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Abstract 

Branch predictors and processor front-ends have been 
the focus of a number of computer architecture studies. 
Typically they are evaluated separately from other 
components using trace-driven simulation based on 
instruction traces. To offer a faithful representation of 
processor’s workload the traces are very large, and hence 
difficult to manage if kept in uncompressed form. In order 
to reduce simulation overhead due to the processing of 
non-branch instructions, we propose a new form of 
instruction trace, the Branch Instruction Trace (BIT), 
suitable for simulation of dynamic branch prediction 
mechanisms, fetch engines, and trace caches. A novel 
method for lossless trace compression, which can be 
applied to both ASCII and binary BIT traces, is also 
introduced. The proposed method relies on the trace 
record table (TRT) consisting of unique trace records. 
The trace size can be reduced by replacing each trace 
record by its ID in the TRT, since the number of unique 
trace records is much less than the trace length. We 
further extend this idea and replace an entire N-tuple of 
BIT records with its ID from the N-Tuple Record Table 
(N-TRT). The analysis shows that for a subset of SPEC 
CPU2000 benchmarks 8-tuple replacement yields 
significant compression ratio (40 for binary traces and 
32-43 for ASCII traces), while keeping N-TRT size 
reasonable. When combined with the common 
compression tools such as gzip the compression ratio is 
195-3888 for binary, and 306-4604 for ASCII traces, 
while gzipped-only traces achieve compression ratio 20-
201 for binary, and 20-216 for ASCII traces.  
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trace compression.  

1. INTRODUCTION 

The dynamic branch predictor is frequently used to 
improve instruction level parallelism in processor control 
flow. In order to estimate the limits and the benefits of a 
novel front-end architecture for a large set of design 
parameters, the fetch-engine, branch prediction 
mechanisms, and trace caches are frequently evaluated 
independently of other processor components. If trace-
driven simulation is used with some common form of full 
instruction traces, the simulator has to deal with a lot of 
data unrelated to branch instructions, thus increasing the 
simulation time.  

In order to have only the information necessary for 
front-end processor simulation (branch predictor, fetch 
engine, trace cache, etc.), we propose a format for branch 
instruction traces. One record in this trace contains data 
about branch instruction address, target address, branch 
type, and the length of the corresponding basic block.  

To offer a faithful representation of a specific 
workload, traces must be very large, encompassing 
billions of memory references and/or instructions. For 
example, an instruction trace with 1 billion instructions, 
where each trace record takes 10 bytes requires 10GB of 
storage space. Yet, with a modern superscalar processor 
executing 1.5 instructions each clock cycle and running at 
3 GHz, a 10 GB file will represent only 0.2 seconds of the 
CPU execution time. To efficiently store and use even a 
small collection of traces, the trace size must be reduced 
as much as possible. Since traces have a lot of redundant 
information [1], compression tools based on Ziv-Lempel 
algorithm [2], such as the gzip program, can achieve a 
very good compression ratio. However, even better 
compression is possible by taking advantage of the 
redundancy in address and instruction traces. On the other 
hand, since the ultimate purpose of traces is to be used in 
a simulation, the trace compression should not introduce a 
significant decompression slowdown. Hence, the ideal 
trace reduction would be fast, with a high reduction 
factor, and lossless, i.e., not introducing errors into the 
simulation [3]. 

In this paper, we propose a novel method for 
compression of branch instruction traces. In the proposed 
method, a trace is divided into N-tuples, with each n-tuple 
corresponding to a sequence of events. An N-Tuple 
Record Table (N-TRT) is generated, consisting of unique 
N-tuples. Each N-tuple in the trace is then replaced with 
its index in the N-TRT. When the trace is accessed during 
a simulation, each tuple can be easily and rapidly 
converted back to N original trace records. We evaluated 
this method on traces generated using modified 
SimpleScalar environment [4], selected SPEC CPU2000 
benchmarks [5], and reduced input dataset [6]. Each trace 
consists of smaller partial traces that can be individually 
compressed and decompressed. The proposed 
compression method can be applied to both ASCII and 
binary traces, and can be easily applied for any full 
instruction trace format. 

When combined with gzip, N-tuple compression 
achieves significant improvement in comparison to traces 
compressed only by gzip. For 1-tuple compression, this 



gain (over gzip only) ranges from 2.19 to 9.74 times for 
binary, and from 2.65 to 7.16 for ASCII traces, while for 
8-tuple compression the gain is 2.47-29.63 for binary, and 
3.12-32.82 for ASCII traces, achieving combined 
compression rate of up to 4600 times.  

The remainder of the paper is organized into five 
sections. The second section gives some details about 
related trace compression work. The third section explains 
the branch instruction trace format and gives details about 
preliminary trace analysis. The fourth section explains the 
proposed compression mechanism, and shows the 
compression ratio obtained for N-tuple compression. The 
last section gives concluding remarks. 

2. RELATED WORK 

Simulations based on the use of program execution 
traces have been widely employed in computer 
architecture research. Trace related issues form a research 
area on their own, including trace collection, reduction 
and processing [3]. Traces must faithfully represent 
targeted workloads, and different software and hardware 
methods must be developed for complete, detailed and 
undistorted trace collection. In order to be representative, 
traces must include a large number of references, thus 
requiring enormous amount of storage. Since keeping 
traces in an unreduced form is infeasible, some method of 
trace reduction must be applied, ranging from trace 
sampling and filtering, to loss-less trace compression.  

Program execution traces can include only addresses 
of memory references (address traces), if they are used in 
simulations of memory hierarchy. For example, Dinero 
trace format record [7] consists of the address of memory 
reference and the reference type - read, write, or 
instruction fetch, while BYU traces [8] also include 
additional information, such as the size of the data 
transfer, processor ID, etc. If we want to evaluate 
performance of different CPU designs, we also need 
instruction traces, i.e., traces including at least the 
operation code for an instruction along with its address. 
One such example is the IBS trace format [9], which also 
includes information about user or kernel activity. 
Another example is the PDI trace format, an extension of 
PDATS [10], which includes the instruction word and 
address. The branch instruction trace proposed in this 
paper is a subset of the instruction trace family.  

PDI instruction words are compressed using a 
dictionary-based approach [10]. A dictionary of 256 most 
frequently used instruction words is stored at the 
beginning of the trace file, and each of those words in the 
trace is replaced with its index in the dictionary. The 
words that are not in the dictionary are left unchanged. 
The dictionary can be created for each trace file 
separately, and then compression requires two passes 
through the trace. Another approach is to use the same 
generic dictionary for all traces. The generic approach has 
a lower compression ratio, but requires only a single pass 

trace processing. PDI addresses are compressed using the 
PDATS method, where an address in the trace stream is 
replaced by its offset. One stream consists of the same 
type of addresses, such as load, store, or instruction fetch 
streams. On ASCII traces of the SPEC92 programs, PDI 
has compression ratio 5-8. When a trace compressed by 
PDI method is further compressed using gzip, the 
combined compression ratio is in the range 23-426.  

Analysis based on basic blocks, rather then separate 
instructions, is employed for address traces stored in two 
compressed formats, MTRACE [11] and RPS (Recovered 
program structure) [12]. The MTRACE format stores the 
address of the first instruction of each basic block, and 
data address references within that block. An auxiliary 
file describing basic blocks is used to reconstruct the 
trace. The RPS format also stores trace data in multiple 
files: one file stores information about basic block length 
and positions of load and store instructions within blocks, 
another file keeps invocation sequence of the basic 
blocks, and separate files store data address references. 

3. BRANCH INSTRUCTION TRACES 

The branch instruction traces for this paper were 
collected using the modified SimpleScalar system [4], a 
widely used set of simulation tools developed at the 
University of Wisconsin. Each record in the trace file 
consists of the following fields: BranchAddress, 
TargetAddress, OpCode, BBlockLength (Table 1). The 
same fields exist in both ASCII and binary trace format. 
The basic block length is the number of instructions 
executed between two consecutive branches, including 
the last branch. Preliminary trace analysis shows that one 
byte is enough for the basic block length field in the 
binary format, while a special value of the OpCode field 
can be used in the case of larger basic blocks, and such 
data can be stored in two trace records instead of one. 
Figure 1 shows an excerpt from an ASCII trace file. 
While the binary format requires less storage space, the 
ASCII format is convenient for trace examining, editing, 
and simulator debugging, as well as in the educational 
purposes [10]. We applied our compression method to 
both ASCII and binary traces, in order to show that it is 
independent of the trace format.  

We collected the branch instruction traces for a subset 
of SPEC CPU2000 benchmarks [1], including five integer 
(gcc – scilab.s input, gzip - graphic input, mcf, parser, 
and vortex) and four floating-point benchmarks (ammp, 
art, equake and mesa). We used large inputs from the 
reduced datasets [6], developed specifically for simulation 
purposes at the University of Minnesota. All benchmarks 
were compiled for the MIPS-like PISA architecture, using 
the Gnu C compiler with O3 optimization flag. The 
SimpleScalar’s modified bpred simulator was run under 
RedHat 7.2 Linux OS. 

All considered benchmarks were run to completion, 
and Table 2 shows the number of trace records, i.e., the 



executed branches. In order to have trace files of 
manageable size, each complete trace consists of a set of 
partial trace files, all but the last (foreshortened) trace file 
containing 1,000,000 trace records. The size of an 
uncompressed partial trace file is about 20MB for an 
ASCII trace, and 10MB for a binary trace. Each partial 
trace file is compressed using the standard gzip program, 
and all partial traces are stored in a tar file. The size of a 
gzipped partial trace can vary from less than a 50K (mcf 
benchmark), to more than 1MB (gcc). This storage 
structure is similar to the structure of IBS traces [9], and 
enables the use of traces even with relatively modest 
computer configurations that have low disk space. 

Table 1 Branch trace record fields. 
Field Description Length 

[bytes] 
BranchAddress Branch instruction address 4 
TargetAddress Branch target address 4  
OpCode Branch opcode 1 
BBlockLength Length of a basic block ending 

with that branch 
1 

 
Branch 
Address 

Target 
Address 

OpCode BBlock 
Length 

4001a8 41a3d0 3 e 
41a3e0 41faa0 3 3 
41fac0 41fac8 6 5 
41fad0 41fad8 6 2 
41fae0 41b890 3 2 
41b8b8 41b8d8 7 6 
41b8e8 423a00 3 3 

Figure 1 Branch Instruction Trace example 

Table 2 Trace records statistics (whole trace) 
Legend: #TRs – number of trace records in a trace, 

#UTRs – number of unique trace records  

Benchmark #TRs #UTRs 
#UTRs 

making 90% 
of TRs 

164.gzip.graphic 251,460,618 1874 110 
176.gcc 759,484,369 52961 5494 
177.mesa 325,124,149  2602 74 
179.art 310,425,057 1093 44 
181.mcf 135,550,269  1822 66 
183.equake 112,253,537 2027 258 
188.ammp 369,474,018 1621 83 
197.parser 823,886,062 7367 360 
255.vortex 168,611,654 15237 821 
 
In order to explore the potential for compression, we 

counted the number of unique trace records (#UTR), both 
for whole trace (Table 2) and per partial trace file, i.e., per 
one million branch instructions (Figure 2). Table 3 shows 
some additional statistics: the average, minimum, and 
maximum number of UTRs per partial trace file. 
Compared to the trace length, the number of UTRs for the 

whole trace is very small, ranging from just about 1000 
unique records (art) to about 53000 (gcc). If we consider 
the number of unique trace records per partial trace file, 
these numbers are even lower, ranging from only 1 (mcf) 
to 25024 (gcc). The number of UTRs accounting for 90% 
of the trace is in the range of 44 (art) to 5494 (gcc). All 
this data indicates very good compression potential.  

Table 3 Statistics for unique trace records  
per partial trace file. 

Benchmark avr  min max 
164.gzip 335 95 1063 
176.gcc 4410 9 25024 
177.mesa 176 165 1759 
179.art 121 57 565 
181.mcf 170 1 917 
183.equake 183 62 1021 
188.ammp 422 335 1131 
197.parser 378 142 4042 
255.vortex 2593 276 5868 
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Figure 2 Number of unique trace records per 1M branch 

instructions for two SPEC CPU2000 benchmarks 

4. BRANCH TRACE COMPRESSION 

The storage problem of traces has several different 
aspects. First, the trace access time can take a major 
portion of the simulator execution time. Second, trace 
archives require a significant server storage space and 
download time, or a significant storage space on 



removable media, such as compact disks. Finally, 
uncompressed partial traces occupy a considerable 
amount of hard disk space. To alleviate these problems, 
we propose a simple, yet efficient compression algorithm, 
based on the preliminary trace analysis in Section 3. Since 
the number of unique trace records is relatively small, we 
can create a table of unique trace records, and replace 
each trace record with the corresponding table record ID, 
similarly to the PDI dictionary approach. This idea can be 
further extended to unique N-tuples of consecutive trace 
records, providing that the size of the N-tuple record table 
(N-TRT) does not increase too much, compared to the 
trace record table consisting of unique trace records. One 
alternative approach is to provide an N-TRT table per 
each partial trace. This approach gives smaller partial 
table sizes, so there is less pressure on the memory during 
simulation, but requires more storage space and longer 
access time. This approach has not been studied in this 
paper. 

Figure 3 illustrates N-tuple compression method for 
N=1 and N=2, where the BIT (Branch Instruction Trace) 
is compressed to cBIT-T1 (compressed BIT using 1-tuple 
compression) and cBIT-T2 (compressed BIT using 2-
tuple compression). For example, trace record 4f66b8 
4f66f0 6 4 is replaced with its table ID, 529, using 1-tuple 
compression, or two trace records, 4f66e8 4f66c0 7 3 and 
4f66c8 4f66d0 6 2 are replaced by a respective 2-TRT ID 
if 2-tuple compression is used. 

}

}

4001a8 4e80a0 3 e 
4e80b0 4ed340 3 3 
4ed360 4ed368 6 5 
4ed370 4ed378 6 2 
4ed380 4f6280 3 2 
4f62a8 4f62c8 7 6 
4f62d8 4f66a0 3 3 
4f66b8 4f66f0 6 4 
4f6758 4f6760 7 e 
4f6788 4f6790 6 6 
4f67a0 4f6830 6 3 
4f6838 4f62e0 4 2 
4f62e0 4f62e8 6 1 
4f62f8 4f62d0 2 3 
4f62d8 4f66a0 3 2 
4f66b8 4f66c0 6 4 
4f66c8 4f66d0 6 2 
4f66d0 4f66d8 6 1 
4f66e8 4f66c0 7 3 
4f66c8 4f66d0 6 2 

BIT 

1-TRT 

2-TRT 

cBIT-T1 

cBIT-T2 

 

2551 
2552 
90 
87 
88 
89 
532 
529 
530 
528 
68 
96 
294 
322 
96 
294 
322 
96 
294 
491  

905 
1773 
1774 
1874 
87 
893 
496 
495 
325 
386 
  

Figure 3 N-tuple compression example, for N=1 and N=2 

One example improvement of the N-tuple compression 
method over raw (uncompressed) traces is shown in 
(Figure 4). For all binary traces except gcc, each N-tuple 
in the trace is replaced by its’  corresponding 2-byte N-
TRT ID, yielding compression ratios of 5, 10, 20, 40 and 
60, for 1-, 2-, 4-, 8-, and 12-tuple compression, 
respectively. Since gcc has a larger TRT table, we used 4 
bytes for its table ID for N>1, which gives half of the 
compression ratio of other benchmarks. The ASCII 

compression ratio varies, since the records have variable 
length, but it stays close to the binary compression ratio 
for all considered benchmarks.  

N-touple Compression for Raw ASCII and Binary Traces
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Figure 4 N-tuple compression ratio for raw ASCII and 

binary traces 

The N-tuple compression shows its real benefit when 
combined with the gzip compression, i.e., when each 
partial trace is first compressed using the N-tuple 
algorithm, and then gzipped. In an N-tuple compressed 
trace, patterns are better exposed to the gzip algorithm, 
since a trace record or a group of records is replaced with 
its table ID. Table 4 shows the combined compression 
ratio for binary traces. The gzip-only compression is in 
the range of 20 for vortex to 201 for the art benchmark. 
Even a 1-tuple compression improves this ratio, from 127 
times for gcc, to 582 for art, while for 8-tuple 
compression ratio is 195-3888. The benchmark parser 
reaches the point of diminishing returns for 4-tuple, with 
8-tuple combined compression slightly worse than 4-
tuple. Figure 5 shows the N-tuple+gzip compression gain 
relative to the gzip-only compression for binary traces. 
We can see that for mesa, ammp, and vortex this gain 
increases significantly when the tuple size increases, even 
for 12-tuple, where mesa is compressed over 35 times. 
Another group of benchmarks, art, gzip, parser, and mcf, 
does not benefit much from the tuple size increase, with a 
gain of about 4. The rest of the benchmarks, gcc and 
equake, show moderate improvement when the tuple size 
increases from 8 to 12 – from 7 to 7.8 times for gcc, and 
from 11.2 to 11.5 for equake. Hence, we suggest 8 or 4 as 
the optimal tuple size. Table 5 and Figure 5 show 
combined compression ratio and compression gain for 
ASCII traces. Again, combined compression ratio is 
impressive, reaching over 4500 for mesa benchmark and 
8-tuple compression.  

During a simulation, the simulator now needs to read 
just one N-TRT ID instead of N trace records, and to 
access the corresponding N-TRT entry. The most 
frequently accessed parts of the TRT table will be stored 
in the memory, thus reducing the overhead of trace 
reading during a trace-driven simulation. Table 6 shows 
the access time for a simulation using binary traces and 
corresponding access time speedup for compressed traces, 
both for the total user+system time, and for the system 



time component, while Figure 6 shows the average 
speedup. We measured access time using a simple 
program that reads the whole trace, on an AMD Athlon 
PC at 2.2GHz, with 256MB memory, again under Linux 
Red Hat 7.2 OS. The trace access time will be dependant 
on the computer configuration where the simulation is 
performed, but we can expect the similar access times 
speedup.  

 
N-touple Compression for Gzipped Binary Traces
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N-touple Compression for Gzipped ASCII Traces
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Figure 5 Compression gain relative to gzipped trace 
archive for binary and ASCII traces. 

Table 4 Combined N-tuple-gzip compression ratio  
of binary traces (BIT – original gzipped trace) 

Bin BIT cBIT-
T1 

cBIT-
T2 

cBIT-
T4 

cBIT-
T8 

cBIT-
T12 

164.gzip 79 173 185 194 195 197 
176.gcc 36 127 168 209 252 284 
177.mesa 131 724 1323 2762 3888 4845 
179.art 201 582 695 775 819 864 
181.mcf 72 219 242 256 271 280 
183.equake 110 525 812 1006 1232 1260 
188.ammp 56 513 878 1191 1576 1950 
197.parser 66 215 236 240 236 - 
255.vortex 20 190 245 311 417 476 

 
The access time speedup is not linear, since some time 

must be spent on accessing the tuple record table. While 
TRT does not add much to the size of the compressed 
trace, its size may pose a problem during simulation on a 

system with relatively low available memory. Figure 7 
shows the number of unique trace records for different 
tuple compressions. The table may store raw tuples, or 
two-level tables may be used, thus reducing the overall 
size. In a two-level implementation, an N-TRT table holds 
IDs of the 1-TRT table, instead of whole trace records.  

Table 5 Combined N-tuple-gzip compression ratio of 
ASCII traces (BIT – original gzipped trace) 

ASCII BIT cBIT-
T1 

cBIT-
T2 

cBIT-
T4 

cBIT-
T8 

cBIT-
T12 

164.gzip 98 259 287 300 306 306 
176.gcc 20 70 100 136 178 210 
177.mesa 140 641 1282 2473 4604 5296 
179.art 216 822 1070 1243 1331 1417 
181.mcf 92 328 363 381 397 410 
183.equake 115 478 822 1129 1430 1570 
188.ammp 54 388 725 1106 1559 2130 
197.parser 73 260 305 320 318 - 
255.vortex 20 126 213 290 387 464 

Table 6 Binary traces access time and N-tuple speed-up 
 binary BIT [s] cBIT-T1 speedup 
 total system total system 

164.gzip 29.76 14.93 1.11 3.00 
177.mesa 33.80 19.80 1.02 3.17 
179.art 45.24 18.75 1.32 3.28 
181.mcf 17.92 8.16 1.25 3.26 
183.equake 12.55 6.69 1.07 2.99 
188.ammp 54.73 23.23 1.35 3.35 
197.parser 99.90 55.52 1.14 3.49 
255.vortex 20.76 10.60 1.17 3.20 

 
 cBIT-T4 speedup cBIT-T8 speedup 
 total system total system 

164.gzip 3.88 8.90 6.43 12.20 
177.mesa 3.65 9.52 6.52 14.51 
179.art 4.80 9.73 8.48 14.55 
181.mcf 4.37 9.13 7.39 13.59 
183.equake 3.85 9.38 6.65 13.12 
188.ammp 4.84 9.93 8.74 14.49 
197.parser 3.90 9.02 5.99 10.02 
255.vortex 3.99 8.50 6.59 11.68 

 

5. CONCLUSION 

Trace-driven simulation is a very useful tool in 
computer architecture research, especially for exploring 
different implementations of front-end processor 
components used to increase available instruction level 
parallelism, such as the dynamic branch predictor. Since 
traces of complete program runs require rather large 
storage space, traces are usually stored in compressed 
form, using some of the widely available compress tools 
such as gzip.  
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Figure 6 Average access time speedup for compressed 

binary traces 
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Figure 7 Number of unique table records 

The contributions of this paper are the following: first, 
we propose a branch instruction trace format, containing 
only information needed for the front-end processor 
simulation. Then, we propose a novel trace compression 
which does not aim to replace gzip compression, but 
rather to modify original trace so that trace structure is 
preserved, while further reducing the size of both 
uncompressed and compressed trace. Consecutive N-
tuples (sequences of N trace records) are replaced with 
corresponding IDs in the N-Tuple Record Table. Since 
the number of unique N-tuples is relatively small 
compared to the number of N-tuples in the trace, this 
method is applicable for all considered benchmarks. The 
compressed BIT trace together with the compressed trace 
record table is significantly smaller than the original 
compressed trace, up to almost 30 times for some 
benchmarks and 8-tuple compression. Trace access time 

is also reduced. Finally, we collected and compressed 
state-of-the-art SPEC CPU2000 traces in the 
SimpleScalar environment, and made our trace database 
available to the research community. 

Future work includes extending the proposed method 
to full instruction and address trace. In this case, the tuple 
record table will hold data about tuples of basic blocks. 
The memory reference trace can be stored in the separate 
file, using some other compression method such as 
PDATS. 

Another future direction is to extract path information 
from the TRT, and replace each repeatable sequence in 
the trace with its repetition count and the Path Record 
Table ID. Again, the conversion of each PRT record into 
corresponding sequence of trace records can be done 
easily during a trace-driven simulation. We expect this 
compression method to achieve even better size reduction. 
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