
Hardware-Based Load Value Trace Filtering for
On-the-Fly Debugging

VLADIMIR UZELAC

Tensilica Inc, Santa Clara, CA
and
ALEKSANDAR MILENKOVIĆ

Electrical and Computer Engineering Department, The University of Alabama in
Huntsville, AL

__

Capturing program and data traces during program execution unobtrusively on-the-fly is crucial in debugging

and testing of cyber-physical systems. However, tracing a complete program unobtrusively is often cost-
prohibitive, requiring large on-chip trace buffers and wide trace ports. This paper describes a new hardware-

based load data value filtering technique called Cache First-access Tracking. Coupled with an effective variable

encoding scheme, this technique achieves a significant reduction of load data value traces, from 5.86 to 56.39
times depending on the data cache size, thus enabling cost-effective unobtrusive on-the-fly tracing and

debugging.

Categories and Subject Descriptors: C.3 [Special-Purpose and Application-Based Systems]: Real-time and

embedded systems; D.2.5: [Testing and Debugging]: Debugging aids, Tracing. E.4 [Coding and Information

Theory]: Data Compaction and Compression.

General Terms: Algorithms, Design, Verification.

Additional Key Words and Phrases: debugging, program tracing, trace compression, load value filtering, trace

module, software debugger, variable encoding.

__

1. INTRODUCTION

Ever-increasing hardware and software complexity, increased integration and

miniaturization, diversification and proliferation of embedded systems, and tightening

time-to-market impose a number of challenges to embedded system design and

verification. To cope with growing sophistication and complexity of embedded systems,

software developers need to be able to gain an insight into the internal system state at any

point in the design and test cycle. However, high internal complexity and limited I/O

bandwidth prevent complete visibility of the internal state. According to an estimate,

programmers spend between 50 percent and 75 percent of their development time in

This research was supported in part by the National Science Foundation.

Authors' addresses: Vladimir Uzelac, Tensilica Inc., 255-6 Scott Blvd., Santa Clara, CA 95054; Aleksandar

Milenković, Department of Electrical and Computer Engineering, The University of Alabama in Huntsville,
301 Sparkman Dr., AL 35899;

Permission to make digital/hard copy of part of this work for personal or classroom use is granted without fee

provided that the copies are not made or distributed for profit or commercial advantage, the copyright notice,
the title of the publication, and its date of appear, and notice is given that copying is by permission of the

ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific

permission and/or a fee.
© 20xx ACM 1073-0516/01/0300-0034 $5.00

debugging (Tassey 2002), and this fraction will likely continue to grow with a current

shift toward multi-core systems and parallel software. Yet, in spite of significant

investments in software debugging and testing, it is estimated that the United States alone

lose approximately between $20 and $60 billion a year due to software bugs and glitches

(Tassey 2002). For example, a study found that 77% of all electronic failures in

automobiles are due to software bugs (McDonald-Maier & Hopkins 2004). The recent

recalls in the automotive industry are a stark reminder of the need for improved software

testing and debugging. To shorten development time, reduce development cost, and

minimize the number of bugs, programmers need better debugging tools.

Increasingly, programmers rely upon on-chip resources dedicated solely to program

debugging. For instance, the IEEE’s Industry Standard and Technology Organization has

developed a standard named Nexus 5001 (IEEE-ISTO 2003) that defines functions and

general-purpose interface for software development and debugging of embedded

processors. Nexus 5001 specifies four classes of debug operations (Class 1 – Class 4);

higher numbered classes progressively support more complex debug operations, but

require more on-chip resources.

Class 1 provides basic debug features for run-control debugging, including single-

stepping, breakpoints, and access to processor registers and memory while the processor

is stopped. It is traditionally implemented through a JTAG interface (IEEE 2001).

Whereas Class 1 debug operations are widely deployed and routinely used, they are

lacking in several important aspects. First, setting breakpoints and examining the

processor state to locate difficult and intermittent bugs in large software projects is

demanding and time-consuming for programmers. Second, setting a breakpoint is often

not practical in debugging real-time embedded systems; e.g., it may be harmful for hard

drives or engine controllers. Third, the debugging through breakpoints interferes with

program execution. The order of events during debugging may deviate from the order of

events when program is running natively with no interference from debugging

operations; this in turn can cause original bugs to disappear in the debug run.

Class 2 provides support for nearly unobtrusive capturing and streaming out program

execution traces in near real-time. Program execution traces record the program’s control

flow and are invaluable for hardware and software debugging, as well as for program

profiling. However, for certain classes of software bugs (e.g., data races), program

execution traces alone are insufficient and data traces are required too. Class 3 provides

support for capturing and streaming out memory and I/O read and write (load and store)

data values and addresses, in addition to program’s control flow. Whereas data traces are

crucial in reconstructing program execution in single-core systems, they are critical in

multi-core systems as they offer valuable information about shared memory access

patterns and possible data race conditions. Finally, Class 4 adds resources for direct

processor control through the trace port – instructions and data are fetched from the trace

port instead of main memory.

Fig. 1 illustrates a typical embedded processor with its trace and debug module. It

encompasses logic for run-control debugging (Class 1), logic to capture and filter

program execution traces (Class 2) and data traces (Class 3), on-chip buffers for storing

traces (in order of kilobytes), and a trace port that connects the target system to an

external trace unit (trace probe) or directly to a development workstation (host machine).

The external trace probe typically includes a probe processor for control, a

communication interface to the host (e.g., Ethernet or USB), and very large trace buffers

(in order of gigabytes). The host machine runs a software debugger and other trace

processing tools that can read and analyze traces, allowing programmers to step forward

and backward through the program execution. This way, programmers are able to gain

complete visibility into the target system and its behavior, while the target processor is

running at full speed.

Many vendors have introduced modules with program tracing capabilities that can be

integrated into their platforms. They usually support Class 1 operations, often Class 2,

and optionally Class 3. Some examples include ARM’s Embedded Trace Module (ARM

2007)(ARM 2004), MIPS’s PDTrace (MIPS 2009), and Tensilica’s TRAX-PC (Tensilica

2009). Commercial trace modules require trace port bandwidth in range of 1 to 4 bits per

instruction per core for program execution traces, and 8 to 16 bits per instruction per core

for data traces (Orme 2008). Thus, an internal 1 kilobyte trace buffer can capture

execution of a program segment of about 8,000 instructions on average (or about 2,000

instructions in the worst case), if a program trace is collected; or a program segment of

Fig. 1. Tracing and debugging in embedded systems: system view.

CPU

Run Control

Instruction &
Data Tracing

Trace
Port

Target System Trace Probe

Buffers (~ GB)

Probe CPU

Communication
Interface

Host

On-chip
Buffers
(~ KB)

Software
Debugger

Trace
Tools

Communication
Interface

Binary

about 400 to 800 instructions, if a data trace is collected. Such short segments are often

insufficient in locating software errors in modern processors, where distances between

bug sources and their manifestations may be in millions or billions of instructions.

To support unobtrusive tracing in Class 2 and Class 3, the commercially available

trace modules rely on hefty on-chip buffers and wide trace ports that can sustain

streaming out large amounts of trace data in real-time. However, large trace buffers and

wide trace ports significantly increase the system complexity and cost, making embedded

processor vendors reluctant to support higher classes of Nexus 5001 operation. This

problem is exacerbated in multi-core processors – the number of I/O pins dedicated to

trace ports cannot keep pace with an exponential growth in the number of processor cores

on a chip. Hence, reducing the size of output trace is critical to (i) lower the cost of on-

chip debugging resources (smaller buffers and narrower trace ports), (ii) enable

unobtrusive tracing in real time, and (iii) enable debugging of processors with multiple

cores.

Filtering and compressing program execution traces at runtime in hardware can

reduce the requirements for on-chip trace buffers and trace port communication

bandwidth. Commercially available trace modules typically implement only rudimentary

forms of hardware compression with a relatively small compression ratio for program

execution traces and data address traces. Data traces are typically streamed out

uncompressed. Whereas several academic proposals have addressed real-time hardware-

based compression of program execution traces (Kao et al. 2007), (Uzelac & A.

Milenkovic 2009), (Milenkovic et al. 2011), the more challenging problem of real-time

hardware-based reduction of data value traces has not been directly addressed so far. This

paper focuses on load data value traces (Section 2), that are, under certain conditions,

sufficient to deterministically reconstruct the whole program offline in the software

debugger. Our work supports software debugging as specified by the Nexus 5001 and

assumes a correct hardware design. The proposed method is not directly applicable to

post-silicon debugging. A detailed treatment of capturing and real-time compression of

debug data for post-silicon verification can be found in a work by Daoud and Nicolici

(Daoud & Nicolici 2009).

In this paper we introduce a hardware filtering mechanism called Cache First-access

Tracking mechanism (Section 3) that reduces trace port bandwidth requirements, thus

enabling practical on-the-fly load data value tracing. Data caches are augmented by first-

access tracking bits that determine whether a load value needs to be streamed out of the

chip, or it can be inferred by the software debugger (Section 3.1). The software debugger

maintains its copy of the data cache with corresponding first-access tracking bits that are

updated during program replay using identical policies to those used in the trace module.

This way, the trace module needs to send trace messages to the software debugger only

on first-access miss events. Trace messages include the number of consecutive first-

access hits and the load data value on which a first-access miss event has occurred. We

discuss granularity of first-access tracking bits (Section 3.2) and introduce a variable

encoding of the first-access hit counter (Section 3.3) to further reduce the trace port

bandwidth.

Our experimental analysis confirms the excellent performance of the first-access

tracking mechanism (Section 4). We explore the design space and evaluate effectiveness

of the proposed mechanism as a function of the data cache size (Section 4.1). We also

describe selection of good encoding parameters (Section 4.2) that yield a minimal trace

size. The compression ratio, defined as the size of the raw load data value trace divided

by the size of the filtered trace, ranges from 5.86:1 in a system with a 4 KB data cache to

56.39:1 in a system with a 64 KB data cache (Section 4.3). Finally, we discuss

implementation issues and estimate complexity of the proposed mechanism (Section 4.4).

The main contributions of this work are as follows.

1. We introduce a hardware-based mechanism for filtering load data values called the

Cache First-access Tracking mechanism.

2. We introduce an effective, low-complexity encoding scheme that adapts to

benchmark behavior and data cache configurations to further minimize the size of

the output trace, enabling cost-effective and unobtrusive load data value tracing in

real-time.

3. We perform a detailed experimental analysis that shows the proposed mechanism to

achieve excellent compression ratios. For example, a system with 32 KB data cache

requires bandwidth of only 0.211 bits per instruction on the trace port, which is a 38-

fold improvement over the uncompressed load data value trace.

2. LOAD DATA VALUE TRACING

A software debugger can replay program execution deterministically offline if the

following four conditions are met: (a) it includes an instruction set simulator (ISS) for the

target processor; (b) it has access to the program binary, (c) it has access to the program

execution trace containing information about exceptions, (d) it has access to the load data

value trace captured on the target processor, and (e) it knows the initial state of general-

and special-purpose registers. Consequently, capturing the load data value trace on the

target processor and streaming it out of the processor chip are critical in program

debugging. However, capturing and streaming out load data values in near real-time may

be cost-prohibitive because they require wide trace ports and large on-chip trace buffers.

To illustrate challenges associated with load data value tracing, we profile seventeen

representative benchmarks from the MiBench suite (Guthaus et al. 2001) compiled for

the ARM instruction set. Table I shows the instruction count (IC); an adjusted instruction

count (IC*); and the dynamic frequency of load instructions (ld-all), classified into byte

loads (ldb), half-word loads (ldh), word loads (ldw), and double-word loads (lddw). The

ARM instruction set (ARM 2005) supports load-multiple and store-multiple instructions.

A load-multiple instruction specifies a number of general-purpose registers that are

loaded from a block of data in memory. However, a single load-multiple instruction in

the processor pipeline appears as multiple single-load instructions (Intel 2004). Thus, we

report the adjusted instruction count (IC*), where each load-multiple and store-multiple

instruction is counted as multiple instructions (equal to the number of load or store

operations). The last column of Table I (LD.DVT) shows the trace port bandwidth

required to stream all load data values out of the processor chip. The trace port bandwidth

of a benchmark is calculated as the size of all loaded values during program execution

divided by the adjusted instruction count; it is expressed in the average number of bits per

instruction executed (bpi).

The load data value trace port bandwidth ranges between 3.2 bpi (adpcm_c) and

13.69 bpi (lame), which is close to a range of 8 to 16 bpi reported for commercial

modules (Orme 2008). The required bandwidth depends on frequency of load instructions

as well as on the size of loaded data. For example, lame has a relatively high frequency of

load instructions, with almost 20 percent of word loads and 11 percent of double-word

loads, which results in the required bandwidth of 13.69 bpi on the trace port. Similar

observations can be made for the rsynth and rijndael_e benchmarks. The tiff2rgba

benchmark has an even larger percentage of load instructions, but about half of them are

byte loads (~19 percent byte loads and ~21 percent word loads), so the required

bandwidth is 8.16 bpi. On the other side, the adpcm_c and stringsearch benchmarks have

a relatively small frequency of byte and word loads, resulting in the bandwidths of 3.2

and 3.8 bpi, respectively. The row marked as Total shows the total load frequencies and

the trace port bandwidth for the entire benchmark suite. The total bandwidth is calculated

as the total number of bits of all loaded values in the benchmark suite divided by the total

adjusted number of instructions.

The total bandwidth of 8.11 bpi indicates a high cost of load data value tracing. For

example, to unobtrusively capture a load data value trace for a program segment of

100,000 instructions, one would need a trace buffer of 800 kilobytes, which is cost-

prohibitive. Unfortunately, load data values exhibit limited redundancy, so a

straightforward approach to compress load data values using general compression

algorithms yields little benefit. For example, the software gzip utility achieves the total

compression ratio of only 3.5:1 for our benchmark suite. In addition, implementing

general-purpose compression algorithms in hardware would be cost-prohibitive and

infeasible for real-time compression. This underscores a need for alternative approaches

to reduce the size of the load data value trace.

Table I. MiBench program statistics related to load data value tracing.

IC IC* Frequency of load instructions LD.DVT

[mil.] [mil.]

ldb
[%]

ldh
[%]

ldw
[%]

lddw
[%]

ld-all
[%] [bpi]

adpcm_c 732.52 732.77 3.64 0.00 9.11 0.00 12.75 3.21

bf_e 544.06 758.63 2.14 0.00 25.21 0.00 27.35 8.24

cjpeg 104.61 107.74 5.57 0.00 21.74 0.00 27.30 7.40

djpeg 23.39 23.92 13.35 0.00 20.02 0.00 33.37 7.48

fft 631.04 726.59 0.83 0.00 18.55 2.54 21.93 7.63

ghostscript 708.10 827.47 0.23 6.07 20.16 0.00 26.46 7.64

gsm_d 1299.27 1329.18 2.19 0.14 14.21 0.02 16.56 4.63

lame 1285.12 1386.35 0.38 2.16 19.66 10.98 33.18 13.69

mad 287.09 298.03 3.23 0.00 25.00 0.00 28.23 8.26

rijndael_e 319.98 352.12 6.40 0.00 33.34 0.00 39.74 11.18

rsynth 824.94 868.76 0.92 0.00 37.98 1.39 40.30 13.12

sha 140.89 142.89 2.27 0.00 14.33 0.00 16.60 4.77

stringsearch 3.68 4.10 3.20 0.00 12.30 0.00 15.50 4.19

tiff2bw 143.26 143.94 19.85 0.01 7.05 0.00 26.91 3.85

tiff2rgba 151.70 152.61 18.72 0.02 20.82 0.00 39.56 8.16

tiffdither 832.95 860.66 3.22 5.90 12.29 0.00 21.41 5.13

tiffmedian 541.26 542.49 12.28 0.16 18.61 0.00 31.05 6.96

Total

3.13 1.44 19.88 1.98 26.43 8.11

3. LOAD DATA VALUE FILTERING USING CACHE FIRST-ACCESS
MECHANISM

Data caches are routinely used in mid- to high-end embedded processors to reduce

latency of memory-referencing instructions by exploiting temporal and spatial locality. A

data cache can also be augmented to help reduce load data value trace size. We do not

need to stream out a data value for each load instruction, if the software debugger

includes an exact model of the data cache
1
 used in the target processor (with the same

organization and update policies). Rather, the debugger can retrieve the load data value

from its software copy of the data cache. Thus, tracing load data values is required only

for certain events in the data cache. For example, if a load causes a miss in the data

cache, we need to stream its data value out to the debugger. In addition, if a load hits in

the data cache, we still may need to stream it out to the debugger, if this is the first load

access to that particular address. Consequently, we need to expand our data cache on the

target processor so that for each data object we can keep track whether it has already been

read (and thus can be inferred by the debugger) or not (it has to be traced out to the

debugger).

We expect this filtering mechanism to significantly reduce the number of load values

that needs to be traced out, thus reducing the required trace port bandwidth. We call this

mechanism Cache First-access Tracking (c-fiat). It is based on a mechanism used in the

BugNet (Narayanasamy et al. 2005) with some modifications to make it suitable for real-

time tracing in embedded systems. The BugNet is designed to log relevant information

about program execution on production runs (released software) and to communicate

these logs back to the developer after system crashes. Its first-access tracking mechanism

is used as an architectural extension to help reduce the amount of information that needs

to be recorded in the log. The BugNet relies on a check-pointing mechanism and its first-

load log requires hundreds of kilobytes of storage. The log is kept in main memory, and

thus the logging itself is an obtrusive process. However, our goal is to examine whether a

similar mechanism can ensure unobtrusive tracing of load data values in real time in

embedded systems, and thus help program debugging.

3.1 Cache First-Access Tracking Mechanism

Fig. 2 shows the system view of the proposed Cache First-access Tracking mechanism.

The target platform executes a program on a processor core. The processor has a data

cache that is extended so that each cache block includes corresponding first-access flags.

For the moment, we assume that a first-access flag is assigned to the smallest addressable

unit, which is typically a byte. Consequently, a 32-byte cache block requires 32 single-bit

first-access flags that are attached to the cache block. However, the size of the object

1 Without lack of generality we assume that our system include only a first level data cache. The mechanism

can be easily extended to systems with a multi-level cache hierarchy.

protected by a first-access flag is a design parameter, and a flag can protect a larger

object, such as a half-word or a word. A trace module, coupled with the processor and its

data cache, monitors cache events caused by load and store instructions (misses and hits)

and the state of corresponding first-access tracking flags.

Fig. 3 describes the trace module operation for the Cache First-access Tracking

mechanism. For each load instruction, the module checks whether it hits or misses in the

data cache. If we have a load cache hit and the corresponding first-access flags are set
2
,

we say we have an FA hit event. In this case we do not need to stream out the load value

because the software debugger can find it in its cache model. To synchronize the trace

module and the software debugger, the trace module can report this event by sending a

single-bit trace message (Uzelac & Milenković 2010). A more efficient alternative is to

keep track of the number of consecutive FA hits using a local register called fahCnt (first-

access hit counter). In case of an FA hit event we just increment fahCnt and no trace

message is streamed out (line 3 in Fig. 3). Otherwise, if the corresponding first-access

flags are cleared (or at least one of them is cleared), the requested load data value is

traced out together with the current value of the counter fahCnt to indicate an FA miss

event (lines 5-7 in Fig. 3). If we have a cache miss caused by a load instruction, the cache

block is fetched from memory, and thus all first-access flags associated with that block

need to be cleared (line 10). The load value is traced out and the FA flags are set

accordingly (line 11).

2 In case of a load that reads a 32-bit word we need to check all four first-access flags (for each byte in the

word).

Fig. 2. Cache First-access Tracking mechanism: system view.

Load Value

Cache
Hit

HW Trace

Module

CPU

Set/Reset

FA flags

R/W

DA

DV

Load Value

from Cache

ISS

Software

Debugger

L1D

Cache

Program

Binary

Cache

Block

FA

Flags

 FA
Flags Trace B

u
ffer

Trace P
o

rt

Target System

Trace B
u

ffer

I/O
 In

terface

Debug Host

Cache

Block

FA

Flags

SW L1D Cache

DA R/W DV

fahCnt

fahCnt

The cache first-access flags are also updated on store instructions and on signals

triggered outside of the processor core, e.g., cache block invalidations caused by the

cache controller (Fig. 3). Each store will set the corresponding first-access flags because

its value in the cache becomes known (and can be inferred by the debugger) (line 13).

Note: here we assume the data cache has write-allocate, write-back policies. External

signals can invalidate a cache block at any point of time. In that case, the trace module

needs to clear all first-access flags that belong to that line (line 14). In addition, if an

external hardware module directly writes into the data cache (e.g., cache injection

mechanism (Milenkovic 2000)), the corresponding first-access flags need to be cleared

too. These actions do not need to be synchronized with the software debugger – the

debugger always checks the trace input first during the program replay. Finally, in case of

exceptions or interrupts, load data value trace alone is insufficient to replay the program

offline. We assume that an exception control-flow (exception entry and exit) trace

augments the load trace value. In our prior work we showed that such a trace requires a

minimal bandwidth on the trace port (Uzelac et al. 2010), and in this paper we do not

further consider exception trace messages.

// For each retired load that reads n bytes

1. if (CacheHit) {

2. if (corresponding n FA flags are set)

3. fahCnt++;

4. else {

5. Emit trace record into Trace Buffer (fahCnt, loadValue);

6. Set corresponding n FA flags;

7. fahCnt = 0;

8. }

9. } else { // cache miss event

10. Clear FA bits for newly fetched cache block;

11. Perform steps 5-7;

12. }

// For each retired store that writes n bytes

13. Set corresponding n FA bits;

// For external invalidation/update request

14. Clear FA bits for entire cache block;

Fig. 3. Cache first access tracking: trace module operation.

The software debugger running on the host machine reads and decodes the trace

messages and replays the program. The debugger relies on its ISS with the software

model of the data cache, a software copy of the first-access hit counter (fahCnt), the

program binary, and the load data value trace received from the target platform for

program replay (Fig. 2). Its steady-state operation is described in Fig. 4. For each load

instruction, the debugger decrements a software copy of the fahCnt counter (line 2). If the

fahCnt value is positive, that means that this as an FA hit event and that the load value

should be retrieved from the local copy of the data cache (lines 3-7). Otherwise, this is an

FA miss event. The load data value is retrieved from the trace message, and the software

copy of the data cache and FA flags are updated accordingly (lines 10-13). For a store

instruction, the debugger updates the software data cache and sets the FA flags

accordingly (lines 15-16).

3.2 First-Access Flag Granularity

By profiling frequencies of load instructions with respect to their type (byte, half-word,

word, and double word), we can see that a relatively small percentage of all instructions

are byte and half-word loads: about 3.1 percent of instructions are byte loads and about

1.4 percent are half-word loads (see Table I). However, several benchmarks have a

significant portion of such instructions (e.g. tiff2bw, tiff2rgba, and tiffmedian). One

important question is what should be the size of a data object protected by a single first-

access bit.

So far we have assumed that a single first-access bit guards the smallest addressable

unit, which is a byte. In case of a multi-byte memory referencing instruction, multiple

// For each load that reads n bytes

1. fahCnt --;

2. if (fahCnt > 0) {

3. Perform lookup in the SW data cache;

4. if (corresponding n FA bits in SW cache are set)

5. Retrieve data value from SW cache;

6. else

7. ERROR in Tracing; // illegal event

8. }

9. else { // FA miss event

10. Read n bytes from trace record;

11. Update SW cache;

12. Set corresponding n FA flags in SW cache;

13. Get the next trace record (fahCnt, LoadValue);

14. }

// For each store that writes N bytes

15. Update SW cache;
16. Set corresponding n SW cache FA bits;

Fig. 4. Execution replay in the software debugger.

first-access bits are set or reset accordingly. If we further assume a data cache with 32-

byte cache blocks, the complexity overhead caused by first-access bits is 32 bits or 4

bytes per one cache block, which is 1/8
th

 of the data cache capacity. Thus, in a system

with 64 kilobyte data cache, this overhead reaches 8 kilobytes of storage devoted to first-

access flags. Although this extra complexity may well be justified by overall reduction in

the trace buffer sizes, we may consider an alternative approach. For example, a single

first-access bit can guard an entire 32-bit word, thus reducing the storage overhead to

1/32
th

 of the data cache capacity. Not only this approach reduces the complexity overhead

of the proposed mechanism, but also it may lower the number of trace messages that

needs to be streamed out of the chip.

To illustrate trade-offs in selecting an optimal granularity of first-access flags, let us

consider an example program that sequentially reads characters in a string aligned to a

cache block boundary. The first load results in a data cache miss; the requested cache

block is read from memory, and all first-access flags are cleared. When first-access flags

protect each byte, we will see 32 first-access miss events, and consequently 32 trace

messages will be streamed out. Each trace message carries fahCnt value and an 8-bit load

value. Alternatively, if first-access flags protect each word, we will have only 8 miss

first-access miss events, and consequently only 8 trace messages will be streamed out.

Each trace message carries a fahCnt value and a 32-bit load data value. It should be noted

that all load byte and load half-word instructions that miss on the first-access flags, will

trigger streaming out of the entire 32-bit word that they belong to, rather than 8-bit bytes

or 16-bit half-words. The only drawback of using first-access flags to protect words

rather than bytes is possible in programs where load byte instructions dominate and a

memory referencing pattern is such that not all bytes within a word are used. However,

we have found no such access patterns in our benchmark suite and observed only positive

effects of using word-size granularity of first-access flags. Thus, in the rest of the paper

we assume that a first-access flag is assigned to a 32-bit word in the data cache.

3.3 Encoding Trace Messages

Trace messages should be encoded in such a way that minimizes the trace port bandwidth

requirements and enables a simple and efficient implementation. The trace module sends

trace messages to the software debugger on first-access miss events. Each trace message

consists of the first-access hit counter, fahCnt, and the actual load value. A

straightforward approach to encode trace messages is to use a fixed-length field for the

fahCnt counter value. The length of the field that carries information about the load value

depends on the type of load instruction (ldb, ldh, ldw, lddw) and the granularity of the

first-access flag. Whereas the size of the load value field is defined as

max(sizeof(loadValue), FA granularity), the size of the fahCnt field is more challenging

to determine.

The fahCnt carries the information about the number of consecutive first-access hits

and it is a function of the load data cache hit rate and the first-access hit rate. In turn, the

load cache hit rate is a function of the data cache size and organization, and spatial and

temporal locality for a given benchmark program. The first-access hit rate depends on

load data cache hit rate, load data type, load access patterns, and the granularity of first-

access bits. For example, larger data caches will result in higher load data cache hit rates,

and consequently in higher first-access hit rates. Next, higher first-access hit rates will

result in longer runs of consecutive hits, requiring more bits to encode the value of the

fahCnt counter in a trace message. This value is expected to vary across different data

cache configurations and benchmarks, but also within a benchmark, as it moves through

different execution phases. For example, first-access miss events are more likely to occur

in program warm-up phases and the values found in the fahCnt counter are likely to be

rather small.

To illustrate challenges in encoding of the fahCnt trace message field, we profile the

values found in this field. We assume a 16 kilobyte 4-way set associative data cache with

32-byte cache blocks. First-access bits are assigned to each word in the data cache. Fig. 5

shows the cumulative distribution function (CDF) for the minimum length of the fahCnt

Fig. 5. Cumulative distribution function for the minimum fahCnt length.

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

len(fahCnt)

CDF (Cache Size = 16KB)

tiff2rgba

lame

fft

gsm_d

Total

field in trace messages, len(fahCnt), for several characteristic benchmark programs. The

gsm_d and fft benchmarks exhibit almost perfect load data cache hit and first-access hit

rates. On the other side, the lame benchmark exhibits relatively high load data cache hit

rate and somewhat smaller first-access hit rate, whereas tiff2rgba exhibits a medium high

load data cache hit rate, but rather low first-access hit rate. The line marked as Total

shows the cumulative distribution function for the minimum length of the fahCnt field

when all benchmarks in the suite (Table I) are considered together.

A fixed 8-bit field can encode the fahCnt values from 0 to 255. However, the total

CDF shows that over 60 percent of all fahCnt values in trace record messages require no

more than 3 bits, resulting in a significant waste of trace port bandwidth - at least 5 out of

8 bits will be unused in 60 percent of trace messages. On the other side, a significant

number of trace messages require more than 8 bits for the fahCnt value in the fft and

gsm_d benchmarks. For example, more than 50 percent of all trace messages require

more than 8 bits for the gsm_d benchmark. The challenge is to devise an encoding

scheme that will work well across different benchmarks and data cache configurations

and yet minimize the number of bits streamed out through the trace port. To meet this

challenge, we opt for a variable encoding scheme and an empirical approach to determine

good encoding parameters.

In our encoding scheme, all trace messages start with the field that carries the fahCnt

value. The length of this field is variable: after eliminating the leading zero bits, the

fahCnt counter bits are divided into a certain number of chunks (chunks do not

necessarily need to be of equal size) (Fig. 6). Each chunk is followed by a so-called

connect bit (C) that indicates whether it is a terminating chunk for the fahCnt field (C=0),

or it is followed by more chunks carrying relevant bits for the fahCnt value (C=1). For

example, a trace message that includes a 2-bit chunk ‘11’ followed by a connect bit with

value ‘0’ indicates a first-access miss event that occurred after 3 consecutive first-access

hits. If the first chunk ends with a connect bit C=1, more relevant bits follow in the

subsequent chunk. Let us assume that the following chunk is also 2-bit long and its value

Fig. 6. Encoding fahCnt values in trace records.

b0 … bi0-1 1 …bi0 … bi0+i1-1 1 bi(k-1)…bi(k-1)+ik-1 0

0 1 k

i0 bits i1 bits ik bits

is ‘10’ and C=0. This trace record thus carries information that the fahCnt is ’11 _10’ or

7 in the decimal number system.

The length of individual chunks (i0, i1, … ik) is a design parameter that will be

determined in an experimental analysis. In determining the length of individual chunks,

we need to balance the overhead caused by the connect bits (shorter chunks will result in

a relative increase in the overall number of the connect bits) and the number of wasted

bits in individual chunks (longer chunks result in lower overhead, but possibly have more

unused bits).

4. EXPERIMENTAL EVALUATION

The goal of our experimental evaluation is to thoroughly explore the effectiveness of the

proposed first-access tracking mechanism in filtering load data value traces. We consider

a range of data cache configurations, from 4 to 64 kilobyte data caches. As a measure of

effectiveness we use compression ratio, which is calculated as the size of the unfiltered

load value trace divided by the size of the load data value trace after filtering. To

illustrate suitability of the proposed method for unobtrusive tracing in real-time, we also

report the trace port bandwidth calculated in bits per instruction retired. The bandwidth

depends on several parameters: data cache hit rate, first-access hit rate, load data size

(e.g., byte, half-word, word, double word), and the frequency of load instructions. To

illustrate the impact of these parameters on the overall compression ratio, we will report

both load data cache hit rate and first-access hit rate (Section 4.1). In addition to these

parameters, encoding of the fahCnt field in trace messages also impacts the overall

performance. Consequently, we first discuss results of experimental evaluation aimed at

finding good encoding parameters (Section 4.2). Next, for the chosen set of encoding

parameters we analyze compression ratio and trace port bandwidth (Section 4.3). Finally,

we perform a complexity estimation of the proposed mechanism and discuss several

implementation issues (Section 4.4).

The data cache subsystem is modeled after the XScale processor. Apart from the data

cache size, other data cache parameters are selected to yield the maximum performance at

minimal cost. Thus, all data caches are 4-way set-associative structures with 32 byte

cache blocks, use write-allocate and write-back policies, and a pseudo least recently used

replacement policy that is based on the most-recently used bit (Al-Zoubi et al. 2004). As

a workload we use seventeen benchmarks from the MiBench suite shown in Table I. Our

analysis is performed using a functional SimpleScalar ARM simulator (Austin et al.

2002). In calculating hit rates, load-multiple and store-multiple instructions from the

ARM ISA are considered as multiple load and store instructions, corresponding to IC* in

the Table I.

4.1 Design Space Exploration

Table II shows load data cache hit rate (LCHR) and first-access hit rate (FAHR) for

all benchmarks, while varying the data cache size from 4 to 64 kilobytes. The load data

cache hit rate is determined as the number of load requests that hit in the data cache

divided by the total number of load requests. Note: a load instruction that reads a double

word (64-bit) from memory may span two cache blocks, resulting in four possible

hit/miss scenarios. To capture this behavior faithfully, we count such loads as two

requests. The first-access hit rate is determined as the number of loads that find all

corresponding first-access flags set divided by the total number of load requests. The

effectiveness of the proposed mechanism is directly influenced by the first-access hit rate

- higher first-access hit rates mean fewer trace messages that need to be streamed out to

the software debugger. The last row in the table marked as Total shows the hit rates for

the entire benchmark suite (hit rates are calculated as the total number of hits in all

benchmarks divided by the total number of load requests in all benchmarks).

The total load data cache hit rate is relatively high regardless of the data cache size. It

ranges from 96.2 percent for a system with a 4 kilobyte data cache to 99.8 percent for a

system with 64 kilobyte data cache. However, considering individual benchmarks, it

ranges from 85.2 percent for rijndael in a system with 4 kilobyte data cache to 100

percent for a number of benchmarks (e.g., adpcm_e, bf_e, gsm_d) in a system with larger

caches. The total first-access hit rate is rather high too, even with very small caches. It

ranges from 87.1 percent for a system with 4 kilobyte data cache to 98.6 percent for a

system with 64 kilobyte data cache. These results confirm our expectations that the

proposed mechanism can indeed dramatically lower the number of load values that needs

to be streamed out of the target processor. Whereas the total first-access hit rate is

relatively high regardless of the data cache size, several benchmarks exhibit rather small

first-access hit rates, in spite of having relatively large load data cache hit rates. For

example, the first-access hit rate is only 36.2 percent for tiff2rgba in a system with a 4

kilobyte data cache (load data cache hit rate is 91.9 percent), and reaches 68.5 percent for

a system with a 64 kilobyte data cache (load hit rate is 96.1 percent). Several benchmarks

exhibit low first-access hit rates in systems with a small data cache, but benefit

significantly from larger data caches (e.g., tiff2bw and rijndael). These diverse behaviors

are caused by unique memory access patterns and the amount of spatial and temporal

locality found in individual benchmarks.

One interesting question is how changes in data cache parameters other than the data

cache size may impact our findings. For example, changes in cache replacement policy

impact load hit rates and thus first-access hit rates. However, we found that these changes

are not significant. Using write-no-allocate policy may also have small impact on first-

access hit rate. Finally, increasing data cache block size will result in higher load data

cache hit rates, but somewhat smaller first-access hit rates. We repeated our experiments

for 64-byte data cache blocks, but found that the total first-access hit rate remained rather

high, ranging from 85.8 percent in a system with a 4 kilobyte data cache to 98.5 percent

in a system with 64 kilobyte data cache.

4.2 Encoding Parameters Selection

To select good chunk sizes for the proposed variable encoding, we profile the behavior of

MiBench benchmarks, by analyzing the cumulative distribution function of the minimum

length of the fahCnt field in the trace messages, while varying the data cache size (Fig. 5

Table II. Load Hit Rate (LCHR) and First-Access Hit Rate (FAHR).

 LCHR FAHR

 4 KB 8 KB 16 KB 32 KB 64 KB 4 KB 8 KB 16 KB 32 KB 64 KB

adpcm_e 0.999 1.000 1.000 1.000 1.000 0.995 1.000 1.000 1.000 1.000

bf_e 0.983 0.999 1.000 1.000 1.000 0.946 0.995 1.000 1.000 1.000

cjpeg 0.930 0.986 0.993 0.994 0.994 0.872 0.933 0.951 0.959 0.962

djpeg 0.972 0.990 0.996 0.999 1.000 0.899 0.950 0.977 0.995 1.000

fft 0.997 0.999 0.999 0.999 0.999 0.991 0.993 0.993 0.993 0.993

ghostscript 0.997 0.998 0.999 0.999 0.999 0.991 0.994 0.995 0.996 0.997

gsm_d 0.999 1.000 1.000 1.000 1.000 0.998 1.000 1.000 1.000 1.000

lame 0.945 0.976 0.990 0.994 0.996 0.757 0.898 0.954 0.973 0.981

mad 0.975 0.994 0.997 1.000 1.000 0.808 0.954 0.983 0.998 0.999

rijndael 0.852 0.983 0.999 1.000 1.000 0.638 0.940 0.996 1.000 1.000

rsynth 0.995 0.998 0.999 0.999 0.999 0.981 0.992 0.995 0.995 0.996

sha 0.996 0.999 1.000 1.000 1.000 0.966 0.992 1.000 1.000 1.000

stringsearch 0.993 0.996 0.998 0.999 0.999 0.965 0.973 0.988 0.993 0.994

tiff2bw 0.943 0.946 0.968 0.999 1.000 0.560 0.585 0.761 0.997 1.000

tiff2rgba 0.919 0.919 0.926 0.951 0.961 0.362 0.362 0.417 0.615 0.685

tiffdither 0.988 0.991 0.995 1.000 1.000 0.916 0.932 0.965 0.999 1.000

tiffmedian 0.942 0.946 0.956 0.982 0.996 0.765 0.776 0.846 0.943 0.986

Total 0.969 0.986 0.992 0.996 0.998 0.871 0.929 0.957 0.979 0.986

shows the CDF for a system with 16 kilobyte data cache). Each benchmark has its own

set of parameters that yield minimal size of the output trace for a given data cache size.

However, here we seek for a set of parameters that results in a minimal size of the output

trace when all benchmarks are considered together. It should be noted that the proposed

encoding makes benchmark-wise customization of chunk sizes practical – it can be done

before tracing, by initializing trace module control registers based on typical program

profiles. Accordingly, the software debugger should decode trace messages using the

same set of parameters.

In search of good values for chunk sizes i0, i1, i2, … ik (Fig. 6), we limit the design

space by requiring that i1=i2=…= ik. We vary the parameters i0, i1  [1, 6] and search

for a combination of parameters that yields the minimum size of the output trace. Fig. 7

shows normalized compression ratio for the entire benchmark suite as a function of

encoding parameters; the pair of parameters (i0, i1) = (1, 1) is used as the base in

normalization. We consider a subset of nine best performing encoding pairs, from (i0, i1)

= (1, 1) to (i0, i1) = (3,3) for all data cache sizes. Somewhat surprisingly we find that the

(i0, i1) = (1, 1) pair yields the smallest output trace in systems with relatively small data

caches (4 - 8 kilobytes). In systems with larger data caches (16 – 64 kilobytes), a pair (i0,

i1) = (1, 2) yields the minimum output trace. These findings can be explained as follows.

The total size of the filtered load data value trace for the entire benchmark suite is

dominated by benchmarks that have a large number of instructions, a high frequency of

load instructions, and relatively small first-access hit rates (e.g., lame, tiff2rgba,

tiffmedian). In these benchmarks, first-access miss events are more frequent and

clustered, thus favoring shorter chunk sizes. If we consider individual benchmarks, we

find that optimal chunk sizes are, for example, (i0, i1) = (2, 3) for gsm_d and tiffdither for

all data cache sizes. In general, chunk sizes yielding minimal output traces for individual

benchmarks depend on the size of data cache – smaller caches favor shorter chunks and

larger caches favor longer chunks.

An interesting question is sensitivity of the output trace size to the selection of chunk

size parameters. The results in Fig. 7 show that encoding parameters (1,1), (1,2), (1,3),

(2,1), (2,2), and (2,3) produce output traces of sizes within 2-3 percent of each other. This

result suggests that variable encoding remains stable for a subset of good encoding

parameters; however other tested pairs may result in larger differences. Again, it should

be noted that here we discuss the compression ratio for the entire benchmark suite.

Individual benchmarks may show larger sensitivity to changes in encoding parameters.

Overall, a fraction of the total number of bits used to encode fahCnt values relative to the

total trace size (fahCnt values and load data values) does not vary significantly with the

data cache sizes; it ranges between 8.45 percent to 10.15 percent. This result confirms a

significant stability of the proposed encoding.

Finally, an important question relates to the overall effectiveness of the proposed

variable encoding. To shed more light on this question, we compare the size of the output

trace with variable encoding for the best set of parameters with the size of the output

trace where the trace module sends a single-bit header for each load instruction to

indicate whether it is a first-access hit or miss event (no fahCnt counter is used). The

results show that variable encoding provides higher compression for all data cache sizes –

it outperforms the alternative encoding from 1.11 times in a system with a 4 kilobyte data

cache to 2.57 times in a system with 64 kilobyte data cache.

4.3 Compression Ratio / Trace Port Bandwidth Analysis

Table III shows a compression ratio achieved by the proposed mechanism (c-fiat) as a

function of the data cache size. It also shows the trace port bandwidth expressed in bits

per instruction retired; it is calculated as the size of the filtered output trace divided by the

number of retired instructions in a benchmark. To illustrate the effectiveness of the

proposed filtering mechanism, we compare it with the software gzip utility when using it

Fig. 7. Normalized compression ratio as a function of (i0,i1) encoding parameters.

0.950

0.960

0.970

0.980

0.990

1.000

1.010

4 KB 8 KB 16 KB 32 KB 64 KB

(i0, i1)

Normalized Compression Ratio

(1,1)

(1,2)

(1,3)

(2,1)

(2,2)

(2,3)

(3,1)

(3,2)

(3,3)

to compress the raw load data value trace. We use the gzip utility as a yardstick because it

is the most-frequently used general-purpose compressor. In addition, a hardware

implementation of LZ77 has been proposed for program trace compression, though at

hefty cost in additional complexity (Kao et al. 2007).

The proposed mechanism proves highly effective in reducing the load data value trace

size. The total compression ratio for the entire benchmark suite ranges from 5.86:1 in a

system with a very small 4 kilobyte data cache, to 56.39:1 for a system with a large 64

kilobyte data cache. The fast gzip (gzip -1) software utility achieves compression ratio of

3.41:1. Please note that a hardware implementation of the software gzip utility would be

cost prohibitive in both required additional on-chip area and the compression latency. In a

system with a 32 kilobyte data cache, the proposed mechanism outperforms gzip utility

for over 11 times, which further underscores its strength.

Analyzing individual benchmarks, we can observe that almost all benchmarks benefit

from the proposed filtering mechanism, even with very small data cache sizes. Notable

Table III. Compression Ratio and Trace Port Bandwidth: A Comparative

Analysis.

 Compression Ratio Trace Port Bandwidth (bits/ins)

 4KB 8KB 16KB 32KB 64KB 4 KB 8 KB 16 KB 32 KB 64 KB

 c-fiat c-fiat c-fiat c-fiat c-fiat gzip-1 c-fiat c-fiat c-fiat c-fiat c-fiat gzip-1

adpcm_e 132.4 65742.6 66346.1 66346.1 66346.1 4.1 0.02 0.00 0.00 0.00 0.00 0.78

bf_e 15.2 133.9 5848.7 67479.6 67479.6 4.1 0.54 0.06 0.00 0.00 0.00 1.99

cjpeg 5.8 10.6 14.2 16.9 18.2 6.3 1.27 0.70 0.52 0.44 0.41 1.18

djpeg 6.0 11.7 24.9 111.9 1293.8 5.6 1.24 0.64 0.30 0.07 0.01 1.34

fft 93.9 133.6 137.6 138.8 139.3 4.7 0.08 0.06 0.06 0.05 0.05 1.61

ghostscript 84.7 114.4 152.5 181.0 206.9 12.3 0.09 0.07 0.05 0.04 0.04 0.62

gsm_d 292.9 2047.7 30489.7 113862.6 113862.6 3.4 0.02 0.00 0.00 0.00 0.00 1.34

lame 3.5 8.2 17.8 31.1 45.1 2.6 3.96 1.66 0.77 0.44 0.30 5.66

mad 4.4 17.7 47.2 420.6 937.2 2.3 1.90 0.47 0.18 0.02 0.01 3.58

rijndael 2.2 12.1 174.4 22100.5 30329.3 2.4 5.04 0.92 0.06 0.00 0.00 4.73

rsynth 42.4 94.8 179.8 191.8 203.4 3.4 0.31 0.14 0.07 0.07 0.06 3.90

sha 23.9 104.3 8228.0 8269.3 8269.3 2.5 0.20 0.05 0.00 0.00 0.00 1.94

stringsearch 21.1 28.2 61.9 108.5 120.4 6.0 0.20 0.15 0.07 0.04 0.03 0.70

tiff2bw 0.9 1.0 1.7 149.3 2815.0 3.3 4.12 3.90 2.23 0.03 0.00 1.17

tiff2rgba 0.9 0.9 1.0 1.6 1.9 3.3 8.68 8.68 7.92 5.18 4.24 2.48

tiffdither 7.5 9.2 18.0 1020.8 17149.7 4.0 0.69 0.56 0.28 0.01 0.00 1.29

tiffmedian 2.7 2.8 4.0 10.6 42.6 3.9 2.62 2.50 1.72 0.66 0.16 1.78

Total 5.9 10.9 18.5 38.4 56.4 3.4 1.38 0.74 0.44 0.21 0.14 2.40

exceptions are two benchmarks, tiff2rgba and tiff2bw, which perform poorly in systems

with very small data caches (4 KB and 8 KB). The additional overhead caused by

message encoding results in having the output trace slightly larger than the original load

data value trace (compression ratio is below 0.93:1 and 0.94:1). This is not an unexpected

result because these two benchmarks demonstrate low first-access hit rates in systems

with small data caches. However, even these two benchmarks see benefits of the

proposed mechanism for larger data cache sizes. As expected, the benchmarks with high

load data cache hit and first-access hit rates experience very high compression ratios

(e.g., gsm_d, adpcm_e). The compression ratio improves significantly in systems with

larger data cache sizes.

The total trace port bandwidth (row Total in Table III, Fig. 8) ranges from 1.38 bpi in

a system with a 4 kilobyte data cache to 0.144 bpi in a system with a 64 kilobyte data

cache. For all benchmarks except three (tiff2rgba, tiff2bw, and tiffmedian), the required

trace port bandwidth is less than 1 bpi for a system with 16 kilobyte data cache. For a

system with a 32 kilobyte data cache, all benchmarks except one (tiff2rgba) require less

than 1 bpi on the trace port, promising real-time, continual, and unobtrusive tracing of

load data values using a very narrow trace port (e.g., JTAG). Although the proposed

Fig. 8. Trace port bandwidth evaluation.

0

2

4

6

8

10

12

14

c-fiat c-fiat c-fiat c-fiat c-fiat gzip-1 LD.DVT

4 KB 8 KB 16 KB 32 KB 64 KB

[bpi]

Trace Port Bandwidth

mechanism reduces the size of the output trace of the tiff2rgba benchmark for

configurations with larger caches, the compression ratio remains relatively small (1.6

times in a system with 32 kilobyte data cache). This unfortunately translates into trace

port bandwidth that is well above 1 bpi.

4.4 Hardware Complexity and Implementation Issues

The proposed mechanism requires modest additional hardware resources. The major

complexity overhead comes from the storage needed for first-access flags (1/32
nd

 of the

data cache capacity). Thus, the overhead depends of the data cache size, and ranges from

128 bytes of extra storage in a system with a 4 kilobyte data cache to 2 kilobytes in a

system with a 64 kilobyte data cache. Negligible overhead comes from logic that controls

the first-access flags (set or reset) and trace encoding.

It should be noted that in this work we assume that first-access flags are attached to cache

blocks. However, if the design of the data cache cannot be changed, an alternative design

can be used where the first-access flags are physically placed inside the trace module

instead being attached to the data cache. A well-defined interface between the data cache

and the trace module would ensure exchange of control signals. The former approach is

less complex because we do not need a separate address decoding logic for the first-

access flags, but requires changes in the data cache design; the later may better fit current

design practices where the trace module includes all debug infrastructure.

To quantitatively estimate complexity overhead caused by the first-access flags we

use Cacti tools (version 5.3) that report the area occupied by the tag and the data memory

portions of the cache structures (Thoziyoor et al. 2008). Table IV shows on-chip area for

the cache configurations considered in our experimental evaluation, assuming 45 nm

technology. We show the tag area, the data memory area, and the total cache area for the

Table IV. Complexity Estimates in On-Chip Area.

Size

[KB]

BASE CACHE AREA [m2] CACHE + FA flags

AREA [m2]

Over-

head

 External

FA flags

Over-

head

 Tag Data Total Data +

FA

Total Norm.

to Base

 Tag +

FA flags

Norm.

to Base

4 2834 30758 33592 31714 34547 1.028 3795 1.113

8 4864 59486 64350 61227 66090 1.027 6723 1.104

16 8318 86367 94685 88842 97159 1.026 11017 1.116

32 14743 126325 141068 130273 145016 1.028 18690 1.132

64 28926 247338 276264 254186 283112 1.025 36655 1.133

base cache configurations (columns 2-4). The next two columns show the data portion

and the total area of the cache augmented with the first-access flags (columns 5-6). The

results confirm our qualitative analysis and show that storage overhead for the first-

access flags ranges between 2.5 and 2.8 percents (column 7). In addition, we consider a

configuration when the first-access flags are physically placed in the trace module. In

addition to the first-access flags this structure requires replication of the cache tags. The

results show that in this case on-chip area overhead ranges between 10.4 and 13.3

percent, confirming feasibility of this approach as well. In addition to on-chip area

analysis, the Cacti tool reports estimates for access times to the cache structures. We

found that additional latency when flags are added to the cache never exceeds 0.2% of the

base cache configuration time. The trace buffer in the proposed trace module (Fig. 2)

serves only to temporarily store trace records before they are streamed out through the

trace port. The exact buffer size depends on the processor model (IPC), the number of

data pins on the trace port, trace port speed, and benchmark characteristics (e.g., the

frequency and density of first-access miss events). A detailed cycle-accurate simulation

of the processor and trace module would be needed to determine the worst-case scenario

for the trace buffer size. However, an ad-hoc analysis based on our functional simulation

model indicates that a 64-byte buffer would be more than sufficient to amortize all

possible bursts of first-access misses, enabling unobtrusive tracing in real-time (assuming

a processor executing on average one instruction per processor clock cycle and a trace

port working at the processor clock speed). This buffer would be several orders of

magnitude smaller than buffers used to capture uncompressed load data value trace for a

limited program segment.

5. CONCLUSIONS

Modern embedded systems rely on on-chip resources to enable and expedite software

debugging and testing. Load data traces collected on the target system are often required

during debugging for deterministic program replay. However, capturing and tracing out

full load data value traces at program speeds require large on-chip trace buffers and wide

trace ports.

In this paper we introduce and analyze a filtering mechanism called Cache First-

access Tracking that significantly reduces the size of load data value traces at modest cost

in additional hardware complexity and corresponding changes in the software debugger.

When combined with a variable encoding scheme, the proposed method reduces the size

of the load value trace: from 5.86 times for a system with a 4 KB data cache to 56.39

times for a system with 64 kilobyte data cache. These results indicate that trace modules

implementing the proposed filtering technique would make possible continual real-time

and unobtrusive program tracing. Even better reduction ratios are desired and possible

when these filtering mechanisms are combined with cost-effective hardware trace

compressors; however, examining these approaches is left to future research.

ACKNOWLEDGMENTS

This work was supported in part by a National Science Foundation grant CNS-0855237.

REFERENCES

Al-Zoubi, H., Milenkovic, A. & Milenkovic, M., 2004. Performance evaluation of cache

replacement policies for the SPEC CPU2000 benchmark suite. In Proceedings

of the 42nd annual Southeast regional conference. ACM-SE 42. New York, NY,

USA: ACM, pp. 267–272. Available at:

http://doi.acm.org/10.1145/986537.986601.

ARM, 2005. Architecture and Implementation of the ARM® Cortex
TM

-A8

Microprocessor. Available at:

http://www.arm.com/pdfs/TigerWhitepaperFinal.pdf.

ARM, 2004. CoreSight On-chip Debug and Trace Technology. Available at:

http://www.arm.com/products/solutions/CoreSight.html.

ARM, 2007. Embedded Trace Macrocell Architecture Specification. Available at:

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0014o/IHI0014O_etm_v3_

4_architecture_spec.pdf.

Austin, T., Larson, E. & Ernst, Dan, 2002. SimpleScalar: An Infrastructure for Computer

System Modeling. IEEE Computer, 35, pp.59-67.

Daoud, E.A. & Nicolici, N., 2009. Real-Time Lossless Compression for Silicon Debug.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, 28, pp.1387-1400.

Guthaus, M.R. et al., 2001. MiBench: A free, commercially representative embedded

benchmark suite. In Proceedings of the 4th Annual Workshop on Workload

Characterization. pp. 3-14.

IEEE, 2001. IEEE Std 1149.1-1990 IEEE Standard Test Access Port and Boundary-Scan

Architecture -Description. Available at:

http://standards.ieee.org/reading/ieee/std_public/description/testtech/1149.1-

1990_desc.html.

IEEE-ISTO, 2003. The Nexus 5001 Forum Standard for a Global Embedded Processor

Debug Interface. Available at: http://www.nexus5001.org/standard.

Intel, 2004. Intel XScale® Core Developer’s Manual. Available at:

http://download.intel.com/design/intelxscale/27347302.pdf.

Kao, C.-F., Huang, S.-M. & Huang, I.-J., 2007. A Hardware Approach to Real-Time

Program Trace Compression for Embedded Processors. IEEE Transactions on

Circuits and Systems, 54, pp.530-543.

McDonald-Maier, K.D. & Hopkins, A.B.T., 2004. An awakening thought: Don’t let the

bug bite while you are embedded. Embedded Systems Engineering, 12, pp.32-

33.

Milenkovic, A., 2000. Achieving high performance in bus-based shared-memory

multiprocessors. IEEE Concurrency, 8(3), pp.36-44.

Milenkovic, A. et al., 2011. Caches and Predictors for Real-Time, Unobtrusive, and Cost-

Effective Program Tracing in Embedded Systems. IEEE Transactions on

Computers, 60, pp.992-1005.

MIPS, 2009. MIPS PDtrace Specification. Available at:

http://www.mips.com/products/product-materials/processor/mips-architecture/.

Narayanasamy, S., Pokam, G. & Calder, B., 2005. BugNet: Continuously Recording

Program Execution for Deterministic Replay Debugging. SIGARCH Comput.

Archit. News, 33, pp.284-295.

Orme, W., 2008. Debug and Trace for Multicore SoCs. Available at:

http://www.arm.com/files/pdf/CoresightWhitepaper.pdf.

Tassey, G., 2002. The Economic Impacts of Inadequate Infrastructure for Software

Testing. Available at: http://www.rti.org/pubs/software_testing.pdf.

Tensilica, 2009. Non-intrusive Real-Time Trace Debug. Available at:

http://www.tensilica.com/products/hw-sw-dev-tools/for-software-

developers/real-time-trace-3.htm.

Thoziyoor, S. et al., 2008. CACTI 5.1, Available at:

http://www.hpl.hp.com/techreports/2008/HPL-2008-20.pdf?q=cacti.

Uzelac, V. & Milenkovic, A., 2009. A Real-Time Program Trace Compressor Utilizing

Double Move-to-Front Method. In Proceedings of the 46th Annual Design

Automation Conference. San Francisco, CA, pp. 738-743.

Uzelac, V. & Milenković, A., 2010. Hardware-based data value and address trace

filtering techniques. In Proceedings of the 2010 international conference on

Compilers, architectures and synthesis for embedded systems. New York, NY,

USA: ACM, pp. 117–126. Available at:

http://doi.acm.org/10.1145/1878921.1878940.

Uzelac, V. et al., 2010. Real-time Unobtrusive Program Execution Trace Compression

Using Branch Predictor Events. In Proceedings of the 2010 International

Conference on Compilers, Architecture, and Synthesis for Embedded Systems,

CASES. Scottsdale, AZ: ACM Press, pp. 97-106. Available at:

http://portal.acm.org/citation.cfm?doid=1878921.1878938 [Accessed October

16, 2011].

