
Exploiting Streams in Instruction and Data Address Trace Compression

Aleksandar Milenkovi�, Milena Milenkovi�
Electrical and Computer Engineering Dept., The University of Alabama in Huntsville

Email: {milenka | milenkm}@ece.uah.edu

Abstract

Novel research ideas in computer architecture are

frequently evaluated using trace-driven simulation.
The large size of traces incited different techniques for
trace reduction. These techniques often combine
standard compression algorithms with trace-specific
solutions, taking into account the tradeoff between
reduction in the trace size and simulation slowdown
due to decompression. This paper introduces SBC, a
new algorithm for instruction and data address trace
compression based on instruction streams. The
proposed technique significantly reduces trace size and
simulation time, and can be successfully combined with
general compression algorithms. The SBC technique
combined with gzip reduces the size of SPEC
CPU2000 traces 59-97930 times, and combined with
Sequitur 65-185599 times.

1. Introduction

Trace-driven simulation has long been used in both
processor and memory studies. Traces can accurately
represent a system workload, and in the last decade
there has been a lot of research efforts dedicated to
trace issues, such as trace collection, reduction and
processing [1]. In order to offer a faithful
representation of a specific workload, traces are very
large, encompassing billions of memory references
and/or instructions. For example, an instruction trace
with 1 billion instructions, where each trace record
takes 10 bytes, requires almost 10 Gbytes of storage
space. Yet, with a modern superscalar processor
executing 1.5 instructions each clock cycle on average,
and running at 3 GHz, it represents only 0.2 seconds of
the simulated CPU execution time. To efficiently store
and use even a small collection of traces, trace sizes
must be reduced as much as possible. Although
traditional compression techniques such as the Ziv-
Lempel algorithm [2], used in the gzip utility, offer a
good compression ratio, even better compression is
possible when the specific nature of redundancy in

traces is taken into account. On the other hand, since
the ultimate purpose of traces is to be used in
simulations, a trace compression should not introduce a
significant decompression slowdown. An effective
trace compression technique is loss-less, i.e., not
introducing errors into the simulation, has high
compression factor, short decompression time, and
relatively short compression time.

Depending on the simulated system, a trace can
contain different types of information. For example,
control flow analysis needs only a trace of executed
basic blocks or paths. Cache studies require address
traces, and more complex processor simulations need
instruction words as well. Branch predictors can be
evaluated using traces with only branch-relevant
information, such as branch and target addresses, and
branch outcome, and ALU unit simulations require
operand values. For example, the Dinero trace format
record consists of the address of memory reference and
the reference type – read, write, or instruction fetch [3],
and BYU traces also include additional information,
such as the size of the data transfer, processor ID, etc.
[4]. In addition to addresses, the IBS trace format
includes operation code and whether the instruction
was executed in user or kernel mode [5].

Various trace compression techniques have been
introduced, focusing on different trace information.
One set of compression techniques, such as whole
program path (WPP) [6] and timestamped WPP [7],
relies on program instrumentation and concentrates on
instruction traces only. In WPP, a trace of acyclic paths
is compressed using a modified Sequitur algorithm [8].
In timestamped WPP, all path traces for one function
are stored in one block, thus enabling fast access to
function-related information.

Another set of compression techniques targets full
address traces that include both instruction and data.
Unlike instruction address or path traces, data address
traces rarely have repeatable patterns and hence are
more difficult to compress, although one memory
referencing instruction may access addresses with a
constant stride. One approach, applied in a one-pass
algorithm called PDATS (Packed Differential Address

and Time Stamp), is to store address differences
between successive references of the same type (load,
store, instruction fetch) [9]. In PDATS, stored address
differences can have variable length and an optional
repetition count in cases when a constant difference is
present in consequtive addresses of the same type.
Another approach is to link information about the data
addresses with a corresponding loop, but this requires
previous control flow analysis to extract loop
information and cannot be done in one pass [10]. The
SIGMA trace compression algorithm takes advantage
of nested loops [11]. However, this algorithm is based
on the program instrumentation, and has some
limitations, such as a constant iteration count for inner
loops. A rather original approach regenerates original
trace using a set of value predictors [12], but it has a
relatively long decompression time.

Some techniques, such as PDI, compress combined
address and instruction traces, i.e., traces consisting of
instruction addresses + instruction words, and data
addresses. In PDI, instruction words are compressed
using a dictionary-based approach – each of the 256
most frequently used instruction words in the trace is
replaced with its dictionary index while other words
are left unchanged. Addresses are compressed as in
PDATS, but without a repetition count. This algorithm
can be one pass or two pass, depending on using a
generic or a trace-specific instruction word dictionary.
Specialized branch traces can be compressed by
replacing an N-tuple of branch instruction trace records
with its ID from the N-Tuple Record Table [13].

This paper proposes a new method for single-pass
compression of combined address and instruction
traces, Stream-Based Compression (SBC). The SBC
algorithm relies on extracting instruction streams. An
instruction stream is a sequential run of instructions,
from the target of a taken branch to the first taken
branch in sequence. A stream table keeps relevant
information about streams: starting address, stream
length, instruction words and their types. All
instructions from a stream are replaced by its index in
the stream table, creating a trace of instruction streams.
Information about data addresses such as the data
address stride and the number of stride repetitions is
attached to the corresponding instruction stream and
stored separately.

The proposed algorithm achieves a very good
compression ratio and decompression time for both
instruction and data address traces, yet it is simple to
implement and does not require code augmentation nor
lengthy several-passes control flow analysis.
Furthermore, SBC can be successfully combined with
general compression algorithms, such as Ziv-Lempel
or Sequitur. We evaluated SBC on Dinero+ traces [9]
of SPEC CPU2000 benchmark programs [14]. When

combined with gzip, SBC reduces the trace size 78-
97930 times, depending on the benchmark, and
outperforms mPDI-gzip, gzipped combination of PDI
and PDATS, 4-1231 times. SBC combined with
Sequitur reduces the trace size even further, but at the
price of a considerable decompression slowdown.

The rest of the paper is organized into four sections.
The second section introduces the formats of traces and
explains stream-based compression. The third section
shows the compression ratio and decompression time
for the compared compression techniques. The last
section gives concluding remarks.

2. Stream-based compression

The SBC algorithm exploits several inherent
characteristics of program execution traces. Instruction
traces consist of a fairly limited number of different
instruction streams, and most of the memory references
exhibit strong spatial and/or temporal locality, for
example, a load having a constant address stride across
loop iterations. The stream-based compression of the
combined address and instruction traces results in three
files: Stream Table File (STF), Stream-Based
Instruction Trace (SBIT), and Stream-Based Data
Trace (SBDT).

In this paper SBC is demonstrated on Dinero+
traces, although it is applicable to any combined trace.
A Dinero+ trace record has fixed length fields: the
header field (0 – data read, 1 – data write, and 2 –
instruction read), the address field, and the instruction
word field for the instruction read type.

First we describe the decompression process, for the
example in Figure 1– a short trace of a loop, where
stream 1 is followed by 28 executions of stream 2, and
one execution of stream 3. At the beginning of the
trace decompression, the whole Stream Table File is
loaded into a corresponding Stream Table structure,
resident in the memory during decompression. One
record in STF consists of a stream start address and a
stream length -- i.e., the number of instructions in the
stream -- followed by instruction words and their types
-- load (0), store (1) or an instruction that does not
access memory (2).

In addition to the pointer to the list of stream
instruction words, each entry in the Stream Table
structure in memory has a pointer to the list of stream
data address references. One node in the stream data
address list has the following fields: current data
address, address stride, and repetition count. All fields
are initialized to zero. This list is dynamically updated
from the Stream-Based Data Trace during trace
decompression, whenever the repetition count of an
accessed node is 0.

Decompression proceeds as follows: a stream index
is read from the Stream-Based Instruction Trace, i.e.,
stream index 1. Stream Table entry 1 is accessed,
giving address, word and type of the first instruction in
the stream. This instruction is a store (type 1), so the
corresponding store address is needed. Since the
repetition count for the first data reference in this
stream is 0 after initialization, the decompression
algorithm reads a record from the SBDT, consisting of
the following fields: DataHeader, AddrOffset, Stride,
and RepCount (Figure 2). The current data address in
the node is calculated as the current address (0) plus
the AddrOffset field, the stride is set to the value of the
Stride field, in this case 0, and the repetition count is
set to the RepCount value, again 0 since this stream
executes only once. The pointer to the current
instruction then moves along the stream instruction
word list until all nine instructions are read. Each
instruction address is obtained by incrementing the
current instruction address for the instruction length,

starting from the StartAddress. The SBDT is
accessed once more, for the seventh
instruction, which is a load. The next stream
index in the SBIT is 2, so entry 2 is accessed.
The first instruction is a load, so the
corresponding node in the data address list is
updated from SBDT; i.e., the current address
is set to 0x11ff97028, the stride is set to 8, and
the repetition count to 27. When the stream 2
is again encountered in the SBIT and its load
instruction is read from the Stream Table,
there is no need to access the SBDT – the load
address is calculated as the previous address
plus the stride, and the repetition count is
decremented for all further 27 executions of
the stream 2.

As can be seen on this simple example, the
SBC algorithm handles instruction and data
information separately. The SBIT is obtained
by replacing each instruction stream by its
index from the stream table. Since the stream
table includes all streams and not just the most
frequent ones, this is a one-pass algorithm –
when the end of a stream is detected in the
original input trace, SBC finds the
corresponding stream in the table or, if
necessary, adds a new entry to the table, and
outputs the stream index to the SBIT. When
compressing data addresses, SBC exploits
frequent regularity of memory references
produced by consecutive instances of the
same load/store instruction. Ideally, during
decompression one memory-accessing
instruction should get new values from the
SBDT only when its offset stride changes.
However, we want to keep the compression

algorithm one-pass, so the compression program keeps
relevant values in a finite FIFO buffer. Clearly, the
larger FIFO buffer will “catch” more data repetitions,
thus increasing the compression ratio. Each entry in the
FIFO buffer has a ready flag that is set at the change of
the offset stride. The records are written to the SBDT
when there is a sequence of ready records at the front
of the FIFO buffer, or when the FIFO is full. The
AddrOffset field records the offset from the last
occurrence of a particular memory-accessing
instruction and is equal to the memory address when
such instruction occurs for the first time. The
DataHeader field codes the length and the most
frequent values of other fields in the Data Trace
(Figure 2), thus achieving additional compression. The
repetition count values 0 and 1, and the stride values 0,
1, 4 and 8 can be encoded in the DataHeader, and the
proposed format allows variable length of AddrOffset

Stream-Based
Instruction Trace (SBIT) Stream-Based Data Trace (SBDT)

StartAddress Length

120026a60 9

120026a78 3

120026a78 4

223e00181 ... f 43f f f f d2

a43300000 426114132 f 43f f f f d2

a43300000 426114132 f 43f f f f d2 23def f f 02

Stream Table File (STF)

Dinero+ Trace

Stream 1

Stream 2

Stream 2

Stream 2

Stream 3

Type Address InstrWord
2 120026a60 223e0018
1 11f f 96f f 8 -
2 120026a64 b7f e0008
2 120026a68 42110652
2 120026a6c 42411412
2 120026a70 23bd19a4
2 120026a74 46520413
2 120026a78 a4330000
0 11f f 97020 -
2 120026a7c 42611413
2 120026a80 f 43f f f f d
2 120026a78 a4330000
0 11f f 97028 -
2 120026a7c 42611413
2 120026a80 f 43f f f f d
2 120026a78 a4330000
0 11f f 97030 -
2 120026a7c 42611413
2 120026a80 f 43f f f f d
… … …
2 120026a78 a4330000
0 11f f 97100 -
2 120026a7c 42611413
2 120026a80 f 43f f f f d
2 120026a78 a4330000
0 11f f 97108 -
2 120026a7c 42611413
2 120026a80 f 43f f f f d
2 120026a84 23def f f 0

StreamIndex
1
2
2
…
2
3

AddrOffset

11f f 96f f 8

Stride

0

RepCount

0

11f f 97020 0 0

11f f 97028 8 1b

11f f 97108 0 0
Figure 1. Example of stream-based compression.

(1, 2, 4 or 8 bytes), Stride and RepCount fields (0, 1, 2,
4, or 8 bytes).

One can ask why the SBC algorithm does not
exploit the repetition of instruction streams. Such
patterns in the SBIT are easily recognized by gzip or
Sequitur, without an increase in complexity of SBC or

any restrictions considering the number and the nature
of nested loops.

3. Results

In order to evaluate the proposed compression
mechanism, for each SPEC CPU2000 benchmark we
traced two segments for reference data inputs: the first
two billion instructions (F2B), and the two billion
instructions after skipping 50 billion (M2B), thus
making sure that the results do not overemphasize the
program initialization. While the number of
instructions is fixed, the number of memory-
referencing instructions – loads and stores – varies
greatly across benchmarks, from as low as 18.7% of all
instructions for F2B segments of lucas and fma3d, to

DataHeader 1B
Stride

0, 1, 2, 4, or 8B
AddrOffset

1, 2, 4, or 8B
RepCount

0, 1, 2, 4, or 8B

Bits 7-5:RepCount size Bits 4-2:Stride size Bits 0-1:AddrOffset size
000: = 0 - 0B
001: 1B
010: 2B
011: 4B
100: 8B
101: =1 - 0B
100: unused
101: unused

000: = 0 - 0B
001: 1B
010: 2B
011: 4B
100: 8B
101: =1 - 0B
100: =4 - 0B
101: =8 - 0B

00: 1B
01: 2B
10: 4B
11: 8B

Figure 2. SBC data trace format.

Table 1. Statistics for SPEC2000 INT traces.

 Load+Store% Dinero+ [GB] Stream Number AvrStreamLen MaxStreamLen
CINT F2B M2B F2B M2B F2B M2B F2B M2B F2B M2B
164.gzip 33.17 32.07 29.16 28.99 751 336 13.9 13.8 229 229
176.gcc 50.94 52.10 31.80 31.98 25416 22222 11.8 10.7 272 254
181.mcf 41.36 37.98 30.38 29.87 744 308 8.9 6.0 88 64
186.crafty 37.74 36.71 29.84 29.68 4122 1892 13.1 13.4 191 100
197.parser 37.94 35.06 29.87 29.44 4767 4200 9.4 9.9 157 157
252.eon 48.59 48.58 31.45 31.45 3486 588 13.8 14.1 169 168
253.perlbmk 45.02 46.88 30.92 31.20 9034 6344 10.1 12.0 84 868
254.gap 37.36 38.36 29.78 29.93 3218 476 24.3 10.3 284 75
255.vortex 44.40 38.95 30.83 30.02 5496 2644 11.1 11.2 126 110
300.twolf 33.77 33.00 29.25 29.13 2399 1014 12.3 14.5 163 185
Average 41.03 39.97 30.33 30.17 5943.3 4002.4 12.9 11.6 176.3 221.0

Table 2. Statistics for SPEC2000 FP traces.

 Load+Store% Dinero+ [GB] Stream Number AvrStreamLen MaxStreamLen

CFP F2B M2B F2B M2B F2B M2B F2B M2B F2B M2B

168.wupwise 19.76 30.96 27.16 28.83 1563 234 23.9 27.5 229 229

171.swim 31.02 32.86 28.84 29.11 1582 496 93.6 132.3 707 707

172.mgrid 36.66 36.43 29.68 29.64 1457 875 240.1 159.6 1944 1944

173.applu 37.75 38.20 29.84 29.91 1470 506 411.5 448.9 3162 3162

177.mesa 37.53 38.09 29.81 29.89 1637 593 14.8 18.5 550 266

178.galgel 41.80 41.27 30.44 30.36 1818 81 18.4 23.0 264 206

179.art 37.81 34.12 29.85 29.30 435 341 10.3 8.7 168 561

183.equake 36.00 45.04 29.58 30.93 517 260 8.6 28.3 44 623

188.ammp 31.13 37.23 28.85 29.76 955 502 12.5 35.2 168 561

189.lucas 18.73 22.20 27.01 27.52 964 317 27.1 127.9 427 427

191.fma3d 18.71 45.70 27.00 31.02 2083 841 10.7 43.6 383 1158

200.sixtrack 32.09 24.69 29.00 27.89 3532 82 20.1 192.9 264 580

301.appsi 37.24 37.29 29.76 29.77 2439 389 34.0 51.5 729 729

Average 32.02 35.70 28.99 29.53 1573.2 424.4 71.2 99.8 695.3 857.9

over 50% for both gcc segments (Table 1 and Table 2).
It is interesting to notice that the percentage of loads
and stores does not significantly change between the
two segments for all integer benchmarks (CINT)
except vortex, and changes for more than 15% for a
half of floating point benchmarks (CFP). The trace size
is on average 30MB per segment, and the sum of
uncompressed traces reaches 1366 GB, clearly
showing the need for highly efficient compression
techniques. Traces are generated using modified
SimpleScalar environment [15], and precompiled
Alpha SPEC2000 binaries.

Since the Stream Table is held in the memory
during decompression, we first verified the assumption
about the relatively limited number of different
instruction streams, i.e., the Stream Table entries.
Analysis of SPEC CPU2000 traces shows that all CFP
and most CINT benchmarks have fewer than 5000
different instruction streams. The only benchmarks
with larger number of unique streams are 171.gcc,
253.perlbmk, and the F2B segment of 255.vortex. For
all benchmarks the F2B segment has more streams
than the M2B. The average stream length is less than
30 for all CINT and five CFP benchmarks, and it
reaches the maximum for 173.applu, 449 instructions
in the M2B segment, but in that segment applu has
only 506 unique streams. All these results indicate that
a Stream Table has relatively modest memory
requirements.

The compression ratio of SBC is compared to the
compression obtained by gzip and by mPDI, a
modified version of PDI. We merged PDI and PDATS
into mPDI in order to compare SBC with the best
possible combination of those techniques. The mPDI
uses the PDATS algorithm for data, so it can benefit
from address stride repetitions. The implemented
PDATS algorithm does not make a difference between
load and store references, as Johnson suggested in his
later work [16]. Finally, in mPDI data and instruction
references are separated into two files, making the
regular patterns even more recognizable by gzip. The
basis for comparison was the size of uncompressed
Dinero+ traces, separated to instruction address +
instruction word and data address components. The
size of this format is slightly less than the size of the
unified Dinero+, since the header field is not required
in the data address trace. In addition to that, split
components can be better compressed by gzip.

Table 3, Table 4, Table 5, and Table 6 show the
compression ratio of compared algorithms, for CINT
and CFP benchmarks and two considered program
segments. The FIFO buffer size for SBC is 4000
entries. The SBC algorithm reduces the trace size for
up to 60.5 times for CINT and 495.2 times for CFP
benchmarks, outperforming gzip compression. On

average, the SBC compression ratio is higher for CFP
than for CINT applications, due to longer instruction
streams and higher repetition counts for data
references. As seen in Table 1 and Table 2, the average
CFP instruction stream length is roughly an order of
magnitude greater than in CINT benchmarks. One
indicator of the successful SBC compression of data
addresses is the ratio between the number of data
addresses in original trace and the number of records in
Stream-Based Data Trace file. These values are also
significantly higher for CFP traces: on average 56.1 for
F2B segment and 95.1 for M2B segment, while
corresponding CINT values are 6.3 and 5.8. The
compression ratio in two different trace segments
depends on the application: it is on average higher in
the “middle” of the execution than at the beginning,
but not for all benchmarks.

Table 3. Compression ratio
for SPEC2000 INT – F2B.

CINT: F2B mPDI SBC Din.gz mPDI.gz SBC.gz SBC.seq

164.gzip 4.3 60.2 39.7 46.9 210.1 193.4

176.gcc 3.2 30.9 9.4 19.4 168.8 193.0

181.mcf 3.4 46.5 24.3 55.5 500.6 597.2

186.crafty 3.0 40.0 7.0 22.2 228.3 247.8

197.parser 3.6 33.6 27.6 32.3 182.9 347.9

252.eon 3.4 21.9 6.1 26.6 396.9 775.3

253.perlbmk 3.1 30.6 5.9 16.4 340.2 318.5

254.gap 3.9 49.9 12.9 35.5 765.5 868.4

255.vortex 3.4 20.9 6.8 14.3 115.2 332.0

300.twolf 3.3 28.2 7.4 23.4 105.7 88.3

Average 3.46 36.26 14.70 29.25 301.41 396.17

Table 4. Compression ratio
for SPEC2000 INT – M2B.

CINT: M2B mPDI SBC Din.gz mPDI.gz SBC.gz SBC.seq

164.gzip 3.7 60.5 41.6 48.2 217.8 200.3

176.gcc 3.0 40.3 14.7 20.9 260.4 291.1

181.mcf 2.3 16.2 20.9 20.3 58.5 82.8

186.crafty 2.9 44.0 7.0 25.0 257.2 278.8

197.parser 3.4 33.0 28.1 32.7 167.0 333.5

252.eon 3.4 21.4 6.0 28.1 384.5 753.2

253.perlbmk 2.9 42.0 34.8 46.9 735.0 1101.8

254.gap 2.9 34.9 33.6 38.3 1115.4 1912.0

255.vortex 3.3 26.7 11.8 24.8 228.6 402.1

300.twolf 3.2 24.4 6.4 19.4 78.3 64.9

Average 3.10 34.36 20.49 30.45 350.28 542.06

 The SBC compression ratio is significantly higher
than mPDI, due to the combined effect of replacing
whole instruction streams with stream IDs instead of
replacing instructions with dictionary indexes, and
exploiting stride repetitions between the subsequent
executions of the same load/store instruction instead of
subsequent load/store instructions. The SBC-
compressed CINT trace files are 6.1-16.2 times smaller
then when compressed with mPDI, and CFP trace files
are 11.2-180.4 times smaller. Notice that SBC also
outperforms combination mPDI-gzip for most
benchmarks.

Even better compression ratios can be obtained by
further compressing an SBC trace by gzip. The
combined SBC-gzip compression ratio goes up to
1115.4 for CINT (254.gap in M2B segment) and up to
97930.4 (171.swim in M2B segment) for CFP, with
corresponding average values greater than 300 for
CINT and greater than 95000 for CFP. Translated back
to bytes, this means that instead of 30GB for an
uncompressed trace or about 2GB for a gzip-only
compressed trace, a combined SBC-gzip compressed
trace occupies less than 200MB for all benchmarks
except 300.twolf in both segments, 255.vortex in F2B
and 176.gcc in M2B, and the trace size is even less
than 1MB for some CFP benchmarks, 171.swim and
189.lucas. Compared to combined mPDI-gzip, SBC-
gzip achieves on average 10.8 and 10.7 times better
compression in CINT F2B and M2B segments, and
153.6 and 301 times better for corresponding CFP
segments, sometimes outperforming mPDI-gzip for
more than two orders of magnitude.

The SBC technique can also be combined with
other compression techniques, such as Sequitur, which
proved to be a highly suitable technique for
instruction address traces, and consequently, for SBIT
files. As it could be expected, Sequitur cannot be as
efficient for data address traces, nor for SBDT files.
Overall, combined SBC-Sequitur has a better
compression ratio than SBC-gzip, but at the price of
significantly increased decompression time.

Figure 3 shows the decompression speedup relative
to gzipped Dinero+ traces. Since traces are used
during simulation, we measured decompression time
in a program that reconstructs an entire trace, and uses
pipes for gzip and Sequitur. Decompression speedup
for SBC-gzip is proportional to the compression ratio,
i.e., smaller files are faster to decompress. On
average, SBC.gz traces are decompressed about 20
times faster than Dinero.gz for floating-point, and
about 10 times for integer benchmarks. The
decompression of traces compressed with SBC-

Sequitur is slower than decompression of SBC.gz
traces: 4.2-11.8 times for CINT, and 2.2-8.6 times for
CFP benchmarks. For some benchmarks the SBC-
Sequitur traces even have longer decompression times
than gzipped Dinero+: for 300.twolf in both segments
and 181.mcf in M2B.

The results presented do not include traces
compressed with Sequitur only. While Sequitur on its
own is very efficient for instruction address traces, it
does not perform well on data traces, producing larger
compressed files than gzip for most benchmarks.

Table 5. Compression ratio
for SPEC2000 FP – F2B

CFP: F2B mPDI SBC Din.gz mPDI.gz SBC.gz SBC.seq
168.wupwise 3.9 78.0 33.8 98.3 2840.4 4746.9
171.swim 3.0 402.7 23.9 176.1 43083.6 42668.0
172.mgrid 2.8 73.3 11.9 37.5 8774.4 15962.3
173.applu 2.8 64.8 12.7 22.5 2646.3 30648.5
177.mesa 2.9 73.0 10.1 55.6 1210.3 1734.9
178.galgel 3.4 97.4 20.6 28.3 11534.7 43124.5
179.art 4.1 79.0 23.6 29.9 12315.9 24224.7
183.equake 3.7 53.2 30.0 149.8 1887.0 3278.8
188.ammp 4.5 78.0 24.4 48.2 2573.1 3501.5
189.lucas 3.6 149.8 68.7 179.7 30783.6 77058.6
191.fma3d 4.2 47.4 12.5 23.4 3571.6 17376.7
200.sixtrack 3.1 67.1 19.6 49.7 1265.9 1911.7
301.appsi 3.0 34.4 8.4 19.6 2242.8 11063.0
Average 3.5 99.8 23.1 70.7 9594.6 21330.8

Table 6. Compression ratio
for SPEC2000 FP – M2B

CFP: M2B mPDI SBC Din.gz mPDI.gz SBC.gz SBC.seq
168.wupwise 2.7 42.1 17.6 37.2 2007.3 3668.4
171.swim 2.7 495.2 20.5 152.5 97930.4 185599.2
172.mgrid 2.9 75.2 12.3 37.7 9368.1 17133.0
173.applu 2.8 75.9 13.9 24.3 3441.8 44464.9
177.mesa 2.8 81.6 10.5 49.8 1056.4 1473.1
178.galgel 2.4 54.5 27.2 37.6 9188.9 74833.7
179.art 2.9 67.1 25.6 35.9 20452.0 92720.6
183.equake 2.4 33.9 26.5 26.3 364.6 425.3
188.ammp 2.5 40.8 22.2 27.9 434.9 432.7
189.lucas 2.5 266.4 37.3 76.1 28898.6 57234.9
191.fma3d 2.6 108.7 4.8 9.5 11667.4 33310.4
200.sixtrack 2.6 128.7 13.3 32.0 7312.5 15313.6
301.appsi 2.8 34.0 7.9 18.2 2238.6 13214.7
Average 2.7 115.7 18.4 43.5 14950.9 41525.0

Another interesting question is the general
compressibility of instruction address + instruction
word trace component, versus data address component.
Figure 4 and Figure 5 show the compression ratio
separately for different trace components in F2B
segment, for mPDI-gzip, SBC-gzip, SBC-seq
combinations, and gzip only compression. With both
SBC-gzip and SBC-seq combination, the instruction
component is compressed much better. The gzip utility
alone compresses data better than instruction addresses
in 186.crafty, 252.eon, 253.perlbmk, 255.vortex,
300.twolf, 173.applu, 183.equake, and 191.fma3d. Data
address component compression with mPDI-gzip
outperforms instruction component compression in two
benchmarks, 197.parser and 301.appsi.

It should also be noted that for gzipped SBC traces,
on average, SBIT.gz makes only 5% of total

compressed trace for CINT, and 10% for CFP.
Therefore, further improvement in the instruction trace
compression would not significantly increase the
overall compression ratio. This indicates that further
research efforts should be aimed to improve only the
data address compression.

A good indicator of the data address component
compression ratio is the number of memory references
in the trace divided by the number of records in SBDT
file, NMEM/NSBDT. However, compression also depends
on the length of repetition, stride, and address offset
fields. For example, 176.gcc and 300.twolf in F2B
segment have the similar NMEM/NSBDT ratio, 4.6 for
176.gcc and 4.5 for 300.twolf. The compression ratio is
10.7 for 176.gcc and 6.9 for 300.twolf, due to the
different length of record fields: 29% of records in
300.twolf SBDT file need more than two bytes for the

Decompression speedup - F2B

0

1

10

100

16
4.g

zip

17
6.g

cc

18
1.m

cf

18
6.c

ra
fty

19
7.p

ar
se

r

25
2.e

on

25
3.p

er
lbm

k

25
4.g

ap

25
5.v

or
te

x

30
0.t

wolf

16
8.w

up
wise

17
1.s

wim

17
2.m

gr
id

17
3.a

pp
lu

17
7.m

es
a

17
8.g

alg
el

17
9.a

rt

18
3.e

qu
ak

e

18
8.a

mm
p

18
9.l

uca
s

19
1.f

m
a3

d

20
0.s

ixt
ra

ck

30
1.a

pp
si

modPDI.gz

SBC.gz

SBC.seq

Decompression speedup - M2B

0

1

10

100

16
4.g

zip

17
6.g

cc

18
1.m

cf

18
6.c

ra
fty

19
7.p

ar
se

r

25
2.e

on

25
3.p

er
lbm

k

25
4.g

ap

25
5.v

or
te

x

30
0.t

wolf

16
8.w

up
wise

17
1.s

wim

17
2.m

gr
id

17
3.a

pp
lu

17
7.m

es
a

17
8.g

alg
el

17
9.a

rt

18
3.e

qu
ak

e

18
8.a

mm
p

18
9.l

uca
s

19
1.f

m
a3

d

20
0.s

ixt
ra

ck

30
1.a

pp
si

modPDI.gz

SBC.gz

SBC.seq

Figure 3. Decompression speedup relative to gzipped Dinero+ traces

address offset, versus only 4.7% for 176.gcc.
Moreover, 53% 300.twolf records need more than one
byte for the stride, while the corresponding value for
176.gcc is 22.2%. Both traces have very similar
percentages for different lengths of the repetition count
field. This example illustrates that the compression
ratio is a complex function of NMEM/NSBDT and fields
length, and it is even more difficult to estimate the
compression gain if the SBC algorithm is combined
with some other compression method.

Possible extensions of the SBC algorithm may
include another trace information, such as the value of
operands. The Stream Table memory requirements can
be reduced, for example by using a two-level scheme
where each entry in the Stream Table keeps the indexes
of the basic blocks from the Basic Block Table.

4. Conclusion

The SBC algorithm offers a new technique for
compressing combined instruction and address traces:
data address information is linked to a corresponding
instruction stream, and instruction stream is replaced
by its index from the Stream Table. SBC compresses
data without any loss of information, in a single-pass,
significantly reduces the trace size and the time needed
to read the trace during simulations, and can be
successfully combined with other general compression
techniques. The choice of the additional compression
scheme depends on the end user requirements. The
SBC-gzip combination has a very good compression
ratio and a short decompression time, and SBC-
Sequitur compresses even better, but with a slower
decompression. As a single-pass algorithm, SBC can
be easily modified for online tracing in real-time, and
implemented in hardware.

Instruction address + instruction word trace component

1

10

100

1000

10000

100000

16
4.g

zip

17
6.g

cc

18
1.m

cf

18
6.c

ra
fty

19
7.p

ar
se

r

25
2.e

on

25
3.p

er
lbm

k

25
4.g

ap

25
5.v

or
te

x

30
0.t

wolf

C
om

pr
es

si
on

 r
at

io

SBC.gz

SBC.seq

mPDI.gz

Din.gz

Data address trace component

1

10

100

1000

16
4.g

zip

17
6.g

cc

18
1.m

cf

18
6.c

ra
fty

19
7.p

ar
se

r

25
2.e

on

25
3.p

er
lbm

k

25
4.g

ap

25
5.v

or
te

x

30
0.t

wolf

C
o

m
pr

es
si

o
n

ra
tio

SBC.gz

SBC.seq

mPDI.gz

Din.gz

Figure 4 CINT F2B: Compression ratio relative to Dinero+,

for instruction/data trace components

Instruction address + instruction word trace component

1

10

100

1000

10000

100000

1000000

16
8.w

up
wise

17
1.s

wim

17
2.m

gr
id

17
3.a

pp
lu

17
7.m

es
a

17
8.g

alg
el

17
9.a

rt

18
3.e

qu
ak

e

18
8.a

mm
p

18
9.l

uca
s

19
1.f

m
a3

d

20
0.s

ixt
ra

ck

30
1.a

pp
si

C
o

m
p

re
ss

io
n

 r
at

io

SBC.gz

SBC.seq

mPDI.gz

Din.gz

Data address trace component

1

10

100

1000

10000

100000

16
8.w

up
wise

17
1.s

wim

17
2.m

gr
id

17
3.a

pp
lu

17
7.m

es
a

17
8.g

alg
el

17
9.a

rt

18
3.e

qu
ak

e

18
8.a

mm
p

18
9.l

uca
s

19
1.f

m
a3

d

20
0.s

ixt
ra

ck

30
1.a

pp
si

C
o

m
p

re
ss

io
n

 r
at

io

SBC.gz

SBC.seq

mPDI.gz

Din.gz

Figure 5 CFP F2B: Compression ratio relative to Dinero+,

for instruction/data trace components

5. References

[1] R. Uhlig, T. Mudge, “Trace-driven memory simulation,”
ACM Computing Surveys, Vol. 29, No. 2, June 1997.
[2] L. Ziv, A. Lempel, “A universal algorithm for sequential
data compression,” IEEE Transaction on Information Theory,
Vol. 23, No 3., 1977.
[3] J. Edler, M.D. Hill, Dinero IV Trace-Driven Uniprocessor
Cache Simulator,
http://www.cs.wisc.edu/~markhill/DineroIV/
[4] N.C. Thornock, J.K. Flanagan, “A national trace
collection and distribution resource,” ACM SIGARCH
Computer Architecture News, Vol. 29, No. 3, June 2001.
[5] R. Uhlig, D. Nagle, T. Mudge, S. Sechrest, J. Emer,
“ Instruction fetching: coping with code bloat,” Proceedings
of the 22nd Annual Internationa Symposium on Computer
Architecture, June 1995.
[6] J. Larus, “Whole Program Paths,” in Proc. ACM
SIGPLAN Conf. on Programming Language Design and
Implementation, Atlanta, GA, 1999, pp. 259-269.
[7] Y. Zhang, R. Gupta, “Timestamped Whole Program Path
Representation and Its Applications,” in Proc. ACM
SIGPLAN Conf. on Programming Language Design and
Implementation, Snowbird, Utah, 2001, pp. 180-190.
[8] C. G. Nevill-Manning, I. H. Witten, “Linear-Time,
Incremental Hierarchy Interference for Compression,” in
Proc. IEEE Data Compression Conference, 1997, pp. 3-11.

[9] E. E. Johnson, J. Ha, M. B. Zaidi, “Lossless Trace
Compression,” IEEE Transactions on Computers, Vol. 50,
No. 2, February 2001.
[10] E. N. Elnozahy, “Address Trace Compression Through
Loop Detection and Reduction,” ACM SIGMETRICS
Performance Evaluation Review, v.27 n.1, p.214-215, June
1999.
[11] L. DeRose et al., “SIGMA: A Simulator Infrastructure to
Guide Memory Analysis,” in Proc. SC 2002, Baltimore, MD,
2002.
[12] M. Burtscher, M. Jeeradit, “Compressing Extended
Program Traces Using Value Predictors,” in Proc. Int. Conf.
on Parallel Architectures and Compilation Techniques
(PACT), New Orleans, LA, 2003.
[13] A. Milenkovi�, M. Milenkovi�, J. Kulick, “N-Tuple
Compression: A Novel Method for Compression of Branch
Instruction Traces,” in Proc. of the PDCS 2003, Reno,
Nevada, 2003.
[14] SPEC 2000 Benchmark Suite, http://www.spec.org.
[15] D. Burger, T. Austin, “The SimpleScalar Tool Set
Version 2.0,” Technical Report CS-TR-97-1342, University
of Wisconsin, 1997.
[16] E. E. Johnson, “PDATS II: Improved Compression of
Address Traces,” in Proc. of the IEEE International
Performance, Computing, and Communication Conference,
1999.

