
N-TUPLE COMPRESSION:
A NOVEL METHOD FOR COMPRESSION OF BRANCH INSTRUCTION TRACES

Aleksandar Milenkovi�, Milena Milenkovi�, and Jeffrey Kulick

Electrical and Computer Engineering, The University of Alabama in Huntsville
Email: milenka@ece.uah.edu, URL: http://www.ece.uah.edu/~milenka

Abstract

Branch predictors and processor front-ends have been
the focus of a number of computer architecture studies.
Typically they are evaluated separately from other
components using trace-driven simulation based on
instruction traces. To offer a faithful representation of
processor’s workload the traces are very large, and hence
difficult to manage if kept in uncompressed form. In order
to reduce simulation overhead due to the processing of
non-branch instructions, we propose a new form of
instruction trace, the Branch Instruction Trace (BIT),
suitable for simulation of dynamic branch prediction
mechanisms, fetch engines, and trace caches. A novel
method for lossless trace compression, which can be
applied to both ASCII and binary BIT traces, is also
introduced. The proposed method relies on the trace
record table (TRT) consisting of unique trace records.
The trace size can be reduced by replacing each trace
record by its ID in the TRT, since the number of unique
trace records is much less than the trace length. We
further extend this idea and replace an entire N-tuple of
BIT records with its ID from the N-Tuple Record Table
(N-TRT). The analysis shows that for a subset of SPEC
CPU2000 benchmarks 8-tuple replacement yields
significant compression ratio (40 for binary traces and
32-43 for ASCII traces), while keeping N-TRT size
reasonable. When combined with the common
compression tools such as gzip the compression ratio is
195-3888 for binary, and 306-4604 for ASCII traces,
while gzipped-only traces achieve compression ratio 20-
201 for binary, and 20-216 for ASCII traces.

Keywords: trace-driven simulation, branch prediction,
trace compression.

1. INTRODUCTION

The dynamic branch predictor is frequently used to
improve instruction level parallelism in processor control
flow. In order to estimate the limits and the benefits of a
novel front-end architecture for a large set of design
parameters, the fetch-engine, branch prediction
mechanisms, and trace caches are frequently evaluated
independently of other processor components. If trace-
driven simulation is used with some common form of full
instruction traces, the simulator has to deal with a lot of
data unrelated to branch instructions, thus increasing the
simulation time.

In order to have only the information necessary for
front-end processor simulation (branch predictor, fetch
engine, trace cache, etc.), we propose a format for branch
instruction traces. One record in this trace contains data
about branch instruction address, target address, branch
type, and the length of the corresponding basic block.

To offer a faithful representation of a specific
workload, traces must be very large, encompassing
billions of memory references and/or instructions. For
example, an instruction trace with 1 billion instructions,
where each trace record takes 10 bytes requires 10GB of
storage space. Yet, with a modern superscalar processor
executing 1.5 instructions each clock cycle and running at
3 GHz, a 10 GB file will represent only 0.2 seconds of the
CPU execution time. To efficiently store and use even a
small collection of traces, the trace size must be reduced
as much as possible. Since traces have a lot of redundant
information [1], compression tools based on Ziv-Lempel
algorithm [2], such as the gzip program, can achieve a
very good compression ratio. However, even better
compression is possible by taking advantage of the
redundancy in address and instruction traces. On the other
hand, since the ultimate purpose of traces is to be used in
a simulation, the trace compression should not introduce a
significant decompression slowdown. Hence, the ideal
trace reduction would be fast, with a high reduction
factor, and lossless, i.e., not introducing errors into the
simulation [3].

In this paper, we propose a novel method for
compression of branch instruction traces. In the proposed
method, a trace is divided into N-tuples, with each n-tuple
corresponding to a sequence of events. An N-Tuple
Record Table (N-TRT) is generated, consisting of unique
N-tuples. Each N-tuple in the trace is then replaced with
its index in the N-TRT. When the trace is accessed during
a simulation, each tuple can be easily and rapidly
converted back to N original trace records. We evaluated
this method on traces generated using modified
SimpleScalar environment [4], selected SPEC CPU2000
benchmarks [5], and reduced input dataset [6]. Each trace
consists of smaller partial traces that can be individually
compressed and decompressed. The proposed
compression method can be applied to both ASCII and
binary traces, and can be easily applied for any full
instruction trace format.

When combined with gzip, N-tuple compression
achieves significant improvement in comparison to traces
compressed only by gzip. For 1-tuple compression, this

gain (over gzip only) ranges from 2.19 to 9.74 times for
binary, and from 2.65 to 7.16 for ASCII traces, while for
8-tuple compression the gain is 2.47-29.63 for binary, and
3.12-32.82 for ASCII traces, achieving combined
compression rate of up to 4600 times.

The remainder of the paper is organized into five
sections. The second section gives some details about
related trace compression work. The third section explains
the branch instruction trace format and gives details about
preliminary trace analysis. The fourth section explains the
proposed compression mechanism, and shows the
compression ratio obtained for N-tuple compression. The
last section gives concluding remarks.

2. RELATED WORK

Simulations based on the use of program execution
traces have been widely employed in computer
architecture research. Trace related issues form a research
area on their own, including trace collection, reduction
and processing [3]. Traces must faithfully represent
targeted workloads, and different software and hardware
methods must be developed for complete, detailed and
undistorted trace collection. In order to be representative,
traces must include a large number of references, thus
requiring enormous amount of storage. Since keeping
traces in an unreduced form is infeasible, some method of
trace reduction must be applied, ranging from trace
sampling and filtering, to loss-less trace compression.

Program execution traces can include only addresses
of memory references (address traces), if they are used in
simulations of memory hierarchy. For example, Dinero
trace format record [7] consists of the address of memory
reference and the reference type - read, write, or
instruction fetch, while BYU traces [8] also include
additional information, such as the size of the data
transfer, processor ID, etc. If we want to evaluate
performance of different CPU designs, we also need
instruction traces, i.e., traces including at least the
operation code for an instruction along with its address.
One such example is the IBS trace format [9], which also
includes information about user or kernel activity.
Another example is the PDI trace format, an extension of
PDATS [10], which includes the instruction word and
address. The branch instruction trace proposed in this
paper is a subset of the instruction trace family.

PDI instruction words are compressed using a
dictionary-based approach [10]. A dictionary of 256 most
frequently used instruction words is stored at the
beginning of the trace file, and each of those words in the
trace is replaced with its index in the dictionary. The
words that are not in the dictionary are left unchanged.
The dictionary can be created for each trace file
separately, and then compression requires two passes
through the trace. Another approach is to use the same
generic dictionary for all traces. The generic approach has
a lower compression ratio, but requires only a single pass

trace processing. PDI addresses are compressed using the
PDATS method, where an address in the trace stream is
replaced by its offset. One stream consists of the same
type of addresses, such as load, store, or instruction fetch
streams. On ASCII traces of the SPEC92 programs, PDI
has compression ratio 5-8. When a trace compressed by
PDI method is further compressed using gzip, the
combined compression ratio is in the range 23-426.

Analysis based on basic blocks, rather then separate
instructions, is employed for address traces stored in two
compressed formats, MTRACE [11] and RPS (Recovered
program structure) [12]. The MTRACE format stores the
address of the first instruction of each basic block, and
data address references within that block. An auxiliary
file describing basic blocks is used to reconstruct the
trace. The RPS format also stores trace data in multiple
files: one file stores information about basic block length
and positions of load and store instructions within blocks,
another file keeps invocation sequence of the basic
blocks, and separate files store data address references.

3. BRANCH INSTRUCTION TRACES

The branch instruction traces for this paper were
collected using the modified SimpleScalar system [4], a
widely used set of simulation tools developed at the
University of Wisconsin. Each record in the trace file
consists of the following fields: BranchAddress,
TargetAddress, OpCode, BBlockLength (Table 1). The
same fields exist in both ASCII and binary trace format.
The basic block length is the number of instructions
executed between two consecutive branches, including
the last branch. Preliminary trace analysis shows that one
byte is enough for the basic block length field in the
binary format, while a special value of the OpCode field
can be used in the case of larger basic blocks, and such
data can be stored in two trace records instead of one.
Figure 1 shows an excerpt from an ASCII trace file.
While the binary format requires less storage space, the
ASCII format is convenient for trace examining, editing,
and simulator debugging, as well as in the educational
purposes [10]. We applied our compression method to
both ASCII and binary traces, in order to show that it is
independent of the trace format.

We collected the branch instruction traces for a subset
of SPEC CPU2000 benchmarks [1], including five integer
(gcc – scilab.s input, gzip - graphic input, mcf, parser,
and vortex) and four floating-point benchmarks (ammp,
art, equake and mesa). We used large inputs from the
reduced datasets [6], developed specifically for simulation
purposes at the University of Minnesota. All benchmarks
were compiled for the MIPS-like PISA architecture, using
the Gnu C compiler with O3 optimization flag. The
SimpleScalar’s modified bpred simulator was run under
RedHat 7.2 Linux OS.

All considered benchmarks were run to completion,
and Table 2 shows the number of trace records, i.e., the

executed branches. In order to have trace files of
manageable size, each complete trace consists of a set of
partial trace files, all but the last (foreshortened) trace file
containing 1,000,000 trace records. The size of an
uncompressed partial trace file is about 20MB for an
ASCII trace, and 10MB for a binary trace. Each partial
trace file is compressed using the standard gzip program,
and all partial traces are stored in a tar file. The size of a
gzipped partial trace can vary from less than a 50K (mcf
benchmark), to more than 1MB (gcc). This storage
structure is similar to the structure of IBS traces [9], and
enables the use of traces even with relatively modest
computer configurations that have low disk space.

Table 1 Branch trace record fields.
Field Description Length

[bytes]
BranchAddress Branch instruction address 4
TargetAddress Branch target address 4
OpCode Branch opcode 1
BBlockLength Length of a basic block ending

with that branch
1

Branch
Address

Target
Address

OpCode BBlock
Length

4001a8 41a3d0 3 e
41a3e0 41faa0 3 3
41fac0 41fac8 6 5
41fad0 41fad8 6 2
41fae0 41b890 3 2
41b8b8 41b8d8 7 6
41b8e8 423a00 3 3

Figure 1 Branch Instruction Trace example

Table 2 Trace records statistics (whole trace)
Legend: #TRs – number of trace records in a trace,

#UTRs – number of unique trace records

Benchmark #TRs #UTRs
#UTRs

making 90%
of TRs

164.gzip.graphic 251,460,618 1874 110
176.gcc 759,484,369 52961 5494
177.mesa 325,124,149 2602 74
179.art 310,425,057 1093 44
181.mcf 135,550,269 1822 66
183.equake 112,253,537 2027 258
188.ammp 369,474,018 1621 83
197.parser 823,886,062 7367 360
255.vortex 168,611,654 15237 821

In order to explore the potential for compression, we

counted the number of unique trace records (#UTR), both
for whole trace (Table 2) and per partial trace file, i.e., per
one million branch instructions (Figure 2). Table 3 shows
some additional statistics: the average, minimum, and
maximum number of UTRs per partial trace file.
Compared to the trace length, the number of UTRs for the

whole trace is very small, ranging from just about 1000
unique records (art) to about 53000 (gcc). If we consider
the number of unique trace records per partial trace file,
these numbers are even lower, ranging from only 1 (mcf)
to 25024 (gcc). The number of UTRs accounting for 90%
of the trace is in the range of 44 (art) to 5494 (gcc). All
this data indicates very good compression potential.

Table 3 Statistics for unique trace records
per partial trace file.

Benchmark avr min max
164.gzip 335 95 1063
176.gcc 4410 9 25024
177.mesa 176 165 1759
179.art 121 57 565
181.mcf 170 1 917
183.equake 183 62 1021
188.ammp 422 335 1131
197.parser 378 142 4042
255.vortex 2593 276 5868

Gcc

0

5000

10000

15000

20000

25000

30000

1 36 71 10
6

14
1

17
6

21
1

24
6

28
1

31
6

35
1

38
6

42
1

45
6

49
1

52
6

56
1

59
6

63
1

66
6

70
1

73
6

[x1M Branches]

U
n

iq
u

e
B

ra
n

ch
 T

ra
ce

 R
ec

o
rd

s

Vortex

0

1000

2000

3000

4000

5000

6000

7000

1 9 17 25 33 41 49 57 65 73 81 89 97 10
5

11
3

12
1

12
9

13
7

14
5

15
3

16
1

16
9

[x 1M Branches]

U
n

iq
u

e
B

ra
n

ch
 T

ra
ce

 R
ec

o
rd

s

Figure 2 Number of unique trace records per 1M branch

instructions for two SPEC CPU2000 benchmarks

4. BRANCH TRACE COMPRESSION

The storage problem of traces has several different
aspects. First, the trace access time can take a major
portion of the simulator execution time. Second, trace
archives require a significant server storage space and
download time, or a significant storage space on

removable media, such as compact disks. Finally,
uncompressed partial traces occupy a considerable
amount of hard disk space. To alleviate these problems,
we propose a simple, yet efficient compression algorithm,
based on the preliminary trace analysis in Section 3. Since
the number of unique trace records is relatively small, we
can create a table of unique trace records, and replace
each trace record with the corresponding table record ID,
similarly to the PDI dictionary approach. This idea can be
further extended to unique N-tuples of consecutive trace
records, providing that the size of the N-tuple record table
(N-TRT) does not increase too much, compared to the
trace record table consisting of unique trace records. One
alternative approach is to provide an N-TRT table per
each partial trace. This approach gives smaller partial
table sizes, so there is less pressure on the memory during
simulation, but requires more storage space and longer
access time. This approach has not been studied in this
paper.

Figure 3 illustrates N-tuple compression method for
N=1 and N=2, where the BIT (Branch Instruction Trace)
is compressed to cBIT-T1 (compressed BIT using 1-tuple
compression) and cBIT-T2 (compressed BIT using 2-
tuple compression). For example, trace record 4f66b8
4f66f0 6 4 is replaced with its table ID, 529, using 1-tuple
compression, or two trace records, 4f66e8 4f66c0 7 3 and
4f66c8 4f66d0 6 2 are replaced by a respective 2-TRT ID
if 2-tuple compression is used.

}

}

4001a8 4e80a0 3 e
4e80b0 4ed340 3 3
4ed360 4ed368 6 5
4ed370 4ed378 6 2
4ed380 4f6280 3 2
4f62a8 4f62c8 7 6
4f62d8 4f66a0 3 3
4f66b8 4f66f0 6 4
4f6758 4f6760 7 e
4f6788 4f6790 6 6
4f67a0 4f6830 6 3
4f6838 4f62e0 4 2
4f62e0 4f62e8 6 1
4f62f8 4f62d0 2 3
4f62d8 4f66a0 3 2
4f66b8 4f66c0 6 4
4f66c8 4f66d0 6 2
4f66d0 4f66d8 6 1
4f66e8 4f66c0 7 3
4f66c8 4f66d0 6 2

BIT

1-TRT

2-TRT

cBIT-T1

cBIT-T2

2551
2552
90
87
88
89
532
529
530
528
68
96
294
322
96
294
322
96
294
491

905
1773
1774
1874
87
893
496
495
325
386

Figure 3 N-tuple compression example, for N=1 and N=2

One example improvement of the N-tuple compression
method over raw (uncompressed) traces is shown in
(Figure 4). For all binary traces except gcc, each N-tuple
in the trace is replaced by its’ corresponding 2-byte N-
TRT ID, yielding compression ratios of 5, 10, 20, 40 and
60, for 1-, 2-, 4-, 8-, and 12-tuple compression,
respectively. Since gcc has a larger TRT table, we used 4
bytes for its table ID for N>1, which gives half of the
compression ratio of other benchmarks. The ASCII

compression ratio varies, since the records have variable
length, but it stays close to the binary compression ratio
for all considered benchmarks.

N-touple Compression for Raw ASCII and Binary Traces

0

10

20

30

40

50

60

70

BIT cBIT-T1 cBIT-T2 cBIT-T4 cBIT-T8 cBIT-T12

Trace Type

C
o

m
p

re
ss

io
n

 R
at

io

gzip.graphic
gcc
mesa
art
ammp
mcf
equake
parser
vortex
Binary

Figure 4 N-tuple compression ratio for raw ASCII and

binary traces

The N-tuple compression shows its real benefit when
combined with the gzip compression, i.e., when each
partial trace is first compressed using the N-tuple
algorithm, and then gzipped. In an N-tuple compressed
trace, patterns are better exposed to the gzip algorithm,
since a trace record or a group of records is replaced with
its table ID. Table 4 shows the combined compression
ratio for binary traces. The gzip-only compression is in
the range of 20 for vortex to 201 for the art benchmark.
Even a 1-tuple compression improves this ratio, from 127
times for gcc, to 582 for art, while for 8-tuple
compression ratio is 195-3888. The benchmark parser
reaches the point of diminishing returns for 4-tuple, with
8-tuple combined compression slightly worse than 4-
tuple. Figure 5 shows the N-tuple+gzip compression gain
relative to the gzip-only compression for binary traces.
We can see that for mesa, ammp, and vortex this gain
increases significantly when the tuple size increases, even
for 12-tuple, where mesa is compressed over 35 times.
Another group of benchmarks, art, gzip, parser, and mcf,
does not benefit much from the tuple size increase, with a
gain of about 4. The rest of the benchmarks, gcc and
equake, show moderate improvement when the tuple size
increases from 8 to 12 – from 7 to 7.8 times for gcc, and
from 11.2 to 11.5 for equake. Hence, we suggest 8 or 4 as
the optimal tuple size. Table 5 and Figure 5 show
combined compression ratio and compression gain for
ASCII traces. Again, combined compression ratio is
impressive, reaching over 4500 for mesa benchmark and
8-tuple compression.

During a simulation, the simulator now needs to read
just one N-TRT ID instead of N trace records, and to
access the corresponding N-TRT entry. The most
frequently accessed parts of the TRT table will be stored
in the memory, thus reducing the overhead of trace
reading during a trace-driven simulation. Table 6 shows
the access time for a simulation using binary traces and
corresponding access time speedup for compressed traces,
both for the total user+system time, and for the system

time component, while Figure 6 shows the average
speedup. We measured access time using a simple
program that reads the whole trace, on an AMD Athlon
PC at 2.2GHz, with 256MB memory, again under Linux
Red Hat 7.2 OS. The trace access time will be dependant
on the computer configuration where the simulation is
performed, but we can expect the similar access times
speedup.

N-touple Compression for Gzipped Binary Traces

0

5

10

15

20

25

30

35

40

45

BIT cBIT-T1 cBIT-T2 cBIT-T4 cBIT-T8 cBIT-T12

Trace Type

C
o

m
p

re
ss

io
n

 R
at

io

gzip.graphic
gcc
mesa
art
ammp
mcf
equake
parser
vortex

N-touple Compression for Gzipped ASCII Traces

0

5

10

15

20

25

30

35

40

45

BIT cBIT-T1 cBIT-T2 cBIT-T4 cBIT-T8 cBIT-T12

Trace Type

C
o

m
p

re
ss

io
n

 R
at

io
 R

el
at

iv
e

to
 G

zi
p

p
ed

 T
ra

ce

gzip.graphic
gcc
mesa
art
ammp
mcf
equake
parser
vortex

Figure 5 Compression gain relative to gzipped trace
archive for binary and ASCII traces.

Table 4 Combined N-tuple-gzip compression ratio
of binary traces (BIT – original gzipped trace)

Bin BIT cBIT-
T1

cBIT-
T2

cBIT-
T4

cBIT-
T8

cBIT-
T12

164.gzip 79 173 185 194 195 197
176.gcc 36 127 168 209 252 284
177.mesa 131 724 1323 2762 3888 4845
179.art 201 582 695 775 819 864
181.mcf 72 219 242 256 271 280
183.equake 110 525 812 1006 1232 1260
188.ammp 56 513 878 1191 1576 1950
197.parser 66 215 236 240 236 -
255.vortex 20 190 245 311 417 476

The access time speedup is not linear, since some time

must be spent on accessing the tuple record table. While
TRT does not add much to the size of the compressed
trace, its size may pose a problem during simulation on a

system with relatively low available memory. Figure 7
shows the number of unique trace records for different
tuple compressions. The table may store raw tuples, or
two-level tables may be used, thus reducing the overall
size. In a two-level implementation, an N-TRT table holds
IDs of the 1-TRT table, instead of whole trace records.

Table 5 Combined N-tuple-gzip compression ratio of
ASCII traces (BIT – original gzipped trace)

ASCII BIT cBIT-
T1

cBIT-
T2

cBIT-
T4

cBIT-
T8

cBIT-
T12

164.gzip 98 259 287 300 306 306
176.gcc 20 70 100 136 178 210
177.mesa 140 641 1282 2473 4604 5296
179.art 216 822 1070 1243 1331 1417
181.mcf 92 328 363 381 397 410
183.equake 115 478 822 1129 1430 1570
188.ammp 54 388 725 1106 1559 2130
197.parser 73 260 305 320 318 -
255.vortex 20 126 213 290 387 464

Table 6 Binary traces access time and N-tuple speed-up
 binary BIT [s] cBIT-T1 speedup
 total system total system

164.gzip 29.76 14.93 1.11 3.00
177.mesa 33.80 19.80 1.02 3.17
179.art 45.24 18.75 1.32 3.28
181.mcf 17.92 8.16 1.25 3.26
183.equake 12.55 6.69 1.07 2.99
188.ammp 54.73 23.23 1.35 3.35
197.parser 99.90 55.52 1.14 3.49
255.vortex 20.76 10.60 1.17 3.20

 cBIT-T4 speedup cBIT-T8 speedup
 total system total system

164.gzip 3.88 8.90 6.43 12.20
177.mesa 3.65 9.52 6.52 14.51
179.art 4.80 9.73 8.48 14.55
181.mcf 4.37 9.13 7.39 13.59
183.equake 3.85 9.38 6.65 13.12
188.ammp 4.84 9.93 8.74 14.49
197.parser 3.90 9.02 5.99 10.02
255.vortex 3.99 8.50 6.59 11.68

5. CONCLUSION

Trace-driven simulation is a very useful tool in
computer architecture research, especially for exploring
different implementations of front-end processor
components used to increase available instruction level
parallelism, such as the dynamic branch predictor. Since
traces of complete program runs require rather large
storage space, traces are usually stored in compressed
form, using some of the widely available compress tools
such as gzip.

Average access time speedup

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

cBIT-T1 cBIT-T2 cBIT-T4 cBIT-T8

Total time

System time

Figure 6 Average access time speedup for compressed

binary traces

Number of Unique Table Records

0

50000

100000

150000

200000

250000

300000

350000

cBIT-T1 cBIT-T2 cBIT-T4 cBIT-T8 cBIT-T12

Trace Type

U
n

iq
u

e
T

ab
le

 R
ec

o
rd

s

gcc

parser

vortex

Number of Unique Table Records

0

5000

10000

15000

20000

25000

cBIT-T1 cBIT-T2 cBIT-T4 cBIT-T8 cBIT-T12

Trace Type

U
n

iq
u

e
T

ab
le

 R
ec

o
rd

s

gzip.graphic

mesa

art

ammp

mcf

equake

Figure 7 Number of unique table records

The contributions of this paper are the following: first,
we propose a branch instruction trace format, containing
only information needed for the front-end processor
simulation. Then, we propose a novel trace compression
which does not aim to replace gzip compression, but
rather to modify original trace so that trace structure is
preserved, while further reducing the size of both
uncompressed and compressed trace. Consecutive N-
tuples (sequences of N trace records) are replaced with
corresponding IDs in the N-Tuple Record Table. Since
the number of unique N-tuples is relatively small
compared to the number of N-tuples in the trace, this
method is applicable for all considered benchmarks. The
compressed BIT trace together with the compressed trace
record table is significantly smaller than the original
compressed trace, up to almost 30 times for some
benchmarks and 8-tuple compression. Trace access time

is also reduced. Finally, we collected and compressed
state-of-the-art SPEC CPU2000 traces in the
SimpleScalar environment, and made our trace database
available to the research community.

Future work includes extending the proposed method
to full instruction and address trace. In this case, the tuple
record table will hold data about tuples of basic blocks.
The memory reference trace can be stored in the separate
file, using some other compression method such as
PDATS.

Another future direction is to extract path information
from the TRT, and replace each repeatable sequence in
the trace with its repetition count and the Path Record
Table ID. Again, the conversion of each PRT record into
corresponding sequence of trace records can be done
easily during a trace-driven simulation. We expect this
compression method to achieve even better size reduction.

Acknowledgements
This work has been partly supported by the Software

Engineering Directorate of the U.S. Army Missile Command.

REFERENCES

[1] Becker, J., Park, A. “An analysis of the information
content of address and data reference streams,” Proc. 1993
ACM SIGMETRICS conference on Measurement and
modeling of computer systems.

[2] Ziv, L., Lempel, A., “A universal algorithm for sequential
data compression,” IEEE Transaction on Information
Theory, Vol. 23, No 3., 1977.

[3] Uhlig, R., Mudge, T., “Trace-driven memory simulation,”
ACM Computing Surveys, Vol. 29, No. 2, June 1997.

[4] Burger, D., Austin, T., “The SimpleScalar Tool Set
Version 3.0,” University of Wisconsin Madison
Computer.

[5] SPEC 2000 Benchmark Suite, http://www.spec.org
[6] KleinOsowski, AJ., Flynn, J., Meares, N., Lilja, D.J.,

“Adapting the SPEC 2000 Benchmark Suite for
Simulation-Based Computer Architecture Research,”
Proc. Workshop on Workload Characterization (ICCD),
September, 2000.

[7] Edler, J., Hill, M.D., Dinero IV Trace-Driven
Uniprocessor Cache Simulator,
http://www.cs.wisc.edu/~markhill/DineroIV/

[8] Thornock, N.C., Flanagan, J.K., “A national trace
collection and distribution resource,” ACM SIGARCH
Computer Architecture News, Vol. 29, No. 3, June 2001.

[9] Uhlig, R., Nagle, D., Mudge, T., Sechrest, S., Emer, J.,
“ Instruction fetching: coping with code bloat,” Proc. 22nd
ISCA, June 1995.

[10] Johnson, E.E., Ha, J., Zaidi, M.B., “Lossless Trace
Compression,” IEEE Transactions on Computers, Vol. 50,
No. 2, February 2001.

[11] Elnozahy, E.N., “Address Trace Compression Through
Loop Detection and Reduction,” Proc. of the 1999 ACM
SIGMETRICS conference on Measurement and modeling
of computer systems.

[12] Fox, A., Grün, T., “Compressing Address Trace Data for
Cache Simulations,” Proc. of International Data
Compression Conference, February 1997.

