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Pattern Classification

A pattern is a special arrangement of features.

A pattern class is a set of patterns that share
some common properties

The job of pattern recognition system is to assign
a class label to each of its unknown input
patterns.

Four stages of pattern recognition
— Sensing
— Preprocessing

— Feature Extraction
— Classification



Image Classification Approaches

Prototype Matching

. Optimal Statistical Formulation

— Applications where the nature of the data is well
understood, allowing for effective pairing of features
and classifiers

— Rely on a great deal of engineering to define the
features and elements of a classifier

Neural Networks

— Features are learned by systems, rather than being
specified a priori by a human designer.



Unsupervised and Supervised Training

e Unlabeled Data

— The class of each patter is unknown, e.g., seeking clusters in
a data set.
— Unsupervised Training
* Design a classifier by using unlabeled data.

e Labeled Data

— We know the class of each pattern, e.g., in character
recognition problem.

— Supervised Training
Design a classifier with labeled data by dividing the datasets
into three subsets in general:
* Training Set
* Validation Set
* Test Set



Patterns & Pattern Classes

In image pattern classifications, the two principal
pattern arrangements are

* Pattern Vectors
— Quantitative patterns

e Structural Patterns

— Composed of symbols arranged in the form of
strings, trees, etc.



Pattern Vector Formed by Linear Indexing
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FIGURE 13.2

Petal and sepal
width and length
measurements
(See ArrOws)
performed on iris
flowers for the
purpose of data
classification. The
image shown is of
the [fris virginica
gender. (Image
courtesy of
USDA.)

Feature Vector

x, = Petal width
x; = Petal length
x;= Sepal width
xs = Sepal length



Other Examples
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FIGURE 13.4

Pattern vectors
whose components
capture both bound-
ary and regional

characteristics,
X X = compaciness
X=X, x; = circularity
X5 ;= eccentricity




FIGURE 13.5

An example of
pattern vectors
based on
properties of
subimages. See
Table 12.3 for an

explanation of the
components of x.

x, = max probability
x, = correlation

X, = contrast

x, = uniformity

x. = homogeneity

X, = entropy



FIGURE 13.6 Feature
vectors with
components that
are invariant to
transformations
such as rotation,
gcaling, and
translation. The
vector compo-
nents are moment

invariants.
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Images in spectral bands 1-3
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FIGURE 13.7 Pattern (feature) vectors formed by concatenating corresponding pixels from a set of registered images.
(Original images courtesy of NASA.)



Structural Patterns for Shapes

FIGURE 13.8
Symbol string
generated from

a polygonal
approximation of
the boundaries of
medicine bottles.

Direction of travel

' Symbol string

ff = Interior angle
B = line segment of specified length




Downtown Residential

}ld{ /nghlwk Housing Shopping Highways
malls
High Large Multiple Numerous Loops / |\ / \
densitity structures intersections Low  Small ~ Wooded Single ~  Few
density structures areas intersections

FIGURE 13.9 Tree representation of a satellite image showing a heavily built downtown area (Washington, D.C.) and
surrounding residential areas. (Original image courtesy of NASA.)



Prototype Matching

e Minimum Distance Classifier

— Compute a distance-based measure between an
unknown pattern vector and each of the class

prototypes.
— The prototype vectors are the mean vectors of the
various pattern classes

1 .
mj":—&foj j=12,...,W

j Xew,
Di(x) = |x —m;|] j=12,... W
la| = (a’a)!/? s the Euclidean Norm

— Then assign the unknown pattern to the class of its
closest prototype.



* |t can be shown that it is equivalent to selecting a
class that can maximize the following decision

function:

1
dj(x) =x'm; — —-mfmj j=12,...,W

I2
 The decision boundary between two classes:

dij(x) = di(x) - d;(x)
1

x'(m; — m;) — E(m; — m}-)T(mf +m;) =0

I



lllustration for Two Classes

O Iris versicolor

FIGURE 13.10 o Iris setosa

Decision 20 - / 28x, + 1.0x, — 8.9 =0
boundary of a
minimum distance
classifier (based
on two measure-
ments) for the
classes of Iris
versicolor and Iris
setosa. The dark
dot and square 0.5
are the means of '
the two classes.
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Detailed Derivations

m; = (4.3,1.3)7 my = (1.5,03)"

1
di(x) = x'm; — —2~m1Tm3

= 4.3x; + 1.3x, — 10.1

1
dz(X) — meg - Em{mg

= 1.5x, + 03x, — 1.17

diy(x) = dy(x) — dy(x)
=2.8x; +10x, — 89 =0
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Feature Design

The minimum-distance classifier works well when the
distance between means is large compared to the spread
or randomness of each class with respect to its mean.

We will show that the minimum-distance classifier yields
optimum performance (in terms of minimizing the average
loss of misclassification) when the distribution of each class
about its mean is in the form of a spherical “hypercloud” in
n-dimensional pattern space.

One of the keys to accurate recognition performance is to
specify features that are effective discriminators between
classes.

Systems based on the Banker’s Association E-13B font
characters are example of how highly engineered features
can be used in conjunction with a simple classifier to
achieve superior results.



Magnetic Ink Character Recognition
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Matching by Correlation



Correlation Coefficient

Correlation of a kernel w with an image f(x, y) is given by:
c(x,y) = > Dw(s, )f (x + s,y + 1)
5 !

The kernel w is called the template (i.e., a prototype subimage)

We often perform matching using the correlation coefficient
in order to avoid the sensitivity to changes in the amplitudes
to either the kernel or the image pixels:

EZ[’W(SJ)” W]EZ[]‘(X +s,y+ - f(x +s,y+ t)]

y(x,y) = z

S ———"



Template Matching

(m—1)/2
pu Origin '
. . . (n—1)/2—~
* The correlation coefficient 1]
has values in the range of [-1, 1]. i
NESY

Template w vy
centered at an arbitrary
location (x, ¥)

 Maximum correlation exists
when the normalized template
and the normalized sub-image
have the best match

FIGURE 13.12

The mechanics of
template
matching.
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FIGURE 13.13

(a) 913 x 913
satellite image
of Hurricane
Andrew.

(b) 31 % 31
template of the
eye of the storm.
(c) Correlation
coefficient shown
a5 an image (note
the brightest
point, indicated
by an arrow).

(d) Location of
the best match
(1dentified by the
arrow ). This point
15 a single pixel,
but its size was
enlarged to make
it easier to see.
(Original image
courtesy of
NOAA.)




Frequency Domain Processing

Spatial correlation can be obtained as the inverse Fourier transform

of the product of the transform of one function times the conjugate

of the transform of the other — More efficient computationally.
f(x,y)ew(x, y) & F(u, v)H*(u, v)
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Optimal (Bayes) Statistical Classifier



Optimal Classification

* Probability considerations become important in
pattern recognition because of the randomness
under which pattern classes normally are generated.

* |tis possible to derive a classification approach that is
optimal in the sense that, on average, it yields the
lowest probability of committing classification errors.

A

FIGURE 13.19
Probability
density functions
for two 1-D
pattern classes.
Point x, (at the
intersection of the
two curves) 1s the
Bayes decision
boundary if the
two classes are
equally likely to

Probability density

OCCUT.




Conditional Probabilities and Bayes Theorem

Joint Probability P(4, B) for random events A and B.

Conditional Probability P(A|B) = PIE?S). Similarly, P(B|4) =
P(4,B)
P(A)

If events A and B are independent, then P(A4,B) = P(A)P(B),
implying that P(B|A) = P(B) and P(A|B) = P(A)
Example: Ice Cream

70% of your friends like Chocolate, and 35% like Chocolate AND
like Strawberry.

Question: What percent of those who like Chocolate also like
Strawberry?

Answer:
P(S|C) =P(C, S) / P(C) =0.35/0.7 = 50%



Example

A noisy communication channel modeled by transition probabilities:

Given:

Binary source: P(S0) + P(S§1) =1

and the a priori probabilities: P(R0|S0) + P(R1|S0) = 1, P(R0|S1) + P(R1|S1) =1
Question:

Determine P(R0), P(R1), and posterior probabilities P(S0/R0), P(S1/R1)?

Answer:
P(RO) /Sender —>! Channel — Receiver\
= P(R0,S0) + P(RO,S1)

= P(RO|S0)P(S0) + P(RO|S1)P(S1)

P(R0|S0)
P(S0|R0) P(SO) 0 =— > (0 P(RO)
_ P(R0,50) _ P(RO|S0)P(S0) D L7
" P(RO)  P(RO) A >< P
OIS

Decision, given the same P(RO0): P(s1) 1 = = > 1 PR
Accept RO if P(SO|RO) > P(S1|R0), \ P(R1|S1) /
or P(RO|SO0)P(S0) > P(RO|S1)P(S1)




Bayes Classifier

* Given the prob. that a pattern vector x comes from class
¢c; is denoted by p(¢;|x).

* |f the pattern classifier decides that x came from class
cjwhen it actually came from ¢;, it incurs a loss denoted

* Because the pattern vector x may belong to any one of N

possible classes, the average loss incurred in assigning to
class ¢j is

N
) = ) Lijp(celx)
k=1

which is called the conditional average risk in
decision theory.



N
5@ = ) Lip(cil®)

According to the Bayes Th_eorem
p(X|Cx)P(ck)
p(x)

p(clx) =

)

Therefore,

13(x) = Z Ly (xlc) P(c)

p(x)

where
p(x|c;): PDF of the patterns from class cy;
(a priori prob.)
P(ci): Prob. of occurrence of class ¢y,
Since p(x) is a common term, we can rewrite 7;(x) as



N
5@ = ) Ligp@la)P(er)
k=1

The classifier that minimizes the total average loss Is called
the Bayes Classifier,

where the classifier assigns an unknown pattern x to class
¢;ifr;(x) <rj(x)forj=1,2,..,N;j # i. Thatis

N N
2 Li.;p(x|ci)P(ci,) < 2 qup(x‘cq)P(cq)
k=1 q=1

If the loss for a correct decision is generally assigned a value
of 0, and the loss for an incorrect decision is assigned a

value of 1, then Ll] =1 - 51]



Derivation of the Bayes Classifier

@) = ) Lgp(xla)P(c) and Ly =1- 8y
N k=1

5@ = ) (1= 8)p&la)P(ey)

k 1

2 p(xle)P () - 2 8,p () P(cr)

— p(x) - p(x|)P(c))
Similarly,
r;(x) = p(x) — p(xlc;)P(c;)



Decision Rule

 classifier assigns an unknown pattern x to
class ¢; if
ri(x) <ri(x)forj=1,2,..,N;j # .

p(x) — p(x|c)P(c;) < p(x) — p(x|c;)P(c;),
or equivalently

p(xlc)P(c;) > p(x|c;)P(c;)




Decision Function

 The Bayes Classifier for a 0-1 loss function computes
the decision function

dj(x) = p(x|c;)P(c;)
forj =1,2,...,N and assign a pattern x to class ¢; if
d;(x) > d;(x), forall j # i.

* For the optimality of Bayes decision function to hold,
the a priori probability p(x|c;) and the class
probability P(c;) needs to be known or estimated
from sample patterns during training.

 Usually assume Gaussian Distribution for p(x|c;).



Gaussian Pattern Classes

Probability density

(x—mj)z
1 T o2
dj(x) = p(x|c;)P(c;) = Torg € AL C)
j

where j=1,2



n-Dimensional Gaussian PDF

1 ~J(x-m)’C, (x~m))

p(x/w)) = IPRLY:
J) (27?')”/2“/}"1“—

where the mean vector is m; = Ej{x}

and the covariance matrix is
— T
Cj = Ej-{(x — mj-)(x — m},—) ]

We can approximate with taking the averages of sample
vectors:

]
mjﬂ“]‘“v‘““j' ZK Cj:ﬁ EXXT“mjm}r
J

/



Logarithm of the Decision Function

d(x) = In| p(x/w))P(w;)] = In p(x/w;) + In P(w))
1
(277)”/2|C}"U2

d(x) = In P(a)j) - %]nICjI - %[(x - mj)TC;i(x - mj)]

1
dj(x) = In P(w) = - In|C| - (x = m)'Cl(x — my),

~3(x-m ) C, ' (x~m,)

p(x/w;) =

1
2



* |f the covariance matrix is identical. then

1
_ Tl 2 Tl
d(x) = In P(w;) + x’C 'm; M, C 'm,
* If all classes are equally likely and the covariance
matrix is an identity matrix, then
1 T

_— .
dj(X)"*xm]“’“"im]mI ]*1,2,...,W

e The same decision function for a minimum-distance
classifier, which is optimal in the Bayes sense if

— The pattern classes are Gaussian.
— All covariance matrices are equal to identity matrix.

— All classes are equally likely.



Example

[} m=fhm [}

G=C=c=|{ . e =17

_ 1
d](X) =x!'C 1mj — Em]T

di(x) =x; +x,—3 and
d,(x) = 3x; + 3x, — 27
The decision boundary is
d,(x) —d{(x) =x; +x,—12=0

C m;
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Multispectral Image Classification

Spectral band 4

1 Spectral band 3

Spectral band 2

Spectral band 1



FIGURE 13.21 Bayes classification of multispectral data. {a)—(d) Images in the visible blue, visible green, visible red,
and near infrared wavelength bands. (e) Masks for regions of water (labeled 1), urban development (labeled 2),
and vegetation (labeled 3). (f) Results of classification; the black dots denote points classified incorrectly. The other
(white) points were classified correctly. (g) All image pixels classified as water (1n white). (h) All image pixels clas-
sified as urban development (in white). (1) All image pixels classified as vegetation (in white).



Accuracy of Classification

TABLE 13.1
Bayes classification of multispectral image data. Classes 1,2, and 3 are water, urban, and vegetation, respectively.
Tralning Patterns Test Patierns
No. of Classified imto Class a, No. of Classified into Class o

Class ~ Samples 1 2 3 Correct Class  Samples 1 2 3 Correct

1 484 452 2 0 09,6 1 483 478 3 2 08.9

2 933 i B85 48 04.9 2 032 0 880 52 b4.4

483 i 19 464 6.1 3 452 0 16 466 06.7

* Regions of interest with known labels are called Ground Truth.
* Half of the samples are used for training (i.e., for estimating the
mean vectors and covariance matrices for 4-D pattern vector.

* The other half for independent testing to asses classifier
performance.
* Assume equal class probabilities.



Neural Networks



Learning Machines

Use of a multitude of elemental nonlinear computing
elements (called artificial neurons), organized as networks,
whose interconnections are similar to the way in which
neurons are interconnected in the visual cortex of
mammals.

The resulting models are called neural networks.

We use neural networks as a machine to adaptively learn
the parameters of decision function via successive
presentations of training patterns.

Perceptron is such a simple learning machine.

The perceptron convergence theorem states that the
algorithm is guaranteed to converge to a solution in a finite
number of steps if the two pattern classes are linearly
separable.



Perceptron

* Asingle perceptron learns a linear boundary between two linearly
separable pattern classes.

> e

® < ® <

WXy + WrX, + Wy =0
/_\' =ax+b, or AL = c
y—ax-b=0

Oeq Oeq

X X X X

(a) The simplest two-class example in 2-D, showing one possible decision boundary out of an
infinite number of such boundaries. (b) Same as (a), but with the decision boundary expressed
using more general notation.



+1
J_ +1 or —1
—1

n

Schematic of a perceptron, showing the operations it performs.



a b l1(!)=d(.\’l..\‘_~,) =X + .\‘2 -3

X, A

(a) Segment of the decision boundary learned by the perceptron
algorithm. (b) Section of the decision surface. The decision
boundary is the intersection of the decision surface with the



Model of An Artificial Neuron
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Various Activation Functions

1.0 g
v 1
h(z)= -
@) 1+e*
H(z) = h(z)[1- h(z)]
0.5t
Sigmoid
0.0 . ; i i
-6 -4 -2 0 2
abc

1.0 6
h(z)= tanh(z) h(z) = max(0, z)
) I (1 ifz>0
05+ A(z)=1-[h(2)| h';:’:J
(2) [h(z)] ®=1p .20
it .
0.0t
2_
-05¢+
tanh ReLu
-1.0 . 0 . i i
-6 -4 =2 0 2 6 -6 -4 -2 0 2 4

(a) Sigmoid. (b) Hyperbolic tangent (also has a sigmoid shape, but it is
centered about 0 in both dimensions). (c) Rectifier linear unit (ReLU).




Model of a Feedforward, Fully Connected Neural Network
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Note how the output of each
neuron goes to the input of all
neurons in the following layer,
hence the name

fully connected for this type of
architecture.
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Convolutional Neural Network (CNN)

192 input neuron 7‘
= /-
9 /\\—’ -\__.
_ A |
] 12 8 '\'/ " -/"._a
6 pooled 2 pooled & \ = 10
feature feature G 0 @ output
¢ eature - P
Image of size 28 X 28 6 feature maps maps of n;ngs;) g maps of & neuron:
: . si :
of size 24 X 24 size 12 X 12 sized X 4 Filly connected

two-layer neural net

CNN used to recognize the ten digits in the MNIST database. The
system was trained with 60,000 numerical character images of
the same size as the image shown on the left.



Feature Maps

Feature Pooled Feature Pooled Neural
maps feature maps feature net
maps maps .
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The output high value (in white) indicates that the CNN recognized the input properly.



