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Topics

Human visual system; Image formation in the eye and its
capabilities for brightness adaptation and discrimination.

Light, other components of the electromagnetic spectrum, and
their imaging characteristics

Imaging sensors and how they are used to generate digital images
The concepts of uniform image sampling and intensity quantization

Digital image representation, the effects of varying the number of
samples and intensity levels in an image

The concepts of spatial and intensity resolution
The principles of image interpolation

Basic relationships between pixels

Principal mathematical tools

Basics of Matlab IPT
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FIGURE 2.1
Simplified
diagram of a cross
section of the
human eye.

No. of rods or cones per mm*

Ciliary muscle °

Perception

Two types of light receptors
* Cones
Highly sensitive to color
* Cone vision is called photopic or
bright-light vision
* Rods
e Gives a general, overall picture of
the field of view
* Rod vision is called scotopic or
dim-light vision
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Image Formation in the Eye

FIGURE 2.3
Graphical
representation of
the eye looking at
a palm tree. Point
C is the optical
center of the lens.




Brightness Adaptation
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FIGURE 2.4
Range of
subjective
brightness
sensations
showing a
particular
adaptation level.



Brightness Discrimination
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Brightness is not a simple function of
intensity.

Actual intensity
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FIGURE 2.7
INlustration of the
Mach band effect.
Perceived
intensity is not a
simple function of
actual intensity.

Perceived intensity




Simultaneous Contrast
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FIGURE 2.8 Examples of simultaneous contrast. All the inner squares have the same n-
tensity, but they appear progressively darker as the background becomes lighter.



Optical lllusions
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Light and Electromagnetic Spectrum
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Wavelength(A), Frequency(v), Energy(E)

A= c =2.988 x 108 m/s
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representation of
one wavelength.



Color

 The colors that humans perceive in an object are
determined by the nature of the light reflected

from the object.

— A body that reflects light relatively balanced in all
visible wavelengths appears white to the observer.

— However, a body that favors reflectance in a limited
range of the visible spectrum exhibits some shades of
color.

— For example, green objects reflect light with
wavelengths primarily in the 500 to 570 nm range
while absorbing most of the energy at other
wavelengths.



Gray-Scale Images

* Light that is void of color is called monochromatic (or
achromatic) light. The only attribute of monochromatic
light is its intensity or amount.

* Because the intensity of monochromatic light is perceived
to vary from black to grays and finally to white, the term
gray level is used commonly to denote monochromatic
intensity. We use the terms intensity and gray level
interchangeably in subsequent discussions.

 The range of measured values of monochromatic light from
black to white is usually called the gray scale, and
monochromatic images are frequently referred to as gray-
scale images.



Chromatic Light Source

Chromatic (color) light spans the electromagnetic energy spectrum
from approximately 0.43 to 0.79 um.

In addition to frequency, three basic quantities are used to describe
the quality of a chromatic light source:

Radiance is the total amount of energy that flows from the light
source, and it is usually measured in watts (W).

Luminance, measured in lumens (Im), gives a measure of the
amount of energy an observer perceives from a light source.
— For example, light emitted from a source operating in the far infrared

region of the spectrum could have significant energy (radiance), but an
observer would hardly perceive it; its luminance would be almost zero.

Brightness is a subjective descriptor of light perception that is
practically impossible to measure. It embodies the achromatic
notion of intensity and is one of the key factors in describing color
sensation.



Image Sensing and Acquisition
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FIGURE 2.12

(a) Single imaging
Sensor.

(b) Line sensor.
(c) Array sensor.



Image Formation Model

Hlumination (energy)

..;7/ l\ source

Output (digitized) image

Imaging system

flx,y) =ilx,y)r(x,y)
0<i(x,y) <o
0<r(xy <1

(Internal) image plane

Scene element

a

b

FIGURE 2.15 Anexample of the digital image acquisition process. (a) Energy (“illumination™) source. (b) An el-
ement of a scene. (¢) Imaging svstem. (d) Projection of the scene onto the image plane. (e) Digitized image.
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Image Sampling and Quantization
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FIGURE 2.17 (a) Continuous image projected onto a sensor array. (b) Result of image
sampling and quantization.



Representing Digital Images

* Let f(s,t) represent a continuous image function
of two continuous variables, s and t. We convert
this function into a digital image by sampling and
guantization.

* Suppose that we sample the continuous image
into a 2-D array, f(x,y) containing M rows and
N columns, where (x, y) are discrete
coordinates.

* For notational clarity and convenience, we use

integer values for these discrete coordinates:
x=012..M—1landy=0,1,2,...,M — 1.
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Saturation and Noise

Saturation

/A

FIGURE 2.19 An
image exhibiting
saturation and
noise. Saturation is
the highest value
beyond which all
intensity levels are
clipped (note how
the entire
saturated area has
a high, constant
intensity level).
Noise in this case
appears as a grainy
texture pattern.
Noise, especially in
the darker regions
of an image (e.g.,
the stem of the
rose) masks the
lowest detectable
true intensity level.
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TABLE 2.1

Number of storage bits for various values of N and k.
Nik 1(L=2 2(=4 3UL=8 4L =16 5 =32 6(L=64 T =128 8( = 256)
32 2,048 4.096 5.120 6.144 7,168 8.192
64 8,192 16.384 20,480 24,576 28,672 32,768
128 6,3 32,768 65.536 £1.920 08,304 114,688 131,072
256 5,5: 131,072 262144 327.680 393216 438,752 524288
512 262.1: 524,288 1.048.576  1.310.720 1.572.864 1,835,008  2,097.152
1024 048576 2097152 3145728 4194304 5242880  6.291.456 7,340,032 8,388,608
2048 4194304 8388608 12582912 16777216 20971520 25165824  29369.128 33554432
4096 16777216 33554432 50331648 67108864 83886050 100663296 117440512 134217728
8192 67,108,864 134217728 201,326,592 268435456 335544320 402.653.184 469762,048 536870912




Spatial Resolution

Spatial Resolution is a measure of the smallest discernible detail in
an image.
— Quantitatively, spatial resolution can be stated in a number of ways,

with line pairs per unit distance, and dots (pixels) per unit distance
being among the most common measures.

« Awidely used definition of image resolution is the largest number of

discernible line pairs per unit distance (e.g., 100 line pairs per mm).

Dots per unit distance is a measure of image resolution used
commonly in the printing and publishing industry. In the U.S., this
measure usually is expressed as dots per inch (dpi).

— Newspapers are printed with a resolution of 75 dpi
— Magazines at 133 dpi

— Glossy brochures at 175 dpi

— Text book page printed at 2400 dpi



Intensity Resolution

Intensity resolution similarly refers to the smallest
discernible change in intensity level.

Based on hardware considerations, the number of
intensity levels usually is an integer power of two.

The most common number is 8 bits, with 16 bits being
used in some applications in which enhancement of
specific intensity ranges is necessary.

Intensity quantization using 32 bits is rare.

Sometimes one finds systems that can digitize the
intensity levels of an image using 10 or 12 bits, but
these are the exception, rather than the rule.
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FIGURE 2.20 Typical effects of reducing spatial resolution. Images shown at: (a) 1250
dpi, (b) 300 dpi, (c) 150 dpi, and (d) 72 dpi. The thin black borders were added for

clarity. They are not part of the data.
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FIGURE 2.21

(a) 452 x 374,
256-level image.
(b)—(d) Image
displayed in 128,
64, and 32 gray
levels, while
keeping the
spatial resolution
constant.
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FIGURE 2.21
(Continued)
(e)—(h) Image
displayed in 16, 8,
4, and 2 gray
levels. (Original
courtesy of

Dr. David

R. Pickens,
Department of
Radiology &
Radiological
Sciences,
Vanderbilt
University
Medical Center.)




Image Subjective Quality

allb e

FIGURE 2.22 (a) Image with a low level of detail. (b) Image with a medium level of detail. (¢) Image with a rel-
atively large amount of detail. (Image (b) courtesy of the Massachusetts Institute of Technology.)

FIGURE 2.23
Typical
isopreference
curves for the
three types of
images in
Fig.2.22.
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Image Interpolation

* Interpolation is a basic tool used extensively in
tasks such as zooming, shrinking, rotating, and
geometric corrections.

 We given an introduction to interpolation and
apply it to image resizing (shrinking and
zooming), which are basically image resampling
methods.

* Interpolation is the process of using known data
to estimate values at unknown locations.

— Example: An image of size 500 X 500 pixels has to be
enlarged 1.5 times to 750 X 750 pixels



Methods

 Nearest neighbor interpolation

— Assigns to each new location the intensity of its nearest
neighbor in the original image

— It has the tendency to produce undesirable artifacts, such as
severe distortion of straight edges.

* Bilinear interpolation

— Use the four nearest neighbors to estimate the intensity at a
given location: v(x,y) =ax+ by +cxy +d

* Bicubic interpolation
— Involves the sixteen nearest neighbors of a point.

3 3
v(x,y) = z 2 aijxiyj

i=0 j=0
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FIGURE 2.24 (a) Image reduced to 72 dpi and zoomed back to its original size (3692 X 2812 pixels) using
nearest neighbor interpolation. This figure is the same as Fig. 2.20(d). (b) Image shrunk and zoomed using
bilinear interpolation. (c¢) Same as (b) but using bicubic interpolation. (d)—(f) Same sequence, but shrinking
down to 150 dpi instead of 72 dpi [Fig. 2.24(d) is the same as Fig. 2.20(c)]. Compare Figs. 2.24(e) and (f),

especially the latter, with the original image in Fig. 2.20(a).



Basic Relations Between Pixels

* Neighbors of a pixel
— Four horizontal and vertical neighbors -- N, (p)
(x+1Ly),(x-Ly,(xy+1),xy-1)
— Four diagonal neighbors -- N (p)
(x+1Ly+D,x+1L,y—-D,(x—-1Ly+1)x~-1,y ~ 1)

— 8-neighbors of p -- Ng(p)
* Combination of N,(p) and Ny (p)



1,
(1Y) (%-1,y-1) (%-1,y+1)

N4(p) oy (xy+1) Np(p)

1,
(1Y) (x-1,y+1) (x+1,y+1)

(x-1y-1)  (x-1y) (x-1,y+1)

Ng(p)
8P (xy+1)

(x-1,y+1) (x+1.y) (X+1,y+1)



Adjacency

* Let VV be the set of intensity values used to
define adjacency.

—Ina binary image, V = {1} if we are referring to
adjacency of pixels with value 1.

— In a gray-scale image, set V' typically contains
more elements. For example, in the adjacency of
pixels with a range of possible intensity values 0 to
255, set I/ could be any subset of these 256
values.



Three Types of Adjacency

* 4-adjacency
— Two pixels p and g with values from I/ are 4-adjacent
if g isin the set N,(p).
* 8-adjacency
— Two pixels p and g with values from I/ are 8-adjacent
if g is in the set Ng(p).

* m-adjacency (mixed adjacency).

— Two pixels p and g with values from IV are m-adjacent
if
* gisin Ny(p), or

* gisin Np(p) and the set N,(p) N N,(q) has no pixels
whose values are from V.



Remove the Ambiguity of 8-Adjacency

4-adjacency 8-adjacency m-adjacency
11 = -1
e ﬂl:] 1 . 1 i
P | 1 1
q € Ny(p) q € Ng(p) q € Np(p) and Ny(@)NNy(p) = @
or q € Ny(p)

* m-adjacency has eliminated the multiple path
connection that has been generated by the 8-
adjacency.



Digital Path

A digital path (or curve) from pixel p with
coordinate (x, y) to pixel g with coordinate
(s,t) is a sequence of distinct plxels with
coordinates (x,, v,), (xl, V1), - y..) where
(X0 ¥0) = (x,)and (x,,7,) = (s, "8 anc
pixels (x;,y,) and (x;_1,y;_1) are adJacent for
1 <1 < n.

n is the length of the path.

If (x,,v,) = (x,,¥,), the pathis closed.

We can specify 4-, 8- or m-paths depending on
the type of adjacency specified.
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In figure (b) the paths between the top right and
bottom right pixels are 8-paths. And the path between
the same 2 pixels in figure (c) is m-path.



Connectivity

e Let S represent a subset of pixelsin an
image. Two pixels p and q are said to be
connected in S if there exists a path between
them consisting entirely of pixels in S.

* For any pixel p in §, the set of pixels that are
connected toitin S is called a connected
component of S.

 |f it only has one connected component, then
set S is called a connected set.



Region and Boundary

* Region

— Let R be a subset of pixels in an image, we call R a
region of the image if R is a connected set.

 Boundary

— The boundary (also called border or contour) of a
region R is the set of pixels in the region that have
one or more neighbors that are not in R.



Region and Boundary

* If R happens to be an entire image, then its boundary is
defined as the set of pixels in the first and last rows and
columns in the image.

* This extra definition is required because an image has no
neighbors beyond its borders.

* Normally, when we refer to a region, we are referring to
subset of an image, and any pixels in the boundary of the
region that happen to coincide with the border of the
image are included implicitly as part of the region
boundary.



Distance Measures

* For pixels p, g, and z, with coordinates
(x,v),(s,7),and (v,w), respectively, D is a
distance function or metric if
-D(p,q) 2 0(D(p,q) = Oiffp = q),

- D(p,q) = D(q,p),and
—-D(p,z) =D(p,q) + D(q,2).
* Euclidean distance:

D0, @) = [(x—9)? + (y— D2



D, Distance

* The D, distance (also called city-
block distance) between p and g
is defined as:

D,(pq) = [x-s|+ |y-t]
* Pixels having a D, distance from
(x,v), less than or equal to some
value r form a diamond centered
at (x,y).
* The pixels with D, = 1 are the 4-
neighbors of (x, y).

q(s.t)

p (x.y)
2
2 1 2
2 1 0 1 2
2 1 2
2




Dg Distance

Dg distance (called the chessboard distance)
between p and q is defined as

Dg(p,q) = max(|x —s|, |y —t])
The pixels with Dg distance from (x, y) less

than or equal to some value r form a square
centered at (x, y).

& 2 2 2 2 2

For example, r = 2 5 1 1 1 7
2 1 0 1 2

2 1 1 1 2

The pixels with Dg =1lare (2 2 2 2 2

the 8-neighbors of (x, y).



D.,, Distance

* D, distance is defined as the shortest m-path
between the points.

* |n this case, the distance between two pixels
will depend on the values of the pixels along
the path, as well as the values of their
neighbors.



Example

* Consider the following arrangement of pixels
and assume that p, p,, and p, have value 1
and that p, and p,; can have can have a value

of Oor1
Suppose that we consider

the adjacency of pixels Ps P4

values 1 (i.e. V = {1}) P1 P2
F




Case 1

* Now, to compute the D, between points p
and p,

Here we have 4 cases:
Casel:Ifp,=0andp;=0
The length of the shortest m-path

(the D, distance) is 2 (p, p,, p,)

[

_

Ps  Pa

I %
;{_J'




Case 2

* Case2:Ifp,=1and p;=0

now, p,and p will no longer be adjacent (see
m-adjacency definition)

then, the length of the shortest
path will be 3 (p, p;, P, P,)

S T -

Ps  Pa
| L 2
f'_]'




Cases 3 &4

* Case3:Ifp,=0andp;=1
The same applies here, and the s
path will be 3 (p, p,, p3, P,4)

* Cased:Ifp,=1andp;=1

P1
;{_J'

Ps  Ps
P

nortest —m-

1 1
01
1

The length of the shortest m-path will be

4 (p/ pll p21 p3l p4)

1
11
1

1




Mathematical Tools

* Array vs. Matrix Operations

— Array operations involving one or more images are
carried out on a pixel-by-pixel basis

ay o dp |l by by apbyy apby
aap o || by by | | anby  anby,

— There are many situations where operations
between images are carried using matrix
operations.

ayy ay || by by | | anbi +apby  apbyp + apba
az ap || by by ayibyy + anbyy  ayibyy + axby,




Linear Operations

H| f(x. y)| = g(x. y)
Hlafi(x,y) + a;f;(x. )| = aH|fi(x, )| + a;H| f,(x, )]

= a;8i(x, y) + a;jg;i(x,y)

Slafi(xy) +afi(x 9] = Safx,y) + Da fi(xy)
= aiEff(Xs y) + ajzfj(-xs y)

= a;8i(x, y) + a;g; (x.y)



Non-Linear Operations

2 5
f[2] e[t



Arithmetic Operations

s(x,y) = flx,y) + g(x, )
d(x,y) = flx,y) — g(x,y)
p(x,y) = flx,y) X g(x, )
v(x.y) = flxy) = glx, y)



De-Noising

glx.y) = flx,y) + n(x,y)

!

1 K
g y) = o 21 gi(x,y)

E{g(x,y)} = [(x.y)

abec
dijel ik

FIGURE 2.26 (a) Image of Galaxy Pair NGC 3314 corrupted by additive Gaussian noise. (b)—(f) Results of
averaging 5, 10, 20, 50, and 100 noisy images, respectively. (Original image courtesy of NASA.)

Assumption: Noise is uncorrelated to image and has zero mean.



Image Subtraction — Enhance Difference

althlic

FIGURE 2.27 (a) Infrared image of the Washington, D.C. area. (b) Image obtained by setting to zero the least
significant bit of every pixel in (a). (c) Difference of the two images, scaled to the range [0, 255] for clarity.



Mask Mode Radiography
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FIGURE 2.28
Digital
subtraction
angiography.

(a) Mask image.
(b) A live image.
(c) Difference
between (a) and
(b). (d) Enhanced
difference image.
(Figures (a) and
(b) courtesy of
The Image
Sciences Institute,
University
Medical Center,
Utrecht, The
Netherlands.)




Image Division

g(x.y) = f(x, vh(x, y)

abc

FIGURE 2.29 Shading correction. (a) Shaded SEM image of a tungsten filament and support, magnified
approximately 130 times. (b) The shading pattern. (c) Product of (a) by the reciprocal of (b). (Original image
courtesy of Mr. Michael Shaffer, Department of Geological Sciences, University of Oregon, Eugene.)



ROI Masking

-

FIGURE 2.30 (a) Digital dental X-ray image. (b) ROI mask for isolating teeth with fillings (white corresponds to
1 and black corresponds to 0). (c) Product of (a) and (b).



Notes on Arithmetic Operations

* The images used in averaging and subtraction
must be registered.

* QOutput images should be normalized to the
range of |0, 255].
f. = f—min(f)
/. =KL/, /max(f,)]



Set Operations

AUB

ANB

AC

abc
de

FIGURE 2.31

(a) Two sets of
coordinates, A and B,
in 2-D space. (b) The
union of A and B.
(c) The intersection
of A and B.(d) The
complement of A.
(e) The difference
between A and B. In
(b)—(e) the shaded
areas represent the
member of the set
operation indicated.



Union of Gray-scale Sets
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FIGURE 2.32 Set
operations
involving gray-
scale images.

(a) Original
image. (b) Image
negative obtained
using set
complementation.
(c) The union of
(a) and a constant
image.

(Original image
courtesy of G.E.
Medical Systems.)

A = {(x,y,K — 3) | (x,y,z) = A} Complement — negative image
AUB={(x,y.max(z_,z,)|(x,v.z,) € 4,(x,y,z,) € B}



Logical Operations for Binary Images

NOT(A)

- FIGURE 2.33

(4) AND (5) Illustration of

; logical operations
- 20 S 7] involving
4 e foreground
(white) pixels.
(A) OR (B)
Black represents
= b1n+ary {}*5 and
white binary 1s.
The dashed lines
(A) AND [NOT (B)]
n n e

AND-
NOT

L reference only.

They are not part
of the result.

(4) XOR (B)



Spatial Operations

e Spatial operations are performed directly on the pixels
of a given image. We classify spatial operations into
three broad categories:

— Single-pixel operations

« s = T(z),where z is the intensity of a pixel in the original image
and s is the (mapped) intensity of the corresponding pixel in the
processed image.

— Neighborhood operations

* Generate a corresponding pixel at the same coordinates in an
output (processed) image, such that the value of that pixel is
determined by a specified operation involving the pixels in a
neighborhood of the input image

— Geometric spatial transformations

* Analogous to "printing" an image on a sheet of rubber and then
stretching the sheet according to a predefined set of rules.



Single-Pixel Operation

s=T(z)

235 FIGURE 2.34 Intensity
transformation
function used to

obtain the negative of
an 8-bit image. The
dashed arrows show
transformation of an
arbitrary input
intensity value z, into
its corresponding
output value s;.




1
gx,y) = % 2:(r,c)ESxyf(r» c)

n
ab
m| & \x. cd
(6 y) (% y)
s The value of this pixel FIGURE 2.35
xy is the average value of the 3
pixels in 5. chal averaging
using
neighborhood

processing. The
procedure is
illustrated in

—£0 - (a) and (b) for a
rectangular
neighborhood.
(c) The aortic
angiogram
discussed in
Section 1.3.2.

(d) The result of
using Eq. (2.6-21)
withm = n = 41.
The images are of
size 790 X 686
pixels.




Geometric Spatial Transformation

A geometric transformation consists of two basic
operations:

— A spatial transformation of coordinates (x,y) = T{(v, w)}
where (v, w) are pixel coordinates in the original
image, and (x, y) are the corresponding pixel
coordinates in the transformed image.

* Examples
Shrink the original image to half its size
(x, y) = T{(v,w)} = (v/2, w/2)

— Intensity interpolation that assigns intensity values to
the spatially transformed pixels.



[x y 1] =[vw1]T

TABLE 2.2
Affine transformations based on Eq. (2.6.-23).
Transformation Affine Matrix, T Coordl.nate Example
Name Equations
Identity 1 0 0 xX=v
= v
0 0 '
0 0 1
X
Scaling o 0 0 X =6
0 C}' 0 y = Cyw
0 0 1
. r
Rotation cosd siné x=wcosf —wsiné
—sinf  cos f y=vsing +wcosé
0 0
Translation 1 0 x=v+1
0 y=w+tli
Lt 1
Shear (vertical) 1 0 0] X =0+ s,w
5y 1 y=w
(- 0 0 -
Shear (horizontal) 1 s, O] xX=v
0 1 0 Yy =50+ w
(- 0 -

[v w 1]



Forward vs. Inverse Mapping

* Forward mapping (x,y) = T{(v, w)}

— Scanning the pixels of the input image and. At each location,

(v, w), computing the spatial location, (x, y), of the corresponding pixel in the
output image.

— A problem with the forward mapping approach is that two or more pixels in
the input image can be transformed to the same location in the output image,
raising the question of how to combine multiple output values into a single
output pixel.

— In addition, it is possible that some output locations may not be assigned a
pixel at all.

* Inverse mapping

— Scanning the output pixel locations and, at each location, (x,iy), computes the
corresponding location in the input image using (v,w) = T~ "(x, ).

— It then interpolates (using one of the techniques discussed previously among
the nearest input pixels to determine the intensity of the output pixel value.

— Inverse mappings are more efficient to implement than forward mappings and
are used in numerous commercial implementations of spatial transformations



Rotation and Intensity Interpolation
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FIGURE 2.36 (a) A 300 dpi image of the letter T. (b) Image rotated 21° clockwise using nearest neighbor
interpolation to assign intensity values to the spatially transformed pixels. (c) Image rotated 21° using
bilinear interpolation. (d) Image rotated 21° using bicubic interpolation. The enlarged sections show edge
detail for the three interpolation approaches.




Image Registration

Image registration is an important application of digital
image processing used to align two or more images of the
same scene.

In the preceding discussion, the form of the transformation
function required to achieve a desired geometric
transformation was known.

In image registration, we have available the input and
output images, but the transformation that the output
image from the input is unknown.

The problem then is to estimate the transformation
function and then use it to register the two images.

To clarify terminology, the input image is the image we
wish to transform, and what we call the reference image is
the image, against which we want to register the input.



Tie Points

* One of the principal approaches for solving the problem is
to use
tie points (also called control points), which are
corresponding points whose locations are known precisely
in the input and reference images.

 There are numerous ways to select tie points, ranging from
interactively selecting them to applying algorithms that
attempt to detect these points automatically.

* |n some applications, imaging systems have physical
artifacts (such as small metallic objects) embedded in the
imaging sensors. These produce a set of known points
(called Réseau Marks) directly on all images captured by
the system, which can be used as guides for establishing tie
points.



Transformation Function Estimation

The problem of estimating the transformation function is one of
modeling.

For example, suppose that we have a set of four tie points each in
an input and a reference image. A simple model based on a bilinear
approximation is given by

X = U+ Ow -+ vw + oy
Yy = C50 T CW + Crow + g

-

where, during the estimation phase, (v,w) and (x, y) are the
coordinates of tie points in the input and reference images,
respectively

If we have four pairs of corresponding tie points in both images, we
can write eight equations and use them to solve for the eight
unknown coefficients.
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FIGURE 2.37
Image
registration.

(a) Reference
image. (b) Input
(geometrically
distorted image).
Corresponding tie
points are shown
as small white
squares near the
corners.

(c) Registered
image (note the
errors in the
borders).

(d) Difference
between (a) and
(c), showing more
registration
errors.



Vector and Matrix Operations

A FIGURE 2.38
S Formation of a
A vector from

e corresponding
/:' pixel values in
three RGB
component
Component image 3 (Blue) images.

Component image 2 (Green)

Component image 1 (Red)

Euclidean Distance (also called vector norm ||z — al|):

D(z,a) = :(_z — a)l(z - a)]%

: é,
= (@ — @)+ (@ — @)+ - + (2, )



Pixel and Image Vectors

e Linear transformation w = A(z — a)

* we can express an image of size M X N as a
vector of dimension MN X 1 by letting the
first row of the image be the first N elements
of the vector, the second row the next N
elements, and so on.

* With images formed in this manner, we can
express a broad range of linear processes
applied to an image by using the notation

g=HIf+n



Image Transforms

* All the image processing approaches discussed
thus far operate directly on the pixels of the
input image; that is, they work directly in the
spatial domain.

* |n some cases, image processing tasks are best
formulated by transforming the input images,
carrying the specified task in a transform
domain, and applying the inverse transform to
return to the spatial domain.



Forward Transform

-1 N=1
T(u,v) = 20 2 [y v
Inverse Transform
M~1 N-1
flx,y) = Z Z T(u, v)s(x, v, u, v)
==t} =0

. I(u, v) Operation R[T(u, v)] Inverse (x,y’
f(x, v)— Transtorm - > " — 81X, y)
S R transform
N e
Spatial — — — — — Spatial
domain Transform domain domain

FIGURE 2.39
General approach
for operating in
the linear
transform
domain.



Example
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FIGURE 2.40

(a) Image corrupted
by sinusoidal
interference. (b)
Magnitude of the
Fourier transform
showing the bursts
of energy responsible
for the interference.
(c) Mask used to
eliminate the energy
bursts. (d) Result of
computing the
inverse of the
modified Fourier
transform. (Original

image courtesy of
NASA.)



Transform Kernels

The forward transformation kernel is said to be separable if
r(xv Y, U, 'U) = I (xa u)rZ(.)G 'U)

The kernel is said to be symmetric if
r(x, y,u, v) = ri(x, ury(y, v)

The 2-D Fourier Transform has the following kernels
rix. v.u. v) = e 12mux/M+oy/N)

s(x, y,u,v) =

eij(ux/M+vy/N)

MN

Discrete Fourier Transform pair:
M-1 N-1

T(u,v) = E 2 Flx, y) eI 2mux/M+oy/N)

x={ y=
-*NI

f X, }’) — 2 Z‘T(u” ,U)ejZﬂ(ax/Mﬂ:y/’N)



Matrix Form

When the forward and inverse kernels of a transform pair are
separable and symmetric, and f (x, y) is a square image of
size M X M, then the forward transform

M-1 N-1

T(u,v) = 2, > flx, yr(x yuv)

x=0 y=0
can be expressed in matrix form: T = AFA

To obtain the inverse transform, BTB = BAFAB
IfB=A"

F = BTB : perfect reconstruction

Otherwise, we have an approximation

F = BAFAB



Probabilistic Methods

Probability finds its way into image processing work in a
number of ways.

The simplest is when we treat intensity values as random

quantities. For example, let z;,i = 0,1,2,... ,L — 1, denote
the values of all possible intensities in an M X N digital image.
The probability of intensity level z, in a given image is

i —
estimated as p(z;,) = et -
The mean (average) intensity is given by m = 2 2 P(2¢)
The variance: , & 0
ot = > (z — m)’ plz;)
k=0

The nth moment: o, . .
ma(2) = Dz — m)" p(zy)
k=0



STD as Measure of Intensity Contrast
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FIGURE 2.41
Images exhibiting
(a) low contrast,
(b) medium
contrast, and

(c) high contrast.



Matlab Image Processing Toolbox

* Image Processing Toolbox User’s Guide
— Basic Image Import, Processing, and Export
— Basic Image Enhancement and Analysis Techniques
— Introduction
— Reading and Writing Image Data
— Displaying and Exploring Images
— Building GUIs with Modular Tools
— Geometric Transformations
— Image Registration
— Linear Filters
— Transforms
— Morphological Operations
— Analyzing and Enhancing Images (Edge Detection, Image Segmentation, ...)
— Image Deblurring
— Color
— Block Processing, Code Generation, GPU Computing, ...



Example Functions

| = imread('coins.png');

whos |

imshow(l)

Imtool(l)

imwrite (12, 'pout2.png');

Imfinfo ('pout2.png');

K = imfinfo('yellowlily.jpg');

image_bytes = KWidth * K.Height * K.BitDepth / 8
Compressed_bytes = K.FileSize

Compression_ratio = image _bytes / Compressed_bytes



