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Frequency and Filter

* Frequency

— The number of times that a periodic function
repeats the same sequence of values during a unit
variation of the independent variable.

e Filter

— A device or material for suppressing or minimizing
waves or oscillations of certain frequencies.



Fourier Series
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FIGURE 4.1 The function at the bottom is the sum of the four functions above it.

Fourier’s idea in 1807 that periodic functions could be represented as a weighted sum
of sines and cosines was met with skepticism.



Fourier Transform
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FIGURE 4.4 (a) A simple function; (b) its Fourier transform; and (c) the spectrum. All functions extend to
infinity in both directions.



Convolution
() h(r) = / FYh(t ~ 1) dr
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Sampling
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FIGURE 4.5

(a) A continuous
function. (b) Train
of impulses used
to model the
sampling process.
(¢) Sampled
function formed
as the product of
(a) and (b).

(d) Sample values
obtained by
integration and
using the sifting
property of the
impulse. (The
dashed line in (c)
is shown for
reference. It is not
part of the data.)
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FIGURE 4.6

(a) Fourier
transform of a
band-limited
function.

(b)~(d)
Transforms of the
corresponding
sampled function
under the
conditions of
over-sampling,
critically-
sampling, and
under-sampling,
respectively.
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Aliasing
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FIGURE 4.9 (a) Fourier transform of an under-sampled, band-limited function.
(Interference from adjacent periods is shown dashed in this figure). (b) The same ideal
lowpass filter used in Fig. 4.8(b). (c) The product of (a) and (b). The interference from
adjacent periods results in aliasing that prevents perfect recovery of F(u) and,
therefore, of the original, band-limited continuous function. Compare with Fig. 4.8.



Discrete Fourier Transform
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2-D DFT
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FIGURE 4.13 (a) A 2-D function, and (b) a section of its spectrum (not to scale). The
block is longer along the f-axis, so the spectrum is more “contracted” along the w-axis.
Compare with Fig. 4.4.



Sampling and Aliasing

.
I
I
I
I

LI j
Mll]ﬂ![

Footprint of an
ideal lowpass

(box) filter

y
;;lllﬂx

ab

FIGURE 4.15
Two-dimensional
Fourier transforms
of (a) an over-
sampled, and

(b) under-sampled
band-limited
function.
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2-D DFT and its Properties

M-1N-
F(u,v) = z z f(x, y)e_fzn (Gr7)

1 & e (1,7
f(x,y)—M—Zz P, v)e’ ")

Translation:
UoX VoY
f(x, y)eJZN( N ) SF(u—ugv—1v)
XoU K YoV
f(X — XY — yo) S F(u, U)e_]zn( 1(\)/1 * 1(\)/ )

Rotation:
X =rcosf y=rsinf; u=wcosp v =wsing

f(r,0+06y) © F(w, ¢+ 6,)



Periodicity
F(u,v) = Flu + kyM,v) = Flu,v + kaN) = F(u + kM, v + kyN)

flx,y) =f(x + kM,y) = f(x,y + kaN) = f(x + kM., y + k;N)
F(u)

FIGURE 4.23
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(c) A2-D DFT
showing an infinite
number of periods.
The solid area is
the M X N data
array, F(u,v),
obtained with Eq.
(4.5-15). This array
consists of four
quarter periods.
(d) A Shifted DFT
obtained by
multiplying f(x, y)
by (—1)**”

before computing
F(u,v). The data
now contains one
complete, centered
period, as in (b).



fftshift and ifftshift

* Moving the zero-frequency component to the center of the array.
* It is useful for visualizing a Fourier transform with the zero-frequency
component in the middle of the spectrum.

>>A=[12;34]
>> fftshift (A)

ans =
4 3
2 1

>> ifftshift (fftshift(A))

>> F = fft2(l);
% Centered transform by swapping quadrants of F
>> Fc = fftshift (F);



See Matlab code
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FIGURE 4.24

(a) Image.

(b) Spectrum
showing bright spots
in the four corners.
(c) Centered
spectrum. (d) Result
showing increased
detail after a log
transformation. The
zero crossings of the
spectrum are closer in
the vertical direction
because the rectangle
in (a) is longer in that
direction. The
coordinate
convention used
throughout the book
places the origin of
the spatial and
frequency domains at
the top left.



Symmetry Properties

Any real or complex function can be expressed as the sum of an even and odd part:

w(x, y) = we(x,y) + wy(x, y)

w(x, y) + w(=x, —y)
2

wt‘('ra Y) é

wilx, y) & UED mgw(qx’ 7Y mm we(0,0) =0

we(L J") = ‘HJF(“.X, "y)
u}a(x! )’) = —wﬂ(_xv —b}')

HJE(I. }") = wg(M - X, N — _}’) w{?('r'l ,}I) - *%U“(M - X, N - }")

M and N are the number of rows and columns of a 2-D array



Even and Odd Sequences
F={f0) 71y f@ f®}={211 1}
fQO) = f@4), f2)=71@2) f(1)=rf03) f3)= )
{a b ¢ b}

g = {3(0) g(1) g(2) gB)} ={0 ~1 0 1)

g(x) = —g(4 ~ x)
Odd Image:

e e B e B = I o B
e e e B B I
o
i e T e B o B S
S == OO
e TN e S e B o B



Spatial Domain"

Frequency Domain'

1) f(x,y)real <
2) f(x,y)imaginary <
3) f(x,y)real <
4) f(x,y)imaginary <
3) f(—x,—v)real <
6) f(—x, —y) complex <«
7) f(x, y) complex <
8) f(x,y)realand even <
9) f(x,y)realand odd <
10) f(x, y) imaginary and even <
11) f(x,y)imaginary and odd <
12) f(x.y)complex and even <
13) f(x,y)complex and odd <

F'(u,v) = F(—u, —v)
F'(—u, —v) = —F(u, v)
R(u,v) even; I(u, v) odd
R(u, v) odd; I(u, v) even
F'(u,v) complex

F(—u, —v) complex
F'(—u — v) complex
F(u,v)real and even

F(u, v) imaginary and odd
F(u, v) imaginary and even
F(u, v)real and odd

F(u, v) complex and even

F(u, v) complex and odd

"Recall that x. y. u,and v are discrete (integer) variables, with x and u in the range [0, M — 1], and y, and
v in the range [0, N — 1]. To say that a complex function is evern means that its real and imaginary parts

are even, and similarly for an odd complex function.

TABLE 4.1 Some
symmetry
properties of the
2-D DFT and its
inverse. R(u, v)
and I(u, v) are the
real and imaginary
parts of F(u,v),
respectively. The
term complex
indicates that a
function has
nonzero real and
imaginary parts.



1-D Examples of Symmetry

Property f(x)

3 Nl 2 3 4]
4 12 3 4)
8 {211 1}
9 {0 -1 0 1)
10 211 1)
11 0 -1 0 1}
12 {(4+4) (3 +2)(0 +2) (3 + 2))}

13

{0 +0) + 1)+ 0)(=1—j)}

133080 ¢0¢%

F(u)

{(10) (=2 + 2)) (=2) (=2 ~ 2j)}

{5 (5= 50) (=5 (=5~ 5j}}

(S (1) (1) (1)}

{0) 2/ () (-2}

{50 (GG}

{M (=2)(0) (D)} -

{(10 + 10/} (4 + 2) (-2 + 2)) (4 + 2j)}
{0+ 0) @2~ 2))(0+0)) (-2 + 2j)}



2D Circular Convolution

M-1N

~1
Fy) > hGoy) = ) ) Flmmhe—m,y—n)
=0

m=0n

fora =0,1,2,... M—1,andx =0,1,2,..., N —1

The 2-D convolution theorem is given by

fx,y)*h(x,y) © F(u,v)H(u,v)
f(x,y)h(x,y) © F(u,v) * H(u,v)

Because we are dealing with discrete quantities, computation of the Fourier

transforms is carried out with a DFT algorithm.
If we elect to compute the spatial convolution using the IDFT of the product of

the two transforms, then the periodicity issues must be taken into account.
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See Matlab code
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FIGURE 4.28 Left
column:
convolution of
two discrete
functions
obtained using the
approach
discussed in
Section 3.4.2. The
result in (e) is
correct. Right
column:
Convolution of
the same
functions, but
taking into
account the
periodicity
implied by the
DFT. Note in (j)
how data from
adjacent periods
produce
wraparound error,
yielding an
incorrect
convolution
result. To obtain
the correct result,
function padding
must be used.



Zero Padding in 2D Image Filtering

(f(x < = — << < —
: flx,y) 0=x=A-1 and 0=sy=B-—-1
fp(xs.V)m<
0 A=x=P or B=sy=(Q
(h(x,y) 0=x=C-1 and 0<y=D-1
By, y) = 80T BN
0 C=x=P or D=sy=0Q
P= A+ C-—1 Q=8B+ D-1

* The resulting padded images are of size P X Q.

* Asarule of thumb, DFT algorithms tend to execute faster with
arrays of even size, so it is good practice to select P and Q as the
smallest even integers that satisfy the preceding equations.

* |f the two arrays are of the same size, then P and Q are selected as
twice the array size.

See Matlab code “paddedsize.m”




See Matlab code
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FIGURE 4.32 (a) A simple image. (b) Result of blurring with a Gaussian lowpass filter without padding.
(c) Result of lowpass filtering with padding. Compare the light area of the vertical edges in (b) and (c).



ab

FIGURE 4.33 2-D image periodicity inherent in using the DFT. (a) Periodicity without
image padding. (b) Periodicity after padding with Os (black). The dashed areas in the
center correspond to the image in Fig. 4.32(a). (The thin white lines in both images are
superimposed for clarity; they are not part of the data.)



Filtering in Frequency Domain

See Matlab code “4_36.m”
for Gaussian Filtering




Filtering in Spatial and Frequency Domains

a b

FIGURE 4.38

(a) Image of a
building, and
(b) its spectrum.



See Matlab code
for edge detection using Sobel mask
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Generating Filters Directly in
Frequency Domain

Implement filter functions directly in the
frequency domain.

Focus on circularly symmetric filters that are
specified as various functions of distance from
the origin of the transform

Begin with smoothing (low-pass) filters
Then discuss sharpening (high-pass) filters



Meshgrid Arrays for Implementing
Filters in the Frequency Domain

 FFT computations in Matlab assume that the origin of the transform
is at top, left of the frequency rectangle, our distance computations
are with respect to that point.

 The data can be rearranged for visualization purposes by using

fftshift.

 The M-function, dftuv, provides the necessary meshgrid array in
distance computations for fft2 or ifft2, so no rearrangement of the
data is required.

>> [U, V] = dftuv(5, 5);

% distance O at top left, larger distance \ T T
% at the center of the frequency rectangle | PN M
: :Four back-to-back: :
>> D - U./\2 + V.A2 : :periodsmcet here.|I : M—1 ~ F(u, v)
Four back-to-back /
. eriods meet here.
>> fftShlft(D) f_—_}= Periods of the DFT. P (

% The array is symmetric about the center []= M N data arcay, Flu, »)




Lowpass Frequency Domain Filters

* |deal lowpass filter
{1 if D(w,v) <D,
H(w,v) = {O if D(u,v) > D,
e Butterworth lowpass filter
H(u,v) = :

D (u,v)]
Dy

>w » Where Dy is the cutoff freq.

14|

e Gaussian lowpass filter

_Dz(u,v)
H(u,v) =e 202




ILPF Transfer Function

H(u, v) H(u, v)
—= v A

YT

> D (u, v)

abc

FIGURE 4.40 (a) Perspective plot of an ideal lowpass-filter transfer function. (b) Filter displayed as an image.
(c) Filter radial cross section.



ldeal Lowpass Filter in Spatial Domain

ab

FIGURE 4.43
(a) Representation
in the spatial
domain of an
N\ _ - ILPF of radius 5
|0 and size
1000 X 1000.
(b) Intensity
profile of a
horizontal line
passing through
the center of the
image.




Butterworth LPF Transfer Function

H(u, v)

=D (u, v)

abc

FIGURE 4.44 (a) Perspective plot of a Butterworth lowpass-filter transfer function. (b) Filter displayed as an
image. (c) Filter radial cross sections of orders 1 through 4.



BLPF in Spatial Domain
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FIGURE 4.46 (a)-(d) Spatial representation of BLPFs of order 1, 2, 5, and 20, and corresponding intensity
profiles through the center of the filters (the size in all cases is 1000 < 1000 and the cutoff frequency is 3).
Observe how ringing increases as a function of filter order.



Gaussian Filter Transfer Function

H(u, v) H (u, v)

—v 1.0
0.667

/D.J: 100

= D(u, v)

g

alb e

FIGURE 4.47 (a) Perspective plot of a GLPF transfer function. (b) Filter displayed as an image. (c) Filter
radial cross sections for various values of D.



Example: Gaussian Filter

aaaaaadaadd
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FIGURE 4.41 (a) Test pattern of size 688 X 688 pixels, and (b) its Fourier spectrum. The
spectrum is double the image size due to padding but is shown in half size so that it fits
in the page. The superimposed circles have radii equal to 10, 30, 60, 160, and 460 with
respect to the full-size spectrum image. These radii enclose 87.0, 93.1, 95.7, 97.8, and
99.2% of the padded image power, respectively.




See Matlab code “4_48.m”

for Gaussian Filtering
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FIGURE 4.48 (a) Original image. (b)~(f) Results of filtering using GLPFs with cutoff

frequencies at the radii shown in Fig. 4.41. Compare with Figs 4.42 and 4.45




M-function for LPF Transfer Function
Generation

* H = |pfilter (type, M, N, DO, n)
* Centered transferred function
H = |pfilter _center (type, M, N, DO, n)

See Matlab code “4_36.m”
for Gaussian Filtering

* |pfilter can be used for generating highpass
filters.



Visualization of Filter Transfer Functions

* Wireframe
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e Surface plot
 See Matlab code



Highpass Filters

TABLE 4.5
Highpass filters. Dyis the cutoff frequency and » is the order of the Butterworth filter.
Ideal Butterworth Gaussian
1 if D(u,v) = Dy 1 D) 2D2
H(u,v) =4 o H(u. v) = ~ H(u.v) =1 — ¢ D@2)205
e {U if D(u. v) > D, ) = Dy DU, o) () )

[H] = hpfilter (type,M,N,DO,n)



H(u, v)

—= 1 10“_
* = D(u, v)
u
H(u, v)
'y
—-? 10
| * D(u, v)
u
H(u, v) H(u, v)
} —v 1]
Qe | ¢ "D )
ghi "

FIGURE 4.52 Top row: Perspective plot, image representation, and cross section of a typical ideal highpass
filter. Middle and bottom rows: The same sequence for typical Butterworth and Gaussian highpass filters.



Spatial Domain Representation

©

abec

FIGURE 4.53 Spatial representation of typical (a) ideal, (b) Butterworth, and (c) Gaussian frequency domain
highpass filters, and corresponding intensity profiles through their centers.



IHPF

8 bile
FIGURE 4.54 Results of highpass filtering the image in Fig. 4.41(a) using an IHPF with D, = 30, 60, and 160.



BHPF

abc

FIGURE 4.55 Results of highpass filtering the image in Fig. 4.41(a) using a BHPF of order 2 with D, = 30, 60,
and 160, corresponding to the circles in Fig. 4.41(b). These results are much smoother than those obtained
with an [HPF.



GHPF

abc

FIGURE 4.56 Results of highpass filtering the image in Fig. 4.41(a) using a GHPF with D, = 30, 60, and 160,
corresponding to the circles in Fig. 4.41(b). Compare with Figs. 4.54 and 4.55.



HPF followed by Thresholding

FIGURE 4.57 (a) Thumb print. (b) Result of highpass filtering (a). (¢) Result of
thresholding (b). (Original image courtesy of the U.S. National Institute of Standards
and Technology.)



Selective Filter

TABLE 4.6

Bandreject filters. W is the width of the band, D is the distance D(u, v) from the center of the filter, Dy is the
cutoff frequency, and rn is the order of the Butterworth filter. We show D instead of D(u, v) to simplify the
notation in the table.

Ideal Butterworth Gaussian
0 D - <p=p,+ ¥ Huv) = l >
—_ — == == —_— * j7) Dt pl
H(u,v) = 2 2 M Hu.v)=1- ¢l
1  otherwise D> — D

ab

FIGURE 4.63

(a) Bandreject
Gaussian filter.

(b) Corresponding
bandpass filter.
The thin black
border in (a) was
added for clarity; it
is not part of the
data.




