
EE 604, Digital Image Processing

Chapter 4:

Filtering in the Frequency Domain

Dr. W. David Pan

Dept. of ECE
UAH

Topics

• Fourier Series

• Fourier Transform

• Discrete Fourier Transform

• Properties of 2-D DFT

• Basics of Filtering in the Frequency Domain

• Correspondence between Filtering in the Spatial and
Frequency Domains

• Image Smoothing Using Frequency Domain Filtering

• Image Sharpening Using Frequency Domain Filtering

• Selective Filtering

Frequency and Filter

• Frequency

– The number of times that a periodic function
repeats the same sequence of values during a unit
variation of the independent variable.

• Filter

– A device or material for suppressing or minimizing
waves or oscillations of certain frequencies.

Fourier Series

Fourier Transform

Convolution

Sampling

Aliasing

Discrete Fourier Transform

2-D DFT

Sampling and Aliasing

2-D DFT and its Properties

𝑓 𝑥 − 𝑥0, 𝑦 − 𝑦0 𝐹 𝑢, 𝑣 𝑒
−𝑗2𝜋

𝑥0𝑢
𝑀 +

𝑦0𝑣
𝑁

𝑓 𝑥, 𝑦 𝑒
𝑗2𝜋

𝑢0𝑥
𝑀 +

𝑣0𝑦
𝑁 𝐹 𝑢 − 𝑢0, 𝑣 − 𝑣0

𝐹 𝑢, 𝑣 = 𝑓 𝑥, 𝑦 𝑒
−𝑗2𝜋

𝑢𝑥
𝑀+

𝑣𝑦
𝑁

𝑁−1

𝑦=0

𝑀−1

𝑥=0

𝑓 𝑥, 𝑦 =
1

𝑀𝑁
 𝐹(𝑢, 𝑣)𝑒

𝑗2𝜋
𝑢𝑥
𝑀+

𝑣𝑦
𝑁

𝑁−1

𝑣=0

𝑀−1

𝑢=0

Translation:

Rotation:

𝑥 = 𝑟𝑐𝑜𝑠𝜃 𝑦 = 𝑟𝑠𝑖𝑛𝜃; 𝑢 = 𝜔𝑐𝑜𝑠𝜙 𝑣 = 𝜔𝑠𝑖𝑛𝜙

𝑓 𝑟, 𝜃 + 𝜃0 𝐹 𝜔,𝜙 + 𝜃0

Periodicity

fftshift and ifftshift

>> A = [1 2; 3 4]
>> fftshift (A)
ans =
 4 3
 2 1
>> ifftshift (fftshift(A))

>> F = fft2(I);
 % Centered transform by swapping quadrants of F
>> Fc = fftshift (F);

• Moving the zero-frequency component to the center of the array.
• It is useful for visualizing a Fourier transform with the zero-frequency

component in the middle of the spectrum.

See Matlab code

Symmetry Properties
Any real or complex function can be expressed as the sum of an even and odd part:

0, 0 = 0

Even and Odd Sequences

Odd Image:

1-D Examples of Symmetry

2D Circular Convolution

𝑓 𝑥, 𝑦 ⋆ ℎ 𝑥, 𝑦 = 𝑓 𝑚, 𝑛 ℎ(𝑥 − 𝑚, 𝑦 − 𝑛)

𝑁−1

𝑛=0

𝑀−1

𝑚=0

for 𝑥 = 0, 1, 2, … ,𝑀 − 1, and 𝑥 = 0, 1, 2, … , 𝑁 − 1

The 2-D convolution theorem is given by

𝑓 𝑥, 𝑦 ⋆ ℎ 𝑥, 𝑦 ⟺ 𝐹 𝑢, 𝑣 𝐻(𝑢, 𝑣)

𝑓 𝑥, 𝑦 ℎ 𝑥, 𝑦 ⟺ 𝐹 𝑢, 𝑣 ⋆ 𝐻(𝑢, 𝑣)

• Because we are dealing with discrete quantities, computation of the Fourier
transforms is carried out with a DFT algorithm.

• If we elect to compute the spatial convolution using the IDFT of the product of
the two transforms, then the periodicity issues must be taken into account.

See Matlab code

Zero Padding in 2D Image Filtering

• The resulting padded images are of size 𝑃 × 𝑄.
• As a rule of thumb, DFT algorithms tend to execute faster with

arrays of even size, so it is good practice to select 𝑃 and 𝑄 as the
smallest even integers that satisfy the preceding equations.

• If the two arrays are of the same size, then 𝑃 and 𝑄 are selected as
twice the array size.

See Matlab code “paddedsize.m”

See Matlab code

Filtering in Frequency Domain

See Matlab code “4_36.m”
for Gaussian Filtering

Filtering in Spatial and Frequency Domains

See Matlab code
for edge detection using Sobel mask

Generating Filters Directly in
Frequency Domain

• Implement filter functions directly in the
frequency domain.

• Focus on circularly symmetric filters that are
specified as various functions of distance from
the origin of the transform

• Begin with smoothing (low-pass) filters

• Then discuss sharpening (high-pass) filters

Meshgrid Arrays for Implementing
Filters in the Frequency Domain

• FFT computations in Matlab assume that the origin of the transform
is at top, left of the frequency rectangle, our distance computations
are with respect to that point.

• The data can be rearranged for visualization purposes by using
fftshift.

• The M-function, dftuv, provides the necessary meshgrid array in
distance computations for fft2 or ifft2, so no rearrangement of the
data is required.

>> [U, V] = dftuv(5, 5);
% distance 0 at top left, larger distance
% at the center of the frequency rectangle
>> D = U.^2 + V.^2

>> fftshift(D)
% The array is symmetric about the center

Lowpass Frequency Domain Filters

• Ideal lowpass filter

 𝐻 𝑢, 𝑣 =
1 𝑖𝑓 𝐷 𝑢, 𝑣 ≤ 𝐷0

0 𝑖𝑓 𝐷 𝑢, 𝑣 > 𝐷0

• Butterworth lowpass filter

 𝐻 𝑢, 𝑣 =
1

1+
𝐷 𝑢,𝑣

𝐷0

2𝑛 , where 𝐷0 is the cutoff freq.

• Gaussian lowpass filter

 𝐻 𝑢, 𝑣 = 𝑒
−
𝐷2 𝑢,𝑣

2𝜎2

ILPF Transfer Function

Ideal Lowpass Filter in Spatial Domain

Butterworth LPF Transfer Function

BLPF in Spatial Domain

Gaussian Filter Transfer Function

Example: Gaussian Filter

See Matlab code “4_48.m”
for Gaussian Filtering

M-function for LPF Transfer Function
Generation

• H = lpfilter (type, M, N, D0, n)

• Centered transferred function

 H = lpfilter_center (type, M, N, D0, n)

• lpfilter can be used for generating highpass
filters.

See Matlab code “4_36.m”
for Gaussian Filtering

Visualization of Filter Transfer Functions

• Wireframe

• Surface plot
• See Matlab code

Highpass Filters

[H] = hpfilter (type,M,N,D0,n)

Spatial Domain Representation

IHPF

BHPF

GHPF

HPF followed by Thresholding

Selective Filter

