compress an array of data under test into one 
signature, which is then compared to the signature of a known 
correctly functioning component. A signature is obtained in 
the following way: all instructions in the instruction block 
pass through a MISR. A MISR is essentially an array of D 
flip-flops with linear feedback coefficients (Fig. 2): a new 
value of MISR is function of the current value and value of 
incoming instructions. After each instruction block, the MISR 
is initialized to a predefined start value, e.g., K0K1K2K3 in Fig. 
2. Linear feedback connections and the start value are 
determined by a secret processor key hidden in hardware. An 
attacker could discover the MISR secret keys if he/she 
manages to read the stored signatures, and compare them to 
the corresponding instruction blocks. However, in our 
approach the signatures are further encrypted using AES, 
which is proved to be secure. The AES key is also stored in 
hardware and thus hidden from attacker.  

Program Execution. Signatures are verified in parallel with 
program execution using a dedicated hardware resource 
Instruction Block Signature Verification Unit (IBSVU, Fig. 
3). Since the I-cache is a read-only resource, instruction block 
signatures are verified only on I-cache misses. Fetched 
instructions pass through a MISR register with the linear 
coefficients used during secure installation, while 



 
 

concurrently the corresponding signature fetched from 
memory is decrypted. Hence, the decryption time is partially 
or completely overlapped with the instruction block fetch 
phase. The decrypted signature is compared to the final MISR 
calculation: if the two values match, the instruction block is 
properly installed and can be trusted. If the values differ, the 
instruction block includes injected code, so a trap to the 
operating system is asserted. The operating system than kills 
the process whose code integrity cannot be guaranteed and 
possibly audits the event. 

An embedded system might be designed to run only in the 
protected mode where all executing instruction blocks must be 
signed, as described above. However, some applications do 
not need instruction block protection. For example, some 
components of the operating system may not accept external 
inputs from untrustworthy channels and thus are not in danger 
from code injection attacks. Such programs may be installed 
without signatures and executed in the unprotected mode. The 
information about required execution mode is added to the 
program header.  

...
inc r0
st r2,(r3)
mul r3,3
st r2,(r3)
ld r1,(r3)
add r1,r2
jmp (r1)
mov r2, r3
...

...

*&-!//*+)@

inc r0

st r2,(r3)

mul r3,3

st r2,(r3)

:’-|{]*+)@

ld r1,(r3)

add r1,r2

jmp (r1)

mov r2, r3

...

Secure 
Installation

Program 
Execution 

...
*&-!//*+)@
inc r0
st r2,(r3)
mul r3,3
st r2,(r3)
...

MISRMISR

AESAES

MISRMISR

AESAES
MISRMISR

AESAES

Original Code Signed Code

=?
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Fig. 1  Mechanism for trusted instruction execution 
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Fig. 3  Processor modifications 

B. Taxonomy of Techniques  
For Runtime Instruction Block Verification 

Instruction block verification techniques can be classified 
according to the following criteria: 

• type of protected instruction blocks,  
• signature placement,  
• signature handling after verification, 
• signature visibility to the I-cache. 
The taxonomy of instruction block verification techniques 

is given in Fig. 4. The name of a verification technique starts 
with SIG, and the rest of the name specifies the categories to 
which the technique belongs. For example, the SIGCED 
technique protects instruction blocks of the size equal to the 
size of an I-cache line (C) with signatures embedded in the 
code (E) and disposed after verification (D). 

A protected block can be of variable or fixed size. With 
variable-size blocks, one signature protects a logical code unit 
such as a basic block or an instruction stream (dynamic basic 
block). With fixed-size blocks, one signature protects a 
physical code unit of the size equal to the size of one or more 
I-cache lines. 



 
 

Verification techniques can be further classified depending 
on the placement of signatures in a binary file. A signature can 
be embedded in the code, i.e., placed before or after the 
instruction block it protects. Another option is to store all 
signatures in a separate table, i.e., a separate code section.  

A basic block protection technique with embedded 
signatures must keep signatures together with the instructions 
in the I-cache, since embedded signatures cannot be extracted 
from the code in the fetch stage without decoding [8]. The 
name of this technique in our taxonomy is SIGBEC. With the 
SIGBEC technique, the instruction decoder must be able to 
tell the difference between a signature and a regular 
instruction. This can be achieved by reserving one instruction 
bit for the signature flag, or by using a special opcode that 
indicates to the decoder that instruction words immediately 
following it represent a signature. 

Basic block protection techniques with signatures stored in 
the separate code section work in the following way. When 
the instruction decoder detects the end of a basic block that 
caused at least one cache miss, the signature of that block 
must be fetched from the signature code section, decrypted, 
and compared to the calculated signature. These techniques 
can be classified depending on whether a decrypted signature 
is kept in a dedicated S-cache after verification (SIGBTK) [9], 
or it is disposed of (SIGBTD). With the SIGBTD technique, 
there is no overhead for signature fetch from memory if a 
signature that needs to be verified is found in the S-cache.  

In all techniques with protected basic blocks, signatures can 
be verified after decode stage, i.e., when the last instruction in 
a basic block has been decoded. These techniques require 
compiler support, since disassembling in general case cannot 
extract the basic block list from the executable code with 
100% accuracy [10]. However, the required support is 
relatively simple, since the program compilation process only 

needs to generate a list of all basic blocks in the code and to 
append it to the executable. Embedded signatures are 
converted to no-ops in the decode stage, so they are visible 
only to the dedicated signature verification unit and not to the 
rest of the processor core. However, instruction addresses will 
change due to embedded signatures, so the installation process 
must recalculate all target addresses. Hence, the list of basic 
block must also include target addresses. Further description 
and evaluation of these techniques can be found in [8], [9].  

Compiler support is not necessary for techniques protecting 
instruction blocks of a fixed size. Moreover, the signatures 
can be verified in parallel with the fetch stage, since the exact 
placement of signatures and protected blocks is known in 
advance. Embedded cache line signatures are not visible to the 
processor, i.e., the processor is aware only of the executable 
code. This invisibility is achieved with the use of a relatively 
simple address translation, so that the processor “sees” 
instruction addresses as if there were no embedded signatures. 
The address translation can be done before or after the 
instructions are stored in the I-cache, that is, the signatures can 
be hidden from the I-cache or visible to it (SIGCEV in our 
taxonomy). If signatures are hidden from the I-cache, they can 
be disposed of after verification (SIGCED) or kept in the S-
cache (SIGCEK). As in the previously described techniques, 
cache line signatures placed in a separate code section can be 
discarded after verification (SIGCTD) or kept in the S-cache 
(SIGCTK). 

Table 1 illustrates the most important pros and cons of the 
proposed techniques. Relevant parameters include the need for 
compiler support; hardware complexity, i.e., the estimated 
area on the chip required by a particular technique; the 
projected performance overhead, based on the delays that a 
technique introduces to program execution; and the 
requirement to change the instruction set architecture (ISA).  

basic block

embedded

cache line(s)Protected block
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Fig. 4 Taxonomy of proposed instruction block verification techniques 



 
 

 

Table 1 Pros and cons of different techniques 

 Compiler 
support 

Hardware 
complexity 

Projected 
performance 

overhead 

ISA 
change

SIGBEC Yes Low Medium Yes 
SIGBTD Yes Low Medium No 
SIGBTK Yes Medium Low No 

SIGCEV No; may 
be used Low Low to 

medium No 

SIGCED No; may 
be used Low Low to 

medium No 

SIGCEK No; may 
be used Medium Low No 

SIGCTD No Low Low to 
medium No 

SIGCTK No Medium Low No 

As explained before, the techniques protecting the basic 
blocks, SIGBEC, SIGBTD, and SIGBTK, require compiler 
support, while the techniques protecting cache lines, SIGC, do 
not. However, the SIGCE techniques (protected cache lines 
with embedded signatures) may benefit from compiler 
support. The branch target addresses change due to embedded 
signatures, so either a compiler recalculates all target 
addresses, or address translation is done in hardware. In the 
rest of the paper we assume that SIGCE techniques use 
hardware address translation. 

All proposed techniques require a relatively simple 
processor modification: a dedicated processor resource for 
signature verification, the IBSVU (Fig. 3). The IBSVU 
encompasses registers for buffering instructions and 
signatures, support for AES decryption, MISR, and control 
logic. Techniques that keep signatures in a signature cache 
require additional on-chip area, so they are marked as having 
Medium hardware complexity in Table 1: SIGBTK, SIGCEK, 
and SIGCTK.  

The overhead of fetching a signature from the memory and 
its decryption is avoided if the signature is found in the S-
cache, so the techniques with the S-cache have a low 
projected performance overhead. The SIGBEC and SIGBTD 
techniques have potentially higher performance overhead than 
the corresponding SIGC techniques. With the SIGBEC 
embedded basic block signatures may reduce the number of 
cache hits, leading to a medium performance overhead [8]. 
With the SIGCTD the access function of a table of instruction 
block signatures in memory is relatively simple, whereas with 
the SIGBTD a more complex hash function must be used to 
access a table of basic block signatures, thus adding additional 
latency.  

The advantage of the basic block protection techniques is 
that only instructions that will be executed are verified, 
whereas only a portion of instructions in a cache line might be 
really needed. All techniques but one, the SIGBEC, do not 
require the change of the processor instruction set. 

The techniques with protected cache line blocks and 
embedded signatures (SIGCE) are the most suitable for 
embedded systems. These techniques do not require compiler 
support and use simpler algorithms than techniques with 
signatures stored in a table, so they are simpler to implement 
and less expensive.  

C. Details of SIGCE techniques 
In this section we will explain details of three SIGCE 

techniques. These techniques are: 
• SIGCED – signatures are invisible to the I-cache and 

discarded after verification; 
• SIGCEK – signatures are invisible to the I-cache and 

kept in the S-cache;  
• SIGCEV – signatures are visible to the I-cache. 
We assume that all three techniques do not use compiler 

support, i.e., the original binary is modified during the secure 
installation process only by inserting signatures and necessary 
padding. If the last instruction block is shorter than the cache 
line, it is padded by instructions that do not change the state of 
the processor. If the code with embedded signatures is larger 
than a page size, it must be page aligned, so additional 
padding is necessary for each page but the last. 

1) SIGCED 

The flow of the instruction fetch phase is depicted in Fig. 5. 
The value of the next program counter (PC) is used to access 
the I-cache. Note that without loss of generality we assume 
that the I-cache is indexed by virtual addresses and virtually 
tagged. This is a frequent case in embedded processor caches, 
for example in Intel’s Xscale processor [11]. In the case of a 
cache hit, the instruction is fetched from the I-cache and there 
is no need for instruction verification. In the case of an I-
cache miss, we need to calculate the address of the instruction 
block to be fetched in the virtual memory. The instruction 
block address has changed because of signature embedding 
and added padding. If the padding is not necessary, i.e., one 
memory page can be completely filled with the protected 
instruction blocks and corresponding signatures, the true 
virtual address tPCtemp can be calculated as in (1). The value 
SigSize is the signature size, BlockSize is the protected block 
size, and TextBase is the starting address of the text segment 
for a given program. 

)
BlockSize

ePC-TextBas(SigSize PCtPCtemp 1+⋅+=  (1) 

The size of the padding PagePad is given in (2), with 
PageSize denoting the memory page size. The final true 
address tPC can be calculated as in (3). 

)(mod SigSizeBlockSizePageSizePagePad +=  (2) 

PagePad
PagePadPageSize- 

xtBasetPCtemp-TetPCtemptPC ⋅+=  (3) 

For example, consider a case where the I-cache line is 
128 B, the signature size is 16 B, the page size is 4096 B, the 



 
 

TextBase address is 131072, and the value of the PC of the 
instruction to be fetched as seen by the processor is 135200. 
In the original code without signatures, the size of a page is 
equal to the size of 32 instruction blocks. In the signed code, 
the size of a protected block together with its signature is 
144 B. Hence, 28 signed blocks can fit in one page, filling 
4032 out of 4096 B. Since one instruction block cannot be 
split between two pages, the code must be padded so that the 
remaining 64 B in a page are unused. All instruction blocks 
must have the same size, so if the last instruction block in a 
binary is shorter than the I-cache block, it is padded with 
randomly chosen instructions that do not change the state of 
the processor.   

When a correct virtual address is calculated, the translation 
look-aside buffer (TLB) is accessed for virtual to physical 
address translation. In all considered SIGCE techniques a 
signature is inserted into the code just before the 
corresponding protected instruction block, so the signature 
can be fetched first. While instructions of a protected basic 
block are being fetched, the signature is decrypted using a key 
hidden in the hardware. Each fetched instruction passes 
through the MISR register, and the final MISR output is 
compared to the decrypted signature. If the calculated and the 
decrypted signature differ, a trap to operating system is 
asserted; otherwise, the instructions proceed with execution.  

If the time needed to fetch a cache line from memory is 
greater than or equal to the decryption time, the decryption 
latency is hidden. The MISR calculation is completely 
overlapped with instruction fetch. Since the instruction 
addresses in the I-cache are the same as without signatures, 
the number of cache misses for the code with embedded 
signatures is the same as for the original code.  Hence, the 
performance overhead of the SIGCED technique is due only 
to the additional number of processor cycles during instruction 
fetch, tFetchOverhead: the number of cycles needed for address 
translation tTrans and time needed to fetch a signature from the 
memory, tSigFetch, as shown in (4). The MemBusWidth value is 
the width of the data bus between memory and the I-cache in 
bytes. The tDbus value is the time needed for one data bus 
transfer. 

 
DbusTrans

SigFetchTransedFetchOverh

t
hMemBusWidt

SigSizet

ttt

⋅+=

+=
 (4) 

The signature verification is done by the IBSVU, as 
illustrated in Fig. 6. Signature bytes are stored only in the 
SIGM buffer and then decrypted, while instruction bytes go to 
both the MISR logic and to the I-cache. An internal IBSVU 
signal, sig, controls the path of data from the data bus. 
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Fig. 5  SIGCED: Signature verification control flow.  

Dotted lines indicate parallel tasks: AES decryption and MISR calculation are done concurrently with instruction block fetch. 
Shaded blocks indicate steps needed to support instruction block verification. 



 
 

……

……

……

……

Data bus

SIGM

AES
Decrypt

……

……

……

……

MISR
I-Cache

sig

sig

=?

S-match
 

Fig. 6  SIGCED: Instruction Block Signature Verification 
Unit 

 
 

2) SIGCEK 

A portion of the SIGCED overhead can be avoided if 
signatures are not discarded after verification, but kept in a 
dedicated cache-like processor resource – the S-cache. Fig. 7 
shows the flow of the instruction fetch process for the 
SIGCEK technique. With this technique, an I-cache lookup is 
performed together with the corresponding S-cache lookup. In 
the case of an I-cache miss, the instruction block signature is 
fetched only if it is not found in the S-cache. Otherwise, if the 
decrypted signature is in the S-cache, the fetch performance 
overhead tFetchOverhead in (4) is reduced to the number of cycles 
needed for address translation tTrans. The SIGCEK technique 
has the potential to reduce not only the performance overhead 
of instruction signature verification, but also to reduce the 
power overhead due to signature decryption, since a cached 
signature is already decrypted. Fig. 8 shows a block-scheme 
of the IBSVU for the SIGCEK technique. A signature read 
from the memory and decrypted or read from the S-cache is 
compared to the final MISR output.  
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Fig. 7  SIGCEK: Signature verification control flow 
Dotted lines indicate parallel tasks: AES decryption and MISR calculation are done concurrently with instruction block fetch. 

Shaded blocks indicate steps needed to support instruction block verification 
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Fig. 8 SIGCEK: Instruction Block Signature Verification Unit  

3) SIGCEV 

In all three SIGCE techniques, the virtual addresses of 
instructions as seen by the processor are the same for the code 
with and without embedded signatures. It means that after 
address translation a virtual address of an instruction in the 
protected code is equal to the virtual address of that 
instruction in the original code. However, the instructions can 
be stored in the instruction cache with or without address 
translation. Two previous techniques, the SIGCED and 
SIGCEK, use translated virtual addresses in the cache, so both 
the processor and the cache see only the original virtual 
addresses. Another option is the SIGCEV technique: 
translated addresses are used only in the processor, and the 
instruction cache sees the non-translated virtual address space 
that includes the signatures and padding. Hence, in the 
SIGCEV, the address translation must be done before each I-
cache lookup. The advantage of this technique is that the 
translation in most cases can be done in advance, together 
with the prediction of the next instruction address. The only 
case when the performance overhead due to the translation 
cannot be hidden is when a branch is mispredicted.  

A simple and fast cache access mechanism requires both the 
cache line size and a cache line address to be a power of two. 
Hence, in the SIGCED and SIGCEK techniques, the size of a 
protected block is the power of two. Since instructions in the 
SIGCEV technique are stored in the I-cache using non-
translated virtual addresses, the sum of sizes of a protected 
block and its signature is a power of two. For example, if an I-
cache line size is 128 bytes and cache line addresses are 
aligned at 128 bytes, we can store 128 instruction bytes in one 
cache line in the SIGCED and SIGCEK, and 128 – SigSize 
bytes in the SIGCEV cache. Although signatures are visible to 
the SIGCEV I-cache, they are never stored in the cache, so the 
cache line size and cache size are actually smaller then the 
corresponding SIGCED/SIGCEK values with same cache line 
alignment. Another consequence of the requirement that the 

sum of the protected block size and signature size is a power 
of two is that the SIGCEV technique does not require page 
alignment padding, thus simplifying address translation. 

III. EXPERIMENTAL METHODOLOGY 
We analyze performance of the SIGCEK, SIGCED, and 

SIGCEV techniques relative to the Base configuration; the 
Base system does not include signature verification. As a 
measure of performance we use the average number of 
processor cycles needed for one instruction (CPI). We also 
consider the code size increase for different protected block 
sizes.  

Experimental environment includes a program for 
emulating the secure installation and modified SimpleScalar 
ARM simulators [12] for each considered technique. To 
emulate the secure installation process, we have developed a 
program that embeds instruction block signatures and 
necessary padding in code (executable) sections of programs 
in the ELF format. To evaluate the proposed techniques, we 
modified the SimpleScalar ARM simulators to be able to 
execute signed ELF binaries. We also added latencies due to 
the signature verification and the address translation, and the 
S-cache for the SIGCEK.  

In order to evaluate sensitivity of the proposed techniques 
to different system configurations, we varied the following 
simulation parameters: 

• the I-cache size (1, 2, 4, and 8 KB); 
• the I-cache line size (64 and 128 bytes); 
• the width of a bus between memory and the I-cache  

(32 and 64 bits); 
• the speed of processor core relative to memory (fast and 

slow). 
The D-cache (data cache) and I-cache have the same size 

and organization. The values of other simulator parameters are 
shown in Table 2. We assume that the AES decryption latency 
with a 128-bit key is 12 cycles for slow, and 22 cycles for fast 



 
 

processor core, which are the speeds that can be achieved with 
current optimized ASIC solutions [13]. Since a signature is 
inserted at the beginning of the corresponding protected 
instruction block, signature decryption is finished before the 
protected block is fetched, so the decryption latency is hidden 
in all evaluated system configurations. 

Table 2  Simulator parameters 
Simulator parameter Value 

Branch predictor type Bimodal 
Branch predictor table size 128 entries, direct-mapped 
Return address stack size 8 entries 
Instruction decode bandwidth  1 instruction/cycle 
Instruction issue bandwidth  1 instruction/cycle 
Instruction commit bandwidth  1 instruction/cycle 
Pipeline with in-order issue True 

I-cache/D-cache 4-way, FIFO replacement, 
first level only 

I-TLB/D-TLB 32 entries, fully associative, 
FIFO replacement 

Execution units 1 floating point, 1 integer 
Memory fetch latency  
(first chunk/other chunks) 

12/3 cycles for slow core, 
24/6 cycles for fast core 

Branch mispediction latency 2 cycles for slow core, 
3 cycles for fast core 

TLB latency 30 cycles for slow core, 
60 cycles for fast core 

Table 3 Benchmark description 

Benchmark Suite Description 
blowfish_dec MiBench Blowfish decryption 
blowfish_enc MiBench Blowfish encryption 
cjpeg MiBench JPEG compression 
djpeg MiBench JPEG decompression 
ecdhb Basicrypt Diffie-Hellman key exchange 
ecdsignb Basicrypt Digital signature generation 
ecdsverb Basicrypt Digital signature verification 
ecelgdecb Basicrypt El-Gamal decryption 
ecelgencb Basicrypt El-Gamal encryption 
ispell MiBench Spell checker 
mpeg2_enc MediaBench MPEG2 compression 
qsort MiBench Quicksort 
rijndael_dec MiBench Rijndael decryption 
rijndael_enc MiBench Rijndael encryption 
stringsearch MiBench String search 

We used benchmarks from several benchmark suites for 
embedded systems: MiBench [14], MediaBench [15], 
Basicrypt [16] (Table 3). All benchmarks but mpeg2_enc use 
the largest possible provided input. Mpeg2_enc uses the 
provided test input. Table 4 shows the total size of the original 
binary and the total size of the executable code sections in 
bytes, and the number of executed instructions. In a binary file 
with embedded signatures, only the size of executable code 
sections will change, depending on the technique used and the 
size of the protected blocks and signatures.  

Since the signature verification is done only at an I-cache 
miss, the benchmarks are selected so that most of them have a 
relatively high number of I-cache misses for at least some of 
the simulated cache sizes. Table 5 shows the number of I-

cache misses per 1000 instructions, for cache lines of 64 and 
128 B, and cache sizes of 1, 2, 4, and 8 KB. Since all 
benchmarks have very low I-cache miss rate in a 8 KB cache, 
this was the largest cache size that we simulated. The size of 
the MISR and generated signatures is 128 bits (16 bytes), 
which is a minimum size for AES encryption. 

Table 4. Benchmark code size and executed instructions 

Benchmark Code size 
[B] 

Text segment 
size [B] 

Executed 
instructions  

 [million] 
blowfish_dec 1,032,731 190,900 544.0 
blowfish_enc 1,032,731 190,900 544.0 
cjpeg 1,261,485 298,916 104.6 
djpeg 1,274,670 311,108 23.4 
ecdhb 1,102,298 258,188 122.5 
ecdsignb 1,254,373 310,068 131.3 
ecdsverb 1,254,519 310,212 171.9 
ecelgdecb 1,102,207 258,092 92.4 
ecelgencb 1,102,271 258,156 180.2 
ispell 1,238,144 240,972 817.7 
mpeg2_enc 1,318,326 317,504 127.5 
qsort 1,180,697 252,284 737.9 
rijndael_dec 1,045,273 199,364 307.9 
rijndael_enc 1,045,273 199,364 320.0 
stringsearch 1,025,446 188,484 3.7 

Table 5. I-cache misses per 1000 instructions for the Base 
case 

Benchmark Cache line 64 B Cache line 128 B 
 1 K 2 K 4 K 8 K 1 K 2 K 4 K 8 K 

blowfish_dec 22.2 5.6 0.1 0.0 13.7 3.8 0.8 0.0
blowfish_enc 22.2 4.6 0.1 0.0 12.9 3.8 0.8 0.0
cjpeg 6.2 1.6 0.3 0.1 6.6 1.7 0.3 0.1
djpeg 8.4 4.0 1.1 0.2 6.2 2.9 1.0 0.2
ecdhb 20.3 6.0 2.3 0.1 14.6 6.2 1.6 0.2
ecdsignb 15.9 4.6 1.7 0.1 17.3 4.8 1.2 0.1
ecdsverb 21.3 5.2 2.0 0.3 16.9 5.3 1.5 0.3
ecelgdecb 26.2 0.3 0.0 0.0 22.4 2.5 0.0 0.0
ecelgencb 23.4 3.2 1.1 0.1 18.7 4.4 0.8 0.1
ispell 61.7 51.1 21.7 2.9 40.4 35.7 20.9 3.5
mpeg2_enc 1.8 0.8 0.3 0.2 2.1 0.6 0.3 0.1
qsort 44.2 29.4 22.2 5.4 32.8 21.1 15.3 7.4
rijndael_dec 70.6 68.6 68.0 6.6 41.6 40.3 37.6 9.9
rijndael_enc 73.7 70.5 68.0 8.1 42.6 39.4 38.1 11.2
stringsearch 55.3 35.4 12.9 3.7 38.0 24.3 10.6 1.9

IV. RESULTS 
We first evaluated the code size increase due to embedded 

signatures. For 128 B cache lines, the signatures increase the 
size of executable code sections by 12.5% for the SIGCED 
and SIGCEK techniques. With the SIGCEV the executable 
code is increased by 14.28%. However, an ELF binary 
typically includes other sections, such as headers, initialized 
data, symbol table, and debugging information, so the impact 
of signatures on the total binary size will be smaller. In our 
benchmarks compiled with the ARM gcc cross-compiler and 
the –static option, the code sections do not make more than 
25% of the total binary, so the total program size increases 



 
 

from 2.6 to 3.5% only. With 64 B cache line, the total 
program size for considered benchmarks increases 4.7-6.3% 
for the SIGCED and 6.1-8.3% for the SIGCEV technique. 

The results of the performance analysis are presented as 
follows. We first analyze the performance overhead of the 
SIGCED, SIGCEK, and SIGCEV techniques assuming the 
initial configuration with a slow processor core and a 32-bit 
memory data bus. Next, we examine performance of the 
SIGCEK technique as a function of the size of the S-cache. 
Finally, we explore how performance of the SIGCED and 
SIGCEV techniques depends on changes of the processor core 
speed, memory bus width, and the size of protected blocks. 

A. Performance overhead with slow core, 32-bit bus,  
and 128 B I-cache line 

Fig. 9 and Fig. 10 show the SIGCED, SIGCEK, and 
SIGCEK CPI normalized to the Base case, for I-cache sizes of 
1 K and 4 K. The CPI for the Base case is given in Table 6.  

Cache line 128B, size 1K, 32-bit bus, slow core
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 Fig. 9 CPI normalized to the Base for slow processor core,  

32-bit memory bus, cache size 1 K, cache line 128 B 

Cache line 128B, size 4K, 32-bit bus, slow core
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Fig. 10 CPI normalized to the Base for slow processor core,  

32-bit memory bus, cache size 4 K, cache line 128 B 

The results indicate a very low performance overhead of the 
SIGCED technique. Even with the small 1 K I-cache, this 
technique increases CPI in the range 0.8-7.4%, with 8 out of 
15 benchmarks having more than 5% increase. With the 4 K I-
cache, CPI increases for more than 5% for only 3 benchmarks, 
since the influence of signature verification overhead is 
reduced with I-cache miss reduction. 

The absolute CPI increase for the SIGCED technique 
depends on the number of I-cache misses given in Table 5: 
more cache misses means more signature verifications, that is, 
increased performance overhead. However, the CPI 
normalized to the Base case does not follow the number of I-
cache misses, since for an application with a relatively large 
number of I-cache misses a relative CPI increase may be 
smaller than for an application with fewer cache misses. For 
example, with the 1 K I-cache rijndael_enc has a 3% CPI 
increase and ecdhb has a 5.8% increase, whereas rijndael_enc 
has 42.58 I-cache misses per 1000 instructions, and ecdhb 
only 14.57. This can be easily explained by the fact that the 
Base CPI for this system configuration is 15.51 for 
rijndael_enc and 3.28 for ecdhb, and the absolute CPI 
increase with the SIGCED technique is 0.19 for ecdhb and 
0.47 for rijndael_enc. 

Table 6  CPI for the Base configuration, cache line 128 B, 
memory bus 32 bits, slow processor core 

Benchmark 1 K 2 K 4 K 8 K 
blowfish_dec 5.49 4.55 3.03 2.30
blowfish_enc 5.42 4.55 3.03 2.30
cjpeg 5.21 3.64 2.99 1.81
djpeg 8.39 5.17 3.41 1.86
ecdhb 3.28 2.28 1.77 1.62
ecdsignb 3.36 2.21 1.81 1.70
ecdsverb 3.37 2.26 1.83 1.71
ecelgdecb 4.20 1.99 1.78 1.78
ecelgencb 3.80 2.14 1.77 1.70
ispell 9.57 7.93 5.48 2.65
mpeg2_enc 3.39 2.42 1.75 1.52
qsort 5.59 3.97 3.16 2.31
rijndael_dec 15.65 12.88 9.06 4.47
rijndael_enc 15.51 12.51 8.89 4.41
stringsearch 7.95 5.57 3.18 2.00

  
As explained in Section II, the SIGCED overhead can be 

reduced if signatures are kept in the S-cache, i.e., with the 
SIGCEK technique. In order to be able to keep some 
signatures when the corresponding protected blocks are 
evicted from the I-cache, the S-cache must have greater 
associativity and/or more entries than the I-cache. The S-
caches in Fig. 9 and Fig. 10 have twice as many entries as the 
corresponding I-caches, fully associative organization, and the 
LRU replacement policy. The total size of the S-cache is ¼ of 
the I-cache size. The SIGCEK CPI increase is in the range 
0.3-4.8% with the 1 K I-cache and 0.006-2.5% with the 4 K I-
cache. The SIGCEK reduces the performance overhead of the 
SIGCED for 8-91% and 50-92% with the 1 K and 4 K I-
cache, respectively.  

The normalized CPI for the SIGCEV technique is in the 
range 0.95-1.14 with 1 K I-cache, and 0.99-1.33 with the 4 K 
I-cache. The SIGCEV protected block size in these 
experiments is 112 B, so the actual I-cache size is 0.875 of the 
Base I-cache size. Since the SIGCEV I-cache is smaller, for 
most benchmarks it has more cache misses than the Base I-
cache (Table 5, Table 7). The large SIGCEV performance 



 
 

overhead of 14% for mpeg2_enc with 1 K I-cache and 33% 
for stringsearch with the 4 K I-cache is due to the significant 
relative increase in the number of cache misses.  

However, the SIGCEV may have even a lower CPI than the 
Base case. The SIGCEV I-cache has a different mapping 
function, so the number of I-cache misses may be lower, 
especially in small caches with more capacity misses. If such a 
benchmark also has a relatively low branch misprediction rate, 
the SIGCEV might marginally outperform the Base case. This 
is the case with the ecdsignb and ecdsverb benchmarks with 
the 1 K I-cache, and blowfish with the 4 K I-cache. It should 
be noted that the difference in the number of I-cache misses 
between the Base case and the SIGCED may be reduced if 
both the original code and the code with signatures are 
transformed to optimally use available cache resources, as 
described in [17].   

It is interesting to note that the SIGCEV technique 
outperforms the SIGCED for 11 out of 15 benchmarks with 
the 1 K I-cache. This is due to the relatively large number of 
cache misses in such a small cache, and to the different 
instruction block address translation in the SIGCED and 
SIGCEV techniques. With the SIGCEV, the address 
translation latency is hidden except when a branch is 
mispredicted, and it is never hidden with the SIGCED. Hence, 
the overhead of the increased number of I-cache misses in the 
SIGCEV may be less than the overhead of the address 
translation in the SIGCED. For example, for ecelgdecb and 
1 K I-cache the SIGCED has 4.48 CPI, and the SIGCEV has 
4.23 CPI. The number of I-cache misses is 22.4 per 1000 
instructions with the SIGCED, and only slightly larger with 
the SIGCEV, 23.7 per 1000 instructions.  

 

Table 7.  I-cache misses per 1000 instructions for SIGCEV  

Benchmark Cache line 64 B Cache line 128 B 
 1 K 2 K 4 K 8 K 1 K 2 K 4 K 8 K 
blowfish_dec 29.2 16.7 0.1 0.0 14.9 9.8 0.8 0.0
blowfish_enc 28.5 14.4 3.1 0.0 15.0 6.9 0.8 0.0
cjpeg 10.8 3.3 0.4 0.1 8.8 2.1 0.3 0.1
djpeg 21.5 6.9 2.6 0.3 7.0 3.5 1.5 0.2
ecdhb 30.7 13.7 4.9 0.5 17.2 8.7 2.2 0.2
ecdsignb 24.2 10.8 3.8 0.4 13.5 6.7 1.7 0.2
ecdsverb 25.9 11.5 4.2 0.7 14.5 7.2 1.9 0.3
ecelgdecb 40.5 9.1 0.2 0.0 23.7 6.9 0.1 0.0
ecelgencb 35.8 11.5 2.6 0.3 20.5 7.8 1.2 0.1
ispell 76.1 65.8 32.8 6.9 48.1 42.9 23.3 5.9
mpeg2_enc 8.7 1.3 0.6 0.2 6.9 0.8 0.3 0.1
qsort 52.4 38.9 29.0 13.5 31.7 25.1 18.0 9.7
rijndael_dec 89.7 85.8 85.8 33.8 44.2 41.6 40.3 10.0
rijndael_enc 88.9 87.0 86.4 45.6 47.0 43.8 41.3 22.9
stringsearch 69.0 43.6 19.5 0.3 44.4 32.9 20.8 5.5

B. Sensitivity of SIGCEK to the S-cache size 

The very low performance overhead of the SIGCEK 
technique with the S-cache parameters as described in the 
previous section prompted us to experiment with a smaller S-
cache. We call the S-cache used in the previous experiments 

(Fig. 9, Fig. 10) the medium-size S-cache. A small-size S-
cache in our further experiments is half of the size of the 
medium S-cache. That is, the small S-cache has the same 
number of entries as the I-cache, fully associative 
organization, and the LRU replacement policy. The size of the 
small S-cache is 1/8 of the corresponding I-cache size.    

Fig. 11 shows the CPI for the SIGCEK with the small S-
cache normalized to the SIGCEK CPI with the medium S-
cache, for two system configurations (1 K and 4 K I-cache). 
Although investing more hardware resources into the S-cache 
always reduces performance overhead, we can observe that in 
some cases the medium-size S-cache only marginally 
outperforms the small S-cache, e.g., for cjpeg with the 4 K I-
cache and for rijndael_dec with the 1 K I-cache. This can 
happen due to one of the two following reasons. If a 
benchmark has a very low I-cache miss rate for a certain cache 
size, e.g. cjpeg with 4 K I-cache (Table 5), employing a 
medium-size S-cache will not significantly influence the CPI, 
since most cache misses are cold misses. If a benchmark has a 
relatively large miss rate for both the considered cache size 
and the next larger size, e.g., rijndael_dec with the 1 K 
I-cache, the medium-size S-cache impact will also be low, 
since it will not be able to retain the signatures of evicted 
cache blocks. In the future work we plan to explore possible 
ways to increase the S-cache hit rate. One solution would be 
to use a different replacement policy, for example to replace a 
signature whose corresponding I-cache block was the least 
recently evicted.  

SIGCEK: small S-cache, I-cache line 128B, 
32-bit bus, slow core
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Fig. 11  SIGCEK: small vs. medium-size S-cache 

C. Sensitivity of SIGCED and SIGCEV to core speed,  
 memory bus width, and protected block size 

The number of processor cycles needed for the signature 
fetch will decrease with the wider data memory bus, and 
increase with the faster processor core, so we may expect 
similar behavior from total signature verification overhead. 
Another interesting parameter is the cache line size. Although 
the size of a program with shorter protected blocks will 
increase more due to embedded signatures, such program may 
have a lower CPI if the number of I-cache misses is reduced 
with shorter cache lines. We performed experiments with all 
possible variations of these parameters, that is, with slow and 



 
 

fast core, 32- and 64-bit memory bus, 64 and 128 B I-cache 
block, and various I-cache sizes.  

We may group the benchmarks in two groups according to 
the number of cache misses with all considered cache sizes. 
The influence of the bus width, the core speed, and the cache 
line size will be discussed for one benchmark from each 
group: ecdhb with a relatively low number of cache misses, 
and rijndael_enc which is one of the two benchmarks with the 
largest number of cache misses per 1000 instructions for each 
cache size and line size (Table 5).  

Fig. 12 and Fig. 13 show the SIGCED CPI normalized to 
the Base case for ecdhb and rijndael_enc. As expected, the 
SIGCED technique has the largest impact on performance 
with the 64 B cache line size, the 32-bit bus, and a fast 
processor core. However, even with this system configuration 
the SIGCED performance overhead is never more than 13% 
for both benchmarks. If the number of I-cache misses is very 
low, as it is for ecdhb in the 8 K I-cache, the SIGCED 
overhead does not depend on system parameters, since it is 
always close to zero.  
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Fig. 12 SIGCED: CPI normalized to the Base, ecdhb 

rijndael_enc: SIGCED
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Fig. 13 SIGCED: CPI normalized to the Base, rijndael_enc 

It is interesting to note that the normalized SIGCED CPI 
decreases with larger caches for ecdhb and not for 
rijndael_enc. The rijndael_enc benchmark has a very large 
number of I-cache capacity misses in 1, 2, and 4 K caches, 
such that the number of I-cache misses is only slightly 
reduced with the cache size increase before the 8 K size 
(Table 5). Hence, the absolute overhead of the SIGCED 
technique does not considerably decrease with the cache size 

increase. However, even a relatively small reduction in the 
number of cache misses significantly improves the Base CPI, 
so the normalized CPI for the SIGCED actually grows, up to 
the 4 K cache size. 

Fig. 14 and Fig. 15 show the SIGCEV CPI normalized to 
the Base case for ecdhb and rijndael_enc. For both 
benchmarks the SIGCEV has more I-cache misses than the 
Base case (Table 5, Table 7), so it always has lower 
performance. For both benchmarks the SIGCEV is more 
sensitive to configuration change than the SIGCED, since a 
narrower bus and a faster core increase both the cache miss 
latency and the latency due to signature fetch. Similarly to the 
SIGCED, the SIGCEV with longer cache line has smaller 
performance overhead. 

The rijndael_enc benchmark has a very large SIGCEV 
performance overhead with the 8 K I-cache. This happens 
because the number of I-cache misses has doubled compared 
to the Base case. Moreover, there is a sharp drop in the Base 
CPI for 8 K I-cache (Table 6), so the relative CPI increase is 
even more noticeable. 
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Fig. 14 SIGCEV: CPI normalized to the Base, ecdhb 

rijndael_enc: SIGCEV
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Fig. 15 SIGCEV: CPI normalized to the Base, rijndael_enc 

We may conclude that if an embedded system has a low 
hardware budget, the SIGCEV technique has the best price-
performance tradeoff, since in small caches it outperforms the 
SIGCED for most benchmarks and employs less hardware 
resources. However, the SIGCED is better for systems with 
larger caches. With 25% larger hardware budget invested in 
the S-cache, the SIGCEK technique has a very low 



 
 

performance overhead across all considered system 
configurations. 

V. RELATED WORK 
Techniques for countering code injection attacks can be 

classified in two categories: those that are software-based and 
those that require some hardware support. The software 
techniques can be further classified into static techniques and 
dynamic techniques.  

Static code analysis can find a significant number of 
security flaws and suggest where changes in the code should 
be made. However, it is impossible to discover all 
vulnerabilities in any given program, since the problem of 
static analysis is generally undecidable [18]. Completely 
automated tools for detection of security-related flaws must 
choose between precise but not scalable analysis and 
lightweight analysis that may produce a lot of false positives 
and false negatives [19]. The need for precise automated 
analysis can be alleviated if programmers adds specially 
formulated comments about constraints [20], [21], but adding 
annotations can be as error prone as programming itself and 
puts additional burden on programmers. 

Dynamic software techniques encompass several groups of 
techniques that detect and/or prevent attacks in run-time. One 
group of techniques augments the code with various run-time 
checks [10], [22], [23], [24], [25]. Another group comprises of 
“safe dialects” of language C, which restrict the use of unsafe 
constructs, perform static analysis and/or runtime checks,  
and use garbage collection or region-base memory 
management [26], [27], [28]. Another approach is 
obfuscation: segment addresses, jump addresses, or the 
complete code can be scrambled, making it difficult for an 
attacker to succeed [29], [30], [31], [32]. Several researchers 
suggest intrusion detection by monitoring the program 
behavior, such as monitoring the sequences of system calls of 
a program [33], [34], or the values of monitoring performance 
registers [35]. Dynamic software techniques often require 
recompilation, so they are not readily applicable to legacy 
code. Moreover, since these techniques increase the code size 
and the number of instructions executed, they may incur 
significant performance and power overhead. 

Some of the performance overhead may be reduced with 
hardware support. Xu et al. propose an architectural support 
against the stack smashing attack: a return address is saved on 
both the Secure Return Address Stack and on the “regular” 
stack [36]. An attack is detected if the two addresses do not 
match. Similar efforts expand this idea [37], [38]. [39]. The 
secure stack does not have to be implemented in hardware: 
with the Dynamic Instruction Stream Editing (DISE), the 
‘shadow” stack is kept in a protected area on the heap [40]. 
DISE is a one-to-many instruction macro expander with 
programmable rewriting rules: to protect return addresses 
from the attack, call and return instructions are dynamically 
rewritten in the runtime to write/verify data from the shadow 
stack. Another approach is to achieve redundancy of return 

addresses not by duplicating stack, but by replicating cache 
lines with return address [41]. When a return is executed, the 
value of replicated data is compared to the return address. The 
main drawback of these techniques is that they provide 
protection from only one type of attack. Techniques such as 
specific randomized instruction sets for each process may 
prevent code injection in general [42], but at the price of a 
significant increase in execution time.  

A successful buffer overflow attack can overwrite not only 
return addresses on the stack, but any function pointer. Tuck 
et al. [43] propose to protect code pointers from both read and 
write buffer overflow attacks by encrypting them. Code 
pointers are encrypted and decrypted using special 
instructions, encrypt-stores and decrypt-loads. The authors 
propose three levels of encryption: XOR with a secret key, 
XOR with a value from random permutation table, or a Feistel 
network. Decrypted values are cached in the L1 cache 
memory. Another technique, HSAP, also encrypts function 
pointers, but only using a simple XOR with a secret key [44].  
The HSAP also protects from stack smashing by 
implementing a hardware boundary check for stack variables. 

A framework that encompasses secure installation and 
secure program execution was first proposed by Kirovski et al. 
(Secure Program Execution Framework, SPEF [45]). 
However, our work expands their initial idea and offers a 
more efficient implementation. Kirovski et. al do not store the 
calculated instruction block signature as we do, but transform 
instruction blocks according to the encrypted hash values of 
transformation invariants. During installation, a 
transformation-invariant (TI) hash value is calculated for each 
instruction block and is encrypted using AES and a secret 
processor key; the encrypted hash value determines the 
transformation of the instruction block. The chosen 
transformation belongs to a set of transformations that do not 
change the correct program behavior, such as instruction 
scheduling, basic block reordering, branch-type selection, and 
register permutation. During execution, the verifier 
component calculates the TI hash for every instruction block 
that is fetched after an I-cache miss. It then encrypts the 
hashed value, and verifies whether the obtained 
transformation is equal to the actual code. The performance 
overhead can be reduced if TI hash values are kept in the TI-
cache. The advantage of this approach is a minimal increase in 
the code size. However, our techniques are less complex than 
SPEF, so they have less performance overhead: for 
MediaBench benchmarks, the authors report overhead 12.7-
24.7%, and 7.5-17% with a TI-cache. Moreover, on average 
there is less possible transformations of a given instruction 
block than possible signatures generated with our approach, so 
using 16-byte signatures appears to be more cryptographically 
secure. Finally, some of the SPEF code transformations 
require compiler support, whereas our signature techniques do 
not. 

Another interesting approach is to tag all data coming from 
“the outside world” (e.g., I/O channels) as spurious and to 
prevent execution of any control transfer instruction if the 



 
 

target address depends on spurious data [46]. This approach 
may generate some false positives, since the target address 
may be input-dependant, for example in switch constructs. 
Generally, input data can propagate to a target address through 
a series of calculations, so this technique requires a relatively 
complex data dependency analysis. A similar approach, 
Minos, [47] augments every memory word with an integrity 
bit. The integrity bit is set by kernel and determines the trust 
the kernel has in that data. The low trust data cannot be used 
for control transfers.  

The code integrity in run-time can be successfully protected 
if all instruction blocks are signed with a cryptographically 
secure signature. We did a preliminary research on protection 
of basic blocks and cache blocks using signatures [8], [9]. 
Kirovski et al. also propose to sign all cache blocks and to 
verify signatures in run-time [48]. An instruction block 
signature is obtained by encrypting the instruction block using 
a 128-bit Rijndael cipher, and then XOR-ing the 16-byte sub-
blocks. The overhead of Rijndael decryption implemented in 
hardware can be hidden if the instructions in an instruction 
block can be reordered in such a way that critical instructions 
such as stores are executed after decryption delay time. 

Signatures of instruction blocks of various granularity are 
frequently used in fault-tolerant computing [49], and Joseph 
and Avizienis proposed the idea of a virus protection 
technique using an extended Program Flow Monitor [50]. 
However, the paper does not include any implementation 
details or evaluation. 

VI. CONCLUSION 
In this paper we propose and analyze three hardware-

supported techniques for runtime instruction block 
verification: SIGCED, SIGCEK, and SIGCEV. These 
techniques provide complete software integrity with minimal 
to modest hardware investments and no compiler support. If 
chosen according to the available hardware budget, the three 
proposed techniques do not impose significant burden on the 
overall performance. The SIGCEV should be implemented 
with small caches, the SIGCED with a medium-size hardware 
budget, and the SIGCEK if the budget allows the S-cache. 

Another contribution of this paper is a taxonomy of all 
possible techniques for runtime instruction block verification. 
Techniques are classified according to the type of protected 
instruction blocks (variable vs. fixed size), placement of 
instruction block signatures (embedded vs. table), signature 
handling (dispose after verification or keep in the S-cache), 
and signature visibility (visible vs. hidden from the I-cache). 

Future work will evaluate the power overhead of the 
proposed techniques. We will also evaluate other possible 
implementations, such as protecting more than one cache 
block with the same signature, and using other replacement 
policies for the S-cache. Another interesting question is 
whether the proposed basic mechanism can be extended to 
cover other classes of attacks, such as return-into-libc. 
Although the main goal of the proposed mechanism is to 

prevent code injection attacks, it can be applied to other 
purposes, such as fault-tolerant execution, virus protection, 
and protection from software tampering.  
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