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Abstract 

 
Novel research ideas in computer architecture are 

frequently evaluated using trace-driven simulation. 
The large size of traces incited different techniques for 
trace reduction. These techniques often combine 
standard compression algorithms with trace-specific 
solutions, taking into account the tradeoff between 
reduction in the trace size and simulation slowdown 
due to decompression. This paper introduces SBC, a 
new algorithm for instruction and data address trace 
compression based on instruction streams. The 
proposed technique significantly reduces trace size and 
simulation time, and can be successfully combined with 
general compression algorithms. The SBC technique 
combined with gzip reduces the size of SPEC 
CPU2000 traces 59-97930 times, and combined with 
Sequitur 65-185599 times. 
 
1. Introduction 
 

Trace-driven simulation has long been used in both 
processor and memory studies. Traces can accurately 
represent a system workload, and in the last decade 
there has been a lot of research efforts dedicated to 
trace issues, such as trace collection, reduction and 
processing [1]. In order to offer a faithful 
representation of a specific workload, traces are very 
large, encompassing billions of memory references 
and/or instructions. For example, an instruction trace 
with 1 billion instructions, where each trace record 
takes 10 bytes, requires almost 10 Gbytes of storage 
space. Yet, with a modern superscalar processor 
executing 1.5 instructions each clock cycle on average, 
and running at 3 GHz, it represents only 0.2 seconds of 
the simulated CPU execution time. To efficiently store 
and use even a small collection of traces, trace sizes 
must be reduced as much as possible. Although 
traditional compression techniques such as the Ziv-
Lempel algorithm [2], used in the gzip utility, offer a 
good compression ratio, even better compression is 
possible when the specific nature of redundancy in 

traces is taken into account. On the other hand, since 
the ultimate purpose of traces is to be used in 
simulations, a trace compression should not introduce a 
significant decompression slowdown. An effective 
trace compression technique is loss-less, i.e., not 
introducing errors into the simulation, has high 
compression factor, short decompression time, and 
relatively short compression time. 

Depending on the simulated system, a trace can 
contain different types of information. For example, 
control flow analysis needs only a trace of executed 
basic blocks or paths. Cache studies require address 
traces, and more complex processor simulations need 
instruction words as well. Branch predictors can be 
evaluated using traces with only branch-relevant 
information, such as branch and target addresses, and 
branch outcome, and ALU unit simulations require 
operand values. For example, the Dinero trace format 
record consists of the address of memory reference and 
the reference type – read, write, or instruction fetch [3], 
and BYU traces also include additional information, 
such as the size of the data transfer, processor ID, etc. 
[4]. In addition to addresses, the IBS trace format 
includes operation code and whether the instruction 
was executed in user or kernel mode [5]. 

Various trace compression techniques have been 
introduced, focusing on different trace information. 
One set of compression techniques, such as whole 
program path (WPP) [6] and timestamped WPP [7], 
relies on program instrumentation and concentrates on 
instruction traces only. In WPP, a trace of acyclic paths 
is compressed using a modified Sequitur algorithm [8]. 
In timestamped WPP, all path traces for one function 
are stored in one block, thus enabling fast access to 
function-related information. 

Another set of compression techniques targets full 
address traces that include both instruction and data. 
Unlike instruction address or path traces, data address 
traces rarely have repeatable patterns and hence are 
more difficult to compress, although one memory 
referencing instruction may access addresses with a 
constant stride. One approach, applied in a one-pass 
algorithm called PDATS (Packed Differential Address 



and Time Stamp), is to store address differences 
between successive references of the same type (load, 
store, instruction fetch) [9]. In PDATS, stored address 
differences can have variable length and an optional 
repetition count in cases when a constant difference is 
present in consequtive addresses of the same type. 
Another approach is to link information about the data 
addresses with a corresponding loop, but this requires 
previous control flow analysis to extract loop 
information and cannot be done in one pass [10]. The 
SIGMA trace compression algorithm takes advantage 
of nested loops [11]. However, this algorithm is based 
on the program instrumentation, and has some 
limitations, such as a constant iteration count for inner 
loops. A rather original approach regenerates original 
trace using a set of value predictors [12], but it has a 
relatively long decompression time.  

Some techniques, such as PDI, compress combined 
address and instruction traces, i.e., traces consisting of 
instruction addresses + instruction words, and data 
addresses. In PDI, instruction words are compressed 
using a dictionary-based approach – each of the 256 
most frequently used instruction words in the trace is 
replaced with its dictionary index while other words 
are left unchanged. Addresses are compressed as in 
PDATS, but without a repetition count. This algorithm 
can be one pass or two pass, depending on using a 
generic or a trace-specific instruction word dictionary. 
Specialized branch traces can be compressed by 
replacing an N-tuple of branch instruction trace records 
with its ID from the N-Tuple Record Table [13]. 

This paper proposes a new method for single-pass 
compression of combined address and instruction 
traces, Stream-Based Compression (SBC). The SBC 
algorithm relies on extracting instruction streams. An 
instruction stream is a sequential run of instructions, 
from the target of a taken branch to the first taken 
branch in sequence. A stream table keeps relevant 
information about streams: starting address, stream 
length, instruction words and their types. All 
instructions from a stream are replaced by its index in 
the stream table, creating a trace of instruction streams. 
Information about data addresses such as the data 
address stride and the number of stride repetitions is 
attached to the corresponding instruction stream and 
stored separately.  

The proposed algorithm achieves a very good 
compression ratio and decompression time for both 
instruction and data address traces, yet it is simple to 
implement and does not require code augmentation nor 
lengthy several-passes control flow analysis. 
Furthermore, SBC can be successfully combined with 
general compression algorithms, such as Ziv-Lempel 
or Sequitur. We evaluated SBC on Dinero+ traces [9] 
of SPEC CPU2000 benchmark programs [14]. When 

combined with gzip, SBC reduces the trace size 78-
97930 times, depending on the benchmark, and 
outperforms mPDI-gzip, gzipped combination of PDI 
and PDATS, 4-1231 times. SBC combined with 
Sequitur reduces the trace size even further, but at the 
price of a considerable decompression slowdown. 

The rest of the paper is organized into four sections. 
The second section introduces the formats of traces and 
explains stream-based compression. The third section 
shows the compression ratio and decompression time 
for the compared compression techniques. The last 
section gives concluding remarks. 
 
2. Stream-based compression 
 

The SBC algorithm exploits several inherent 
characteristics of program execution traces. Instruction 
traces consist of a fairly limited number of different 
instruction streams, and most of the memory references 
exhibit strong spatial and/or temporal locality, for 
example, a load having a constant address stride across 
loop iterations. The stream-based compression of the 
combined address and instruction traces results in three 
files: Stream Table File (STF), Stream-Based 
Instruction Trace (SBIT), and Stream-Based Data 
Trace (SBDT).  

In this paper SBC is demonstrated on Dinero+ 
traces, although it is applicable to any combined trace. 
A Dinero+ trace record has fixed length fields: the 
header field (0 – data read, 1 – data write, and 2 – 
instruction read), the address field, and the instruction 
word field for the instruction read type.  

First we describe the decompression process, for the 
example in Figure 1– a short trace of a loop, where 
stream 1 is followed by 28 executions of stream 2, and 
one execution of stream 3. At the beginning of the 
trace decompression, the whole Stream Table File is 
loaded into a corresponding Stream Table structure, 
resident in the memory during decompression. One 
record in STF consists of a stream start address and a 
stream length -- i.e., the number of instructions in the 
stream -- followed by instruction words and their types 
-- load (0), store (1) or an instruction that does not 
access memory (2). 

In addition to the pointer to the list of stream 
instruction words, each entry in the Stream Table 
structure in memory has a pointer to the list of stream 
data address references. One node in the stream data 
address list has the following fields: current data 
address, address stride, and repetition count. All fields 
are initialized to zero. This list is dynamically updated 
from the Stream-Based Data Trace during trace 
decompression, whenever the repetition count of an 
accessed node is 0. 



Decompression proceeds as follows: a stream index 
is read from the Stream-Based Instruction Trace, i.e., 
stream index 1. Stream Table entry 1 is accessed, 
giving address, word and type of the first instruction in 
the stream. This instruction is a store (type 1), so the 
corresponding store address is needed. Since the 
repetition count for the first data reference in this 
stream is 0 after initialization, the decompression 
algorithm reads a record from the SBDT, consisting of 
the following fields: DataHeader, AddrOffset, Stride, 
and RepCount (Figure 2). The current data address in 
the node is calculated as the current address (0) plus 
the AddrOffset field, the stride is set to the value of the 
Stride field, in this case 0, and the repetition count is 
set to the RepCount value, again 0 since this stream 
executes only once. The pointer to the current 
instruction then moves along the stream instruction 
word list until all nine instructions are read. Each 
instruction address is obtained by incrementing the 
current instruction address for the instruction length, 

starting from the StartAddress. The SBDT is 
accessed once more, for the seventh 
instruction, which is a load. The next stream 
index in the SBIT is 2, so entry 2 is accessed. 
The first instruction is a load, so the 
corresponding node in the data address list is 
updated from SBDT; i.e., the current address 
is set to 0x11ff97028, the stride is set to 8, and 
the repetition count to 27. When the stream 2 
is again encountered in the SBIT and its load 
instruction is read from the Stream Table, 
there is no need to access the SBDT – the load 
address is calculated as the previous address 
plus the stride, and the repetition count is 
decremented for all further 27 executions of 
the stream 2. 

As can be seen on this simple example, the 
SBC algorithm handles instruction and data 
information separately. The SBIT is obtained 
by replacing each instruction stream by its 
index from the stream table. Since the stream 
table includes all streams and not just the most 
frequent ones, this is a one-pass algorithm – 
when the end of a stream is detected in the 
original input trace, SBC finds the 
corresponding stream in the table or, if 
necessary, adds a new entry to the table, and 
outputs the stream index to the SBIT. When 
compressing data addresses, SBC exploits 
frequent regularity of memory references 
produced by consecutive instances of the 
same load/store instruction. Ideally, during 
decompression one memory-accessing 
instruction should get new values from the 
SBDT only when its offset stride changes. 
However, we want to keep the compression 

algorithm one-pass, so the compression program keeps 
relevant values in a finite FIFO buffer. Clearly, the 
larger FIFO buffer will “catch”  more data repetitions, 
thus increasing the compression ratio. Each entry in the 
FIFO buffer has a ready flag that is set at the change of 
the offset stride. The records are written to the SBDT 
when there is a sequence of ready records at the front 
of the FIFO buffer, or when the FIFO is full. The 
AddrOffset field records the offset from the last 
occurrence of a particular memory-accessing 
instruction and is equal to the memory address when 
such instruction occurs for the first time. The 
DataHeader field codes the length and the most 
frequent values of other fields in the Data Trace 
(Figure 2), thus achieving additional compression. The 
repetition count values 0 and 1, and the stride values 0, 
1, 4 and 8 can be encoded in the DataHeader, and the 
proposed format allows variable length of AddrOffset 

Stream-Based
Instruction Trace (SBIT) Stream-Based Data Trace (SBDT)

StartAddress Length

120026a60 9

120026a78 3

120026a78 4

223e00181 ... f 43f f f f d2

a43300000 426114132 f 43f f f f d2

a43300000 426114132 f 43f f f f d2 23def f f 02

Stream Table File (STF)

Dinero+ Trace

Stream 1

Stream 2

Stream 2

Stream 2

Stream 3

Type Address InstrWord
2 120026a60 223e0018
1 11f f 96f f 8 -
2 120026a64 b7f e0008
2 120026a68 42110652
2 120026a6c 42411412
2 120026a70 23bd19a4
2 120026a74 46520413
2 120026a78 a4330000
0 11f f 97020 -
2 120026a7c 42611413
2 120026a80 f 43f f f f d
2 120026a78 a4330000
0 11f f 97028 -
2 120026a7c 42611413
2 120026a80 f 43f f f f d
2 120026a78 a4330000
0 11f f 97030 -
2 120026a7c 42611413
2 120026a80 f 43f f f f d
… … …
2 120026a78 a4330000
0 11f f 97100 -
2 120026a7c 42611413
2 120026a80 f 43f f f f d
2 120026a78 a4330000
0 11f f 97108 -
2 120026a7c 42611413
2 120026a80 f 43f f f f d
2 120026a84 23def f f 0

StreamIndex
1
2
2
…
2
3

AddrOffset

11f f 96f f 8

Stride

0

RepCount

0

11f f 97020 0 0

11f f 97028 8 1b

11f f 97108 0 0  
Figure 1. Example of stream-based compression. 



(1, 2, 4 or 8 bytes), Stride and RepCount fields (0, 1, 2, 
4, or 8 bytes). 

One can ask why the SBC algorithm does not 
exploit the repetition of instruction streams. Such 
patterns in the SBIT are easily recognized by gzip or 
Sequitur, without an increase in complexity of SBC or 

any restrictions considering the number and the nature 
of nested loops. 

 
3. Results 
 

In order to evaluate the proposed compression 
mechanism, for each SPEC CPU2000 benchmark we 
traced two segments for reference data inputs: the first 
two billion instructions (F2B), and the two billion 
instructions after skipping 50 billion (M2B), thus 
making sure that the results do not overemphasize the 
program initialization. While the number of 
instructions is fixed, the number of memory-
referencing instructions – loads and stores – varies 
greatly across benchmarks, from as low as 18.7% of all 
instructions for F2B segments of lucas and fma3d, to 

DataHeader 1B
Stride

0, 1, 2, 4, or 8B
AddrOffset

1, 2, 4, or 8B
RepCount

0, 1, 2, 4, or 8B

Bits 7-5:RepCount size Bits 4-2:Stride size Bits 0-1:AddrOffset size
000: = 0 - 0B
001: 1B
010: 2B
011: 4B
100: 8B
101: =1 - 0B
100: unused
101: unused

000: = 0 - 0B
001: 1B
010: 2B
011: 4B
100: 8B
101: =1 - 0B
100: =4 - 0B
101: =8 - 0B

00: 1B
01: 2B
10: 4B
11: 8B

 
Figure 2. SBC data trace format. 

Table 1. Statistics for SPEC2000 INT traces. 

 Load+Store% Dinero+ [GB] Stream Number AvrStreamLen MaxStreamLen 
CINT F2B M2B F2B M2B F2B M2B F2B M2B F2B M2B 
164.gzip 33.17 32.07 29.16 28.99 751 336 13.9 13.8 229 229 
176.gcc 50.94 52.10 31.80 31.98 25416 22222 11.8 10.7 272 254 
181.mcf 41.36 37.98 30.38 29.87 744 308 8.9 6.0 88 64 
186.crafty 37.74 36.71 29.84 29.68 4122 1892 13.1 13.4 191 100 
197.parser 37.94 35.06 29.87 29.44 4767 4200 9.4 9.9 157 157 
252.eon 48.59 48.58 31.45 31.45 3486 588 13.8 14.1 169 168 
253.perlbmk 45.02 46.88 30.92 31.20 9034 6344 10.1 12.0 84 868 
254.gap 37.36 38.36 29.78 29.93 3218 476 24.3 10.3 284 75 
255.vortex 44.40 38.95 30.83 30.02 5496 2644 11.1 11.2 126 110 
300.twolf 33.77 33.00 29.25 29.13 2399 1014 12.3 14.5 163 185 
Average 41.03 39.97 30.33 30.17 5943.3 4002.4 12.9 11.6 176.3 221.0 

 
Table 2. Statistics for SPEC2000 FP traces. 

 Load+Store% Dinero+ [GB] Stream Number AvrStreamLen MaxStreamLen 

CFP F2B M2B F2B M2B F2B M2B F2B M2B F2B M2B 

168.wupwise 19.76 30.96 27.16 28.83 1563 234 23.9 27.5 229 229 

171.swim 31.02 32.86 28.84 29.11 1582 496 93.6 132.3 707 707 

172.mgrid 36.66 36.43 29.68 29.64 1457 875 240.1 159.6 1944 1944 

173.applu 37.75 38.20 29.84 29.91 1470 506 411.5 448.9 3162 3162 

177.mesa 37.53 38.09 29.81 29.89 1637 593 14.8 18.5 550 266 

178.galgel 41.80 41.27 30.44 30.36 1818 81 18.4 23.0 264 206 

179.art 37.81 34.12 29.85 29.30 435 341 10.3 8.7 168 561 

183.equake 36.00 45.04 29.58 30.93 517 260 8.6 28.3 44 623 

188.ammp 31.13 37.23 28.85 29.76 955 502 12.5 35.2 168 561 

189.lucas 18.73 22.20 27.01 27.52 964 317 27.1 127.9 427 427 

191.fma3d 18.71 45.70 27.00 31.02 2083 841 10.7 43.6 383 1158 

200.sixtrack 32.09 24.69 29.00 27.89 3532 82 20.1 192.9 264 580 

301.appsi 37.24 37.29 29.76 29.77 2439 389 34.0 51.5 729 729 

Average 32.02 35.70 28.99 29.53 1573.2 424.4 71.2 99.8 695.3 857.9 

 



over 50% for both gcc segments (Table 1 and Table 2). 
It is interesting to notice that the percentage of loads 
and stores does not significantly change between the 
two segments for all integer benchmarks (CINT) 
except vortex, and changes for more than 15% for a 
half of floating point benchmarks (CFP). The trace size 
is on average 30MB per segment, and the sum of 
uncompressed traces reaches 1366 GB, clearly 
showing the need for highly efficient compression 
techniques. Traces are generated using modified 
SimpleScalar environment [15], and precompiled 
Alpha SPEC2000 binaries.  

Since the Stream Table is held in the memory 
during decompression, we first verified the assumption 
about the relatively limited number of different 
instruction streams, i.e., the Stream Table entries. 
Analysis of SPEC CPU2000 traces shows that all CFP 
and most CINT benchmarks have fewer than 5000 
different instruction streams. The only benchmarks 
with larger number of unique streams are 171.gcc, 
253.perlbmk, and the F2B segment of 255.vortex. For 
all benchmarks the F2B segment has more streams 
than the M2B. The average stream length is less than 
30 for all CINT and five CFP benchmarks, and it 
reaches the maximum for 173.applu, 449 instructions 
in the M2B segment, but in that segment applu has 
only 506 unique streams. All these results indicate that 
a Stream Table has relatively modest memory 
requirements.  

The compression ratio of SBC is compared to the 
compression obtained by gzip and by mPDI, a 
modified version of PDI. We merged PDI and PDATS 
into mPDI in order to compare SBC with the best 
possible combination of those techniques. The mPDI 
uses the PDATS algorithm for data, so it can benefit 
from address stride repetitions. The implemented 
PDATS algorithm does not make a difference between 
load and store references, as Johnson suggested in his 
later work [16]. Finally, in mPDI data and instruction 
references are separated into two files, making the 
regular patterns even more recognizable by gzip. The 
basis for comparison was the size of uncompressed 
Dinero+ traces, separated to instruction address + 
instruction word and data address components. The 
size of this format is slightly less than the size of the 
unified Dinero+, since the header field is not required 
in the data address trace. In addition to that, split 
components can be better compressed by gzip.  

Table 3, Table 4, Table 5, and Table 6 show the 
compression ratio of compared algorithms, for CINT 
and CFP benchmarks and two considered program 
segments. The FIFO buffer size for SBC is 4000 
entries. The SBC algorithm reduces the trace size for 
up to 60.5 times for CINT and 495.2 times for CFP 
benchmarks, outperforming gzip compression. On 

average, the SBC compression ratio is higher for CFP 
than for CINT applications, due to longer instruction 
streams and higher repetition counts for data 
references. As seen in Table 1 and Table 2, the average 
CFP instruction stream length is roughly an order of 
magnitude greater than in CINT benchmarks. One 
indicator of the successful SBC compression of data 
addresses is the ratio between the number of data 
addresses in original trace and the number of records in 
Stream-Based Data Trace file. These values are also 
significantly higher for CFP traces: on average 56.1 for 
F2B segment and 95.1 for M2B segment, while 
corresponding CINT values are 6.3 and 5.8. The 
compression ratio in two different trace segments 
depends on the application: it is on average higher in 
the “middle”  of the execution than at the beginning, 
but not for all benchmarks.  

Table 3. Compression ratio  
for SPEC2000 INT – F2B. 

CINT: F2B mPDI SBC Din.gz mPDI.gz SBC.gz SBC.seq 

164.gzip 4.3 60.2 39.7 46.9 210.1 193.4 

176.gcc 3.2 30.9 9.4 19.4 168.8 193.0 

181.mcf 3.4 46.5 24.3 55.5 500.6 597.2 

186.crafty 3.0 40.0 7.0 22.2 228.3 247.8 

197.parser 3.6 33.6 27.6 32.3 182.9 347.9 

252.eon 3.4 21.9 6.1 26.6 396.9 775.3 

253.perlbmk 3.1 30.6 5.9 16.4 340.2 318.5 

254.gap 3.9 49.9 12.9 35.5 765.5 868.4 

255.vortex 3.4 20.9 6.8 14.3 115.2 332.0 

300.twolf 3.3 28.2 7.4 23.4 105.7 88.3 

Average 3.46 36.26 14.70 29.25 301.41 396.17 

 

Table 4. Compression ratio  
for SPEC2000 INT – M2B. 

CINT: M2B mPDI SBC Din.gz mPDI.gz SBC.gz SBC.seq 

164.gzip 3.7 60.5 41.6 48.2 217.8 200.3 

176.gcc 3.0 40.3 14.7 20.9 260.4 291.1 

181.mcf 2.3 16.2 20.9 20.3 58.5 82.8 

186.crafty 2.9 44.0 7.0 25.0 257.2 278.8 

197.parser 3.4 33.0 28.1 32.7 167.0 333.5 

252.eon 3.4 21.4 6.0 28.1 384.5 753.2 

253.perlbmk 2.9 42.0 34.8 46.9 735.0 1101.8 

254.gap 2.9 34.9 33.6 38.3 1115.4 1912.0 

255.vortex 3.3 26.7 11.8 24.8 228.6 402.1 

300.twolf 3.2 24.4 6.4 19.4 78.3 64.9 

Average 3.10 34.36 20.49 30.45 350.28 542.06 

 



    The SBC compression ratio is significantly higher 
than mPDI, due to the combined effect of replacing 
whole instruction streams with stream IDs instead of 
replacing instructions with dictionary indexes, and 
exploiting stride repetitions between the subsequent 
executions of the same load/store instruction instead of 
subsequent load/store instructions. The SBC-
compressed CINT trace files are 6.1-16.2 times smaller 
then when compressed with mPDI, and CFP trace files 
are 11.2-180.4 times smaller. Notice that SBC also 
outperforms combination mPDI-gzip for most 
benchmarks. 

Even better compression ratios can be obtained by 
further compressing an SBC trace by gzip. The 
combined SBC-gzip compression ratio goes up to 
1115.4 for CINT (254.gap in M2B segment) and up to 
97930.4 (171.swim in M2B segment) for CFP, with 
corresponding average values greater than 300 for 
CINT and greater than 95000 for CFP. Translated back 
to bytes, this means that instead of 30GB for an 
uncompressed trace or about 2GB for a gzip-only 
compressed trace, a combined SBC-gzip compressed 
trace occupies less than 200MB for all benchmarks 
except 300.twolf in both segments, 255.vortex in F2B 
and 176.gcc in M2B, and the trace size is even less 
than 1MB for some CFP benchmarks, 171.swim and 
189.lucas. Compared to combined mPDI-gzip, SBC-
gzip achieves on average 10.8 and 10.7 times better 
compression in CINT F2B and M2B segments, and 
153.6 and 301 times better for corresponding CFP 
segments, sometimes outperforming mPDI-gzip for 
more than two orders of magnitude.  

The SBC technique can also be combined with 
other compression techniques, such as Sequitur, which 
proved to be a highly suitable technique for 
instruction address traces, and consequently, for SBIT 
files. As it could be expected, Sequitur cannot be as 
efficient for data address traces, nor for SBDT files. 
Overall, combined SBC-Sequitur has a better 
compression ratio than SBC-gzip, but at the price of 
significantly increased decompression time.  

Figure 3 shows the decompression speedup relative 
to gzipped Dinero+ traces. Since traces are used 
during simulation, we measured decompression time 
in a program that reconstructs an entire trace, and uses 
pipes for gzip and Sequitur. Decompression speedup 
for SBC-gzip is proportional to the compression ratio, 
i.e., smaller files are faster to decompress. On 
average, SBC.gz traces are decompressed about 20 
times faster than Dinero.gz for floating-point, and 
about 10 times for integer benchmarks. The 
decompression of traces compressed with SBC-

Sequitur is slower than decompression of SBC.gz 
traces: 4.2-11.8 times for CINT, and 2.2-8.6 times for 
CFP benchmarks. For some benchmarks the SBC-
Sequitur traces even have longer decompression times 
than gzipped Dinero+: for 300.twolf in both segments 
and 181.mcf in M2B.  

The results presented do not include traces 
compressed with Sequitur only. While Sequitur on its 
own is very efficient for instruction address traces, it 
does not perform well on data traces, producing larger 
compressed files than gzip for most benchmarks. 

Table 5. Compression ratio  
for SPEC2000 FP – F2B 

CFP: F2B mPDI SBC Din.gz mPDI.gz SBC.gz SBC.seq 
168.wupwise 3.9 78.0 33.8 98.3 2840.4 4746.9 
171.swim 3.0 402.7 23.9 176.1 43083.6 42668.0 
172.mgrid 2.8 73.3 11.9 37.5 8774.4 15962.3 
173.applu 2.8 64.8 12.7 22.5 2646.3 30648.5 
177.mesa 2.9 73.0 10.1 55.6 1210.3 1734.9 
178.galgel 3.4 97.4 20.6 28.3 11534.7 43124.5 
179.art 4.1 79.0 23.6 29.9 12315.9 24224.7 
183.equake 3.7 53.2 30.0 149.8 1887.0 3278.8 
188.ammp 4.5 78.0 24.4 48.2 2573.1 3501.5 
189.lucas 3.6 149.8 68.7 179.7 30783.6 77058.6 
191.fma3d 4.2 47.4 12.5 23.4 3571.6 17376.7 
200.sixtrack 3.1 67.1 19.6 49.7 1265.9 1911.7 
301.appsi 3.0 34.4 8.4 19.6 2242.8 11063.0 
Average 3.5 99.8 23.1 70.7 9594.6 21330.8 

 

Table 6. Compression ratio  
for SPEC2000 FP – M2B 

CFP: M2B mPDI SBC Din.gz mPDI.gz SBC.gz SBC.seq 
168.wupwise 2.7 42.1 17.6 37.2 2007.3 3668.4 
171.swim 2.7 495.2 20.5 152.5 97930.4 185599.2 
172.mgrid 2.9 75.2 12.3 37.7 9368.1 17133.0 
173.applu 2.8 75.9 13.9 24.3 3441.8 44464.9 
177.mesa 2.8 81.6 10.5 49.8 1056.4 1473.1 
178.galgel 2.4 54.5 27.2 37.6 9188.9 74833.7 
179.art 2.9 67.1 25.6 35.9 20452.0 92720.6 
183.equake 2.4 33.9 26.5 26.3 364.6 425.3 
188.ammp 2.5 40.8 22.2 27.9 434.9 432.7 
189.lucas 2.5 266.4 37.3 76.1 28898.6 57234.9 
191.fma3d 2.6 108.7 4.8 9.5 11667.4 33310.4 
200.sixtrack 2.6 128.7 13.3 32.0 7312.5 15313.6 
301.appsi 2.8 34.0 7.9 18.2 2238.6 13214.7 
Average 2.7 115.7 18.4 43.5 14950.9 41525.0 

 



Another interesting question is the general 
compressibility of instruction address + instruction 
word trace component, versus data address component. 
Figure 4 and Figure 5 show the compression ratio 
separately for different trace components in F2B 
segment, for mPDI-gzip, SBC-gzip, SBC-seq 
combinations, and gzip only compression. With both 
SBC-gzip and SBC-seq combination, the instruction 
component is compressed much better. The gzip utility 
alone compresses data better than instruction addresses 
in 186.crafty, 252.eon, 253.perlbmk, 255.vortex, 
300.twolf, 173.applu, 183.equake, and 191.fma3d. Data 
address component compression with mPDI-gzip 
outperforms instruction component compression in two 
benchmarks, 197.parser and 301.appsi.  

It should also be noted that for gzipped SBC traces, 
on average, SBIT.gz makes only 5% of total 

compressed trace for CINT, and 10% for CFP. 
Therefore, further improvement in the instruction trace 
compression would not significantly increase the 
overall compression ratio. This indicates that further 
research efforts should be aimed to improve only the 
data address compression. 

A good indicator of the data address component 
compression ratio is the number of memory references 
in the trace divided by the number of records in SBDT 
file, NMEM/NSBDT. However, compression also depends 
on the length of repetition, stride, and address offset 
fields. For example, 176.gcc and 300.twolf in F2B 
segment have the similar NMEM/NSBDT ratio, 4.6 for 
176.gcc and 4.5 for 300.twolf. The compression ratio is 
10.7 for 176.gcc and 6.9 for 300.twolf, due to the 
different length of record fields: 29% of records in 
300.twolf SBDT file need more than two bytes for the 
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Figure 3. Decompression speedup relative to gzipped Dinero+ traces 



address offset, versus only 4.7% for 176.gcc. 
Moreover, 53% 300.twolf records need more than one 
byte for the stride, while the corresponding value for 
176.gcc is 22.2%. Both traces have very similar 
percentages for different lengths of the repetition count 
field. This example illustrates that the compression 
ratio is a complex function of NMEM/NSBDT and fields 
length, and it is even more difficult to estimate the 
compression gain if the SBC algorithm is combined 
with some other compression method.  

Possible extensions of the SBC algorithm may 
include another trace information, such as the value of 
operands. The Stream Table memory requirements can 
be reduced, for example by using a two-level scheme 
where each entry in the Stream Table keeps the indexes 
of the basic blocks from the Basic Block Table. 
 

4. Conclusion 

The SBC algorithm offers a new technique for 
compressing combined instruction and address traces: 
data address information is linked to a corresponding 
instruction stream, and instruction stream is replaced 
by its index from the Stream Table. SBC compresses 
data without any loss of information, in a single-pass, 
significantly reduces the trace size and the time needed 
to read the trace during simulations, and can be 
successfully combined with other general compression 
techniques. The choice of the additional compression 
scheme depends on the end user requirements. The 
SBC-gzip combination has a very good compression 
ratio and a short decompression time, and SBC-
Sequitur compresses even better, but with a slower 
decompression. As a single-pass algorithm, SBC can 
be easily modified for online tracing in real-time, and 
implemented in hardware. 
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Figure 4 CINT F2B: Compression ratio relative to Dinero+,  

for instruction/data trace components 
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Figure 5 CFP F2B: Compression ratio relative to Dinero+,  

for instruction/data trace components 
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