Homework 4 (Total 110 pts) Due 5:00 pm on November 8, 2024 (Friday)

Note: Make sure you convert the scanned images into black-and-white images, before converting them to a PDF file for Canvas upload. Also make sure the texts are clearly visible. Failure to do so will result in points being deducted.

- 1. (20 pts) A random variable X has a PDF $f_X(x) = 2e^{-2x}u(x)$. Using the characteristic function to find $E[X^2]$.
- 2. (20 pts) Let X and Y be two statistically independent random variables having probability density functions: $f_X(x) = 2e^{-2x}u(x)$, and $f_Y(y) = 2e^{-2y}u(y)$. Let the random variable Z = X + Y. Determine $E[Z^2]$ using characteristic functions.
- 3. (20 pts) Exercise 4-2.2 (pp 166). Sub-problem a) only. You need to show the derivations to get full credit.
- 4. (30 pts) Let X and Y be two statistically independent random variables having probability density functions: f_X(x) = {1, 0 < x < 1 0, elsewhere, and f_Y(y) = {1, 0 < y < 1 0, elsewhere. Let the random variable Z = X + Y.
 (a) Determine analytically the probability density function (PDF) of Z, f_Z(z).
 (b) In Matlab, plot the waveform of f_Z(z). Attach the Matlab script and the plot.
- 5. (20 pts) In Matlab, use the **rand** function to generate a vector (*X*) of one million random numbers uniformly distributed between 0 and 1. Then use the **rand** function again to generate another vector (*Y*) of one million random numbers also uniformly distributed between 0 and 1. Let Z = X + Y.
 - (a) Plot the normalized histogram of *Z* (using the option: 'Normalization', 'pdf'). Attach the Matlab script and the histogram.
 - (b) Compare the normalized histogram of Z with the waveform of $f_Z(z)$ obtained in Problem 4. Comment on your result.