EE 604, Digital Image Processing

Chapter 3:
Intensity Transformations
and Spatial Filtering
Dr. W. David Pan

Dept. of ECE
UAH



Preview

e Spatial domain refers to the image plane itself, and image
processing methods in this category are based on direct

manipulation of pixels in an image.

* |Image processing in a transform domain involves first
transforming an image into the transform domain, doing
the processing there, and obtaining the inverse transform
to bring the results back into the spatial domain.

* Two principal categories of spatial processing are intensity
transformations and spatial filtering.

— Intensity transformations operate on single pixels of an image,
principally for the purpose of contrast manipulation and image
thresholding.

— Spatial filtering deals with performing operations, such as image
sharpening, by working in a neighborhood of every pixel in an

image
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Intensity Transform

gx,y) =T[f(x,y)]

Image f

— (x,y)

3 X 3 neighborhood of (x, y)

Spatial domain

~ 7 FIGURE 3.1

A3 X3
neighborhood
about a point
(x,y) in an image
in the spatial
domain. The
neighborhood is
moved from pixel
to pixel in the
image to generate
an output image.



Contrast Stretching and Thresholding
s=T(r)
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Basic Transformation Functions

* Image Negatives: s=L—1-—r7r
* Log Transformations: s =clog(1+ 1)

 Power-Law (Gamma) Transformations
s=crY
* Piecewise-Linear Transformation Functions
— Contrast Stretching
— Intensity-Level Slicing
— Bit-plane Slicing
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Negatives

ab

FIGURE 3.4

(a) Original digital
mammogram.

(b) Negative
image obtained
using the negative
- transformation

"~ inEq.(32-1).

: (Courtesy of G.E.
Medical Systems.)




Log Transformation

a b

FIGURE 3.5

(a) Fourier
spectrum.

(b) Result of
applying the log
transformation in
Eq. (3.2-2) with

c = 1.

Used to expand the values of dark pixels while compressing the
higher-level values



Output intensity level, s
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FIGURE 3.6 Plots
of the equation

s = cr’ for
various values of
v (¢ = linall
cases). All curves
were scaled to fit
in the range
shown.



Gamma Correction

a b
cd

FIGURE 3.7
(a) Intensity ramp
image. (b) Image
as viewed on a
simulated monitor
Original image | Gamma Original image as viewed with a gamma of
correction on monitor 25 (C) G’Hﬂ]ma'
corrected image.
(d) Corrected
image as viewed
on the same
monitor. Compare

(d) and (a).

— .1/25 _ ,.04
S=7r / =T
Gamma-corrected image Gamma-corrected image as

viewed on the same monitor



Contrast Manipulation

FIGURE 3.8 See Matlab code
(a) Magnetic
resonance

image (MRI) of a
fractured human
spine.

(b)—(d) Results of
applying the
transformation in
Eq. (3.2-3) with

¢ = 1and

vy = 0.6, 0.4, and
0.3, respectively.
(Original image
courtesy of Dr.
David R. Pickens,
Department of
Radiology and
Radiological
Sciences,
Vanderbilt
University
Medical Center.)




Compression of Intensity Levels

ab
cd

FIGURE 3.9

(a) Aerial image.
(b)-(d) Results of
applying the
transformation in
Eq. (3.2-3) with

¢ = 1and

v = 3.0, 4.0, and
5.0, respectively.
(Original image
for this example

courtesy of
NASA.)




Piecewise-Linear Transformation Functions

* A complementary approach to the methods discussed
previously is to use piecewise linear functions.

* The principal advantage of piecewise linear functions is
that the form of piecewise functions can be arbitrarily
complex.

* |n fact, a practical implementation of some important
transformations can be formulated only as piecewise
functions.

The principal disadvantage of piecewise functions is
that their specification requires considerably more user
input.
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Contrast Stretching
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FIGURE 3.10
Contrast stretching.
(a) Form of
transformation
function. (b) A
low-contrast image.
(¢) Result of
contrast stretching.
(d) Result of
thresholding.
(Original image
courtesy of Dr.
Roger Heady,
Research School of
Biological Sciences,
Australian National
University,
Canberra,
Australia.)

See Matlab code



Intensity-Level Slicing

ab L-1r———mmm——o - :

FIGURE 3.11 (a) This
transformation —
highlights intensity
range [A, B] and
reduces all other
intensities to a lower ~—T(7)
level. (b) This —
transformation
highlights range

[A, B] and preserves
all other intensity ]
levels.
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FIGURE 3.12 (a) Aortic angiogram. (b) Result of using a slicing transformation of the type illustrated in Fig.
3.11(a), with the range of intensities of interest selected in the upper end of the gray scale. (c) Result of
using the transformation in Fig. 3.11(b), with the selected area set to black, so that grays in the area of the

blood vessels and kidneys were preserved. (Original image courtesy of Dr. Thomas R. Gest, University of
Michigan Medical School.)



Bit-Plane Slicing

One 8-bit byte 7 Bit plane 8
/ (most significant)
e
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FIGURE 3.13
Bit-plane
representation of
an 8-bit image.
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FIGURE 3.14 (a) An 8-bit gray-scale image of size 500 X 1192 pixels. (b) through (i) Bit planes 1 through 8,
with bit plane 1 corresponding to the least significant bit. Each bit plane is a binary image.
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Reconstruction
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FIGURE 3.15 Images reconstructed using (a) bit planes 8 and 7; (b) bit planes 8, 7, and 6; and (c) bit planes 8,
7,6, and 5. Compare (c) with Fig.3.14(a).
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Histograms

* Histogram gives an estimate of the probability of
occurrence of intensity.

* Histograms are the basis for numerous spatial domain
processing techniques

— Histogram manipulation can be used for image enhancement

— In addition to providing useful image statistics, the information
inherent in histograms also is quite useful in other image
processing applications, such as image compression and
segmentation.

* Histograms are simple to calculate in software and also
lend themselves to economic hardware implementations,
thus making them a popular tool for real-time image
processing.



I I I I

Histogram of dark image | Note: imhist ( ) might not show you the whole
picture:

The maximum counts displayed is calculated
e . below. This prevents a few large counts from
S TN - drowning out the rest of the histogram, at the
expense of not being able to see the whole

plot.

C Lt e In “imhist.m”:

I Histogrzlim of lowl—contrast Iima.‘._’,e Var = Sqrt(y’*y/length (y))l
limits(4) = 2.5*var;
axis(hist_axes,limits);

To see the whole picture, use:
| LA | | . . .
——T1 >> [counts, bins] = imhist(l);
Histogram of high-contrast image .
gl >> stem (bins, counts);

b bt ¢ FREEVR EVMRERN A0y L

FIGURE 3.16 Four basic image types: dark, light, low contrast, high
contrast, and their corresponding histograms.
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Histogram Equalization
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FIGURE 3.17

(a) Monotonically
increasing
function, showing
how multiple
values can map to
a single value.

(b) Strictly
monotonically
increasing
function. This is a
one-to-one
mapping, both
ways.

FIGURE 3.18 (a) An arbitrary PDF. (b) Result of applying the transformation in
Eq. (3.3-4) to all intensity levels, r. The resulting intensities, s, have a uniform PDF,
independently of the form of the PDF of the r’s.



Review of Probability Theory

Random Variables
Distribution Function
CDF

PDF

Functions of random variables



Continuous vs. Discrete RV

In probability and statistics, a random variable is
a variable whose value is subject to variations
due to chance.

A random variable can take on a set of possible
different values, each with an associated
probability.

If a random variable can assume any value within

a specified range (possibly infinite), then it will be
designated as a continuous random variable.

Discrete random variables are those assuming
one of a countable set of values.



Distribution Functions

Let X be a random variable and x be any allowed value of this
random variable.

The probability distribution function (also known as
Cumulative Distribution Function, or CDF) is defined as the
probability of the event that the observed random variable X
is less than or equal to the allowed value x.

Fy(x) = PrlX <x)
The subscript X denotes the random variable while the
argument x could be any other symbol.

Sometimes it is convenient to suppress the subscript X when
no confusion will result. Thus Fy(x) will often be written as
F(x).

Since the probability distribution function is a probability, it
must satisfy the basic axioms.



Properties of Fy (x)
Fy(x) = Pr(X <x)

0<Fy(x) <1, —oo<x<
Fx(—o) =0, Fx(x) =1

Fy(x) is non-decreasing as x increases.
Pr(x; < X < x3) = Fx(x3) — Fx(xq).
Pr(X >x) =1— Fy(x).

Examples:

|| M - 1fF====- 1F=------
|
: 0.6f------
! :
b

0.4} --
0.2




Example Distribution

* A particular random variable has a probability
distribution function given by

B 0 —o<x <0
FX(X)_{l—e‘zx 0<x <o

 What is the probability that X > 0.5?
Pr(X >0.5)=1—-Fx(05)=1—(1—-e"%05) =0.3679
 What is the probability that 0.5 < X < 0.517?
Pr(0.5 < X < 0.51) = F5(0.51) — F;(0.5) =?



Density Functions

* Although the distribution function is a complete
description of the probability model for a single
random variable, it is not convenient for many
calculations of interest.

* |t may be preferable to use the derivative of Fy(x)
rather than Fy (x) itself. This derivative is called the
probability density function (PDF). When it exists, it
is defined by

Fy(x +e)—Fx(x) dFx(x)

e dx

fx(x) = }ei_r)%



Properties of PDF

* The physical significance of the PDF is best described
in terms of the probability element,
fx(x)dx =Pr(x < X < x + dx).

* Properties
1. fx(x) =20, —00o < x <

2. 7 fx()dx =1
3. Fx(x) = ffoo fx(w)du
4. f;lz fx()dx =Pr(x; < X < x5)



Examples of CDF’s and PDF’s

1 _________
0.6F------ —I—

0.4f--- i
1 |
i




Another Example

0 —oo<x<0
'Fx(X)_{1—e—2x 0<x< o
+ PDF:
dFx(X) 0 —0<x<0
o =—== Y S

How about the following properties?
1. fx(x) =20, —c0o < x <
2. fjooo fx(x)dx =1

0.0)

00
J 2e % dx = —e7 2| =7
0 0



Y = g(X)

Given the PDF of X is known as fy(x), find the PDF of Y, which is

denoted by fy (v).

It is clear that whenever the random variable X lies between x and x +
dx, the random variable Y will lie between y and y + dy.

Since the probabilities of these events are fy(x)dx and fy (y)dy,
fx(x)dx = fy (y)dy.

Therefore, fy(y) = fx(x) Z—;

In generalr ’ fY(y) = fX(x)

dx
dy

Y




Example

f_:f (x) = IE'_IH{I}

¥ =X




Returning to Intensity Transform
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FIGURE 3.17

(a) Monotonically
increasing
function, showing
how multiple
values can map to
a single value.

(b) Strictly
monotonically
increasing
function. This is a
one-to-one
mapping, both
ways.



Continuous Intensity Values

- dr
s=T) =(L—1) f p. (w)dw ps(s) = pr(r) |70
0
dar
ds _dT() pi(s) = p,(r) R
dr dr
, _ 1
= (L - 1)il:/ pr(w) dwil pr) (L = Dpr)
dr 0
1
= (L = 1)p,(r) -1 'Ee=bod

Histogram Equalization



Example

( 2r

pr(r) = 4 (L - 1)2
0 otherwise

forO0<r=<[L —1

\

r 2 r ro
=T(r) = (L -1 dw = ——— [ wdw =
s=10) = (=) [ pwydw = 7 [waw = '

=~}
B 2r ds
(L — 1)?|| dr
d r? T
dr L — 1

(L -1)
2r

ps(s) = p(r)
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Discrete Intensity Values

)= % k=012, L~1
pA7 = UN =0,1,2,...,

k
~u=:7Tm)==(L“-1)2%pAn)

(L*--l

zn k=0,1,2,...,L — 1



Illustration

r, n, Po(r) = ng/MN TABLE 3:]

Intensity

ro = 0 790 0.19 R

ro=1 1023 0.25 distribution and

r =2 850 0.21 histogram values

r=3 656 0.16 for a 3-bit

r, =4 329 0.08 -

rs =5 245 0.06 64 X 64 digital

re = 122 0.03 image.

rr =17 81 0.02

0
50 = T(r) = 73 p,(r)) = Tp,(ro) = 1.33

1
§1 = T(rl) = 7Epr(rj) = 7P,-(r0) + 7Pr(r1) = 3.08
0

j:

§; = 4.55, 53 = 5.67,5, = 6.23, 55 = 6.65, 5 = 6.86, 57 = 7.00.



Pr(ri) Sk Ps(sk)

25+ . . . 25+ 0 .
204 | ® 5.6 - 20+ 4 %
154 | . i 154 | o

. - ey BT
10+ | . 2.8 1 ; 104 | !
05+ | R 1.4 05+ o

R - ——————> 1 —————— 5

0123 4567 0123 456 7 01234567

I See Matlab code

FIGURE 3.19 Illustration of histogram equalization of a 3-bit (8 intensity levels) image. (a) Original
histogram. (b) Transformation function. (c) Equalized histogram.

so = 1.33—1 54 = 6.23—6
s1 = 3.08—3 ss = 6.65 —7
§7 = 455—5 sg = 6.86—>7
s3 = 5.67—6 57 = 7.00—7



il

FIGURE 3.20 Left column: images from Fig. 3.16. Center column: corresponding histogram-
equalized images. Right column: histograms of the images in the center column.



histeg

>> | = imread('Fig0320(2)(2nd_from_top).tif');
>> imshow(l)

>> figure; imhist(l)

>> ] = histeq(l);

>> figure;

>> imshow(J)

>> figure; imhist(J)
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Fundamentals of Spatial Filtering

The name “filter” is borrowed from frequency domain
processing, which is the topic of the next chapter, where
"filtering" refers to accepting (passing) or rejecting certain
frequency components.

For example, a filter that passes low frequencies is called a
lowpass filter. The net effect produced by a lowpass filter is
to blur (smooth) an image.

We can accomplish a similar smoothing directly on the
image itself by using spatial filters (also called spatial
masks, kernels, templates, and windows).

Spatial filters offer considerably more versatility because
they can be used also for nonlinear filtering, which we
cannot do in the frequency domain.



Mechanics of Spatial Filtering

a spatial filter consists of

— A neighborhood, (typically a small
rectangle), and

— a predefined operation that is performed
on the image pixels encompassed by the
neighborhood.

Filtering creates a new pixel with
coordinates equal to the coordinates of the
center of the neighborhood, and whose
value is the result of the filtering operation.

A processed (filtered) image is generated
as the center of the filter visits each pixel in
the input image.

If the operation performed on the image
pixels is linear, then the filter is called a
linear spatial filter. Otherwise, the filter is
nonlinear.

Origin ™\

Image f

—— (x,y)

et

3 X 3 neighborhood of (x, y)

Spatial domain

a b
g, y) = D Dwls,0)f(x + s,y + 1)

§=-q [=-h



iimage origin

— -y
Za RN
}.
/
[
k Fijter mas /
I~
/
Image pixels —/

w(l.-1) | w0 | wa

Filter coefficients

flx—Ly-1| flx—1y) |flx—Ly+1)

feey -1 fly) floy+1) g(xa y) = w(wl, ml)f(x - l,y - 1) + ’LU(“l,O)f(X -1, y) +
+ w(0,0)f(x, y) + ... + w(l,Df(x + 1,y + 1)

flx+1y) |fix+1Ly+1)

Pixels of image

section under filter

FIGURE 3.28 The mechanics of linear spatial filtering using a 3 X 3 filter mask. The form chosen to denote
the coordinates of the filter mask coefficients simplifies writing expressions for linear filtering.



Spatial Correlation and Convolution

* There are two closely related concepts that must be
understood when performing linear spatial filtering,
One is correlation and the other is convolution.

e Correlation is the process of moving a filter mask
over the image and computing the sum of products

at each location. o
wlx, y) f flxy) = 2 Dw(s,0f(x + sy + 1)

s=—g (=—p

 The mechanics of convolution are the same, except
that the filter is first rotated by 180°.

w(x, y) * f(x,y) = 2 E’w(s Nf(x = s,y = 1)

S=-~a =



Correlation Convolution

,— Origin f w ,— Origin f w rotated 180°
() OO0O1TO0OO0O0O 12328 00010000 §23121 (i)
\
(b) 00010000 00010000 ()
12328 82321

t Starting position alignment

I Zero padding 7
1 1

() 0OOODOOODO1OODODODOODOOD 0O00OD0DO0DO0DO01000000O0DO0 (k)
12328 82321

d0O0O0ODO0O0ODOD0OD100O0O0DO0O0O0DO 0O00D0DO0D0DO01000000O00 ()
12328 82321

L Position after one shift

() 0OOOOOD0O1OODODDO0O0DOOD 0O000OD0DO0D0DO01000O0O0O0OO (m)
12328 823121
L Pposition after four shifts

(tf) oooOOODOD1TOOOODOO0O0O 0O000OD0DO0D0DO01000000O0O0 (n)

12328 82321
Final position A

Full correlation result Full convolution result

(g) 000823210000 000123280000 (o)

Cropped correlation result Cropped convolution result
(h) 08232100 01232800 (p)

FIGURE 3.29 Illustration of 1-D correlation and convolution of a filter with a discrete unit impulse. Note that
correlation and convolution are functions of displacement.



~Origin f(x. )
00 0 0 0

000O0O w(x, y)
00100 1 2 3
000O0O 4 56
000O00O 789

(a)
_T_IELI_tla] position for w
:1 2 3: 000000
4 5 6/0 00000
7. 89000000
00000O0O0O0O
000010000
00000O0O0O0O
O00000O0O00O0
00000O0O0O0O
000000000

(c)

'S Rotated w

'9 8 ?I 0O00DO0O0O0
m 5 m{}U 0000
|§_g_L{J{1U 000
0000DO0O0DOGOO
000010000
0000DO0O0DOGOO
000O0DO0ODODOOO
000O0DO0O0OOTO0O
000O0DO0ODODOOO

()

Padded f

O 0 0 00 0 0 0
O 0 00000 0
o0 0 000 00
o0 0 00 0 00
0O 0 0O01O0O00O0
O 0 00000 0
O 0 0 0 0 0 0 0
o0 0 000 00
o0 0 000 00

(b)
Full correlation result
O 0 0 0 0 0 0 0
o0 0 000 00
0000O0O0O0O0
o009 8 7 00
0006 5400
00032100
O 0 0 0 0 0 0 0
o0 0 000 00
0O000O0O0O0O0
(d)
Full convolution result

00 0O0O0O0O0O0
00000000
00 00O0O0O00
00012300
000456 00
0007 89 00
00 00O0O0O00
00000000
00 00O0O0O00

0
0
0
0
0
0
0
0
0

Cropped correlation result
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0
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Cropped convolution result
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FIGURE 3.30
Correlation
(middle row) and
convolution (last
row) of a2-D
filter with a 2-D
discrete, unit
impulse. The Os
are shown in gray
to simplify visual
analysis.



Vector-Representation of Linear Filtering

When interest lies in the characteristic response, R, of a
mask either for correlation or convolution, it is convenient
sometimes to write the sum of products as

R = w1y + wpy oLt Wy Zn

mn
= D Wik
k=1

wz

f

R=wlzl+'uJ2Z2 + ... + wQZQ

9
— zwkzk we Wy
k=1

T

= W1Z

FIGURE 3.31
Another
representation of
a general 3 X 3
filter mask.



Generating Spatial Filter Masks

Generating an m X n linear spatial filter requires
that we specify mn mask coefficients.

In turn, these coefficients are selected based on
what the filter is supposed to do — all we can do
with linear filtering is to implement a sum of
products.

Generating a nonlinear filter requires that we
specify the size of a neighborhood and the
operation(s) to be performed on the image pixels
contained in the neighborhood.

— For example, a 5 X 5 max filter
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Smoothing Spatial Filters

 Smoothing filters are used for blurring and for noise reduction.

— Blurring is used in preprocessing tasks, such as removal of small
details from an image prior to (large) object extraction, and
bridging of small gaps in lines or curves.

— Noise reduction can be accomplished by blurring with a linear
filter and also by nonlinear filtering.

* The output (response) of a smoothing, linear spatial filter is simply
the average of the pixels contained in the neighborhood of the filter
mask. These filters sometimes are called averaging filters.

e Order-statistic filters arc nonlinear spatial filters whose response is
based on ordering (ranking) the pixels contained in the image area
encompassed by the filter, and then replacing the value of the
center pixel with the value determined by the ranking result. The
best-known filter in this category is the median filler.
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Linear Filters
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FIGURE 3.32 Two
3 X 3 smoothing
(averaging) filter
masks. The
constant multipli-
er in front of each
mask is equal to 1
divided by the
sum of the values
of its coefficients,
as is required to
compute an
average.



Matlab Filtering Functions

MATLAB has several two-dimensional and multidimensional filtering
functions.

The function filter2 performs two-dimensional correlation.

conv2 performs twodimensional convolution, and convn performs
multidimensional convolution.

Each of these filtering functions always converts the input to
double, and the output is always double.

The above filtering functions always assume the input is zero
padded, and they do not support other padding options.

In contrast, the imfilter function does not convert input images to
double.

The imfilter function also offers a flexible set of boundary padding
options.



Imfilter (I, w, corr options, boundary options, size_options)

Boundary Options

Option Description

Boundary Options

X Input array values outside the bounds of the array are implicitly
assumed to have the value X. When no boundary option 1s specified.
the default 1s 0.

‘symmetric'’ Input array values outside the bounds of the array are computed by
mirror-reflecting the array across the array border.

‘replicate’ Input array values outside the bounds of the array are assumed to
equal the nearest array border value.

‘circular’ Input array values outside the bounds of the array are computed by
implicitly assuming the input array is periodic.

QOutput Size

‘same’ The output array is the same size as the input array. This 1s the
default behavior when no output size options are specified.
"full’ The output array is the full filtered result, and so 1s larger than the

Input array.

Correlation and Convolution Options

"corr' imfilter performs multidimensional filtering using correlation.
which 1s the same way that f1lter2 performs filtering. When
no correlation or convolution option 1s specified. imfilter uses
correlation.

‘conv' imfilter performs multidimensional filtering using convolution.




padarray

O 0 0 0 0 O

>>A=[12;34]

O 0 0 0 0 O

0 O

>> padarray(A, [2 2])

1 2 0 O

O 0 3 4 0 O
O 0 0 0 0 O
O 0 0 0 0 O

1 2 2 2

1

1

>> padarray(A, [2 2],'replicate')

1 2 2 2

1
1

1 2 2 2

1

3 3 3 4 4 4
3 3 3 4 4 4
3 3 3 4 4 4



4 3 3 4 4 3

>>A=[12;34]

1 2 2 1
1 2 2 1

1
1

>> padarray(A, [2 2], 'symmetric')

2

4 3 3 4 4 3
4 3 3 4 4 3

1 2 2 1

1

>> padarray(A, [2 2], 'circular’)

3 4 3 4 3 4

1

2

1

2 1 2

3 4 3 4 3 4

3 4 3 4 3 4



3 X 3 Averaging Filter

>> | = imread ('Fig0335(a)(ckt_board_saltpep_prob_pt05).tif');
>>h =ones(3,3)/9;

>> ) = imfilter (I, h, 'symmetric');

>> imshowpair (1,J,'montage’)
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FIGURE 3.33 (a) Original image, of size 500 x 500 pixels (b)—(f) Results of smoothing
with square averaging filter masks of sizes m = 3,5,9, 15, and 35, respectively. The black
squares at the top are of sizes 3,5,9,15, 25, 35,45, and 55 pixels, respectively; their borders
are 25 pixels apart. The letters at the bottom range in size from 10 to 24 points, in
increments of 2 points; the large letter at the top is 60 points. The vertical bars are 5 pixels
wide and 100 pixels high; their separation is 20 pixels. The diameter of the circles is 25
pixels, and their borders are 15 pixels apart; their intensity levels range from 0% to 100%
black in increments of 20%. The background of the image is 10% black. The noisy
rectangles are of size 50 > 120 pixels.
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Smoothing Followed by Thresholding

abc

FIGURE 3.34 (a) Image of size 528 X 485 pixels from the Hubble Space Telescope. (b) Image filtered with a
15 X 15 averaging mask. (¢) Result of thresholding (b). (Original image courtesy of NASA.)



Median Filters

The best-known order-statistic (non-linear) filter is the
median filler, which replaces the value of a pixel by the
median of the intensity values in the neighborhood of that
pixel (the original value of the pixel is included in the
computation of the median).

Median filters are quite popular because for certain types
of random noise, they provide excellent noise-reduction
capabilities, with considerably less blurring than linear
smoothing filters of similar size.

Median filters are particularly effective in the presence of
impulse noise, also called salt-and-pepper noise because of
its appearance as white and black dots superimposed on an
image.



The median ¢ of a set of values is such that half the values
in the set are less than or equal to ¢ and half are greater
than or equal to ¢

In order to perform median filtering at a point in an image,
we first sort the values of the pixel in the neighborhood,
determine the median, and assign the value to the
corresponding pixel in the filtered image.

For example, in a 3 X 3 neighborhood, the median is the 5t
largest value.

(10, 15, 20, 20, 20, 20, 20, 25, 100) results in a median of
20.

The median filters force points with distinct intensity levels
to be more like their neighbors.



Denoising

aible

FIGURE 3.35 (a) X-ray image of circuit board corrupted by salt-and-pepper noise. (b) Noise reduction with
a 3 X 3 averaging mask. (c) Noise reduction with a 3 X 3 median filter. (Original image courtesy of Mr.
Joseph E. Pascente, Lixi, Inc.)



medfilt2

>> | = imread ('coins.png');

>> ] = imnoise (I, 'salt & pepper’, 0.2);
>> K = medfilt2 (J);

>> imshowpair (J, K,'montage’)

>> | = imread ('Fig0335(a)(ckt_board saltpep prob pt05).tif');
>> K = medfilt2(l);
>> imshowpair(l,K,'montage’)

>> KS = medfilt2(l,'symmetric'); % symmetric extension
>> imshowpair(K,KS,'montage’)
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Sharping Spatial Filters

* The principal objective of sharpening is to
highlight transitions in intensity.

* Uses of image sharpening vary and include
applications from electronic printing and
medical imaging to industrial inspection and
autonomous guidance in military systems.

 While image blurring can be accomplished by
pixel averaging, sharpening can be achieved
by spatial differentiation.



Foundation

* First-order derivative of a one-dimensional
functionis: =— = f(x + 1) — f(x)

e Second- order derivative of the function is:

= fO D (= 1) = 2f()
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FIGURE 3.36
Illustration of the
first and second
derivatives of a
1-D digital
function
representing a
section of a
horizontal
intensity profile
from an image. In
(a) and (c) data
points are joined
by dashed lines as
a visualization aid.



Edges In Digital Images

* Edges in digital images often are ramp-like
transitions in intensity, where the first derivative
of the image would result in thick edges because
the derivative is nonzero along a ramp.

* On the other hand, the second derivative would
produce a double edge one pixel thick, separated
by zeros.

 Therefore, the second derivative enhances fine
detail much better than the first derivative, a
property that is ideally suited for sharpening
Images.



The Laplacian

2 2
2, O 9f
VS = dx* 8v2
3*f
3 = S Ly + fx = Ly) - 2f(x.y)
3 f y
i fla,y #1) + ey = 1) = 2f(x, y)

Vi y) =flx + Ly) + f(x = Ly) + fOo,y + 1) + f(x,y = 1) =4f(x, y)




Extension of Laplacian Filter Mask

0 1 0 1 1 1
1 —4 1 1 —8 1
0 1 0 1 1 1
0 -1 0 ~1 -1 ~1
~1 4 ~1 ~1 8 ~1
0 -1 0 ~1 ~1 ~1

ab
c d

FIGURE 3.37

(a) Filter mask used
to implement

Eq. (3.6-6).

(b) Mask used to
implement an
extension of this
equation that
includes the
diagonal terms.

(c) and (d) Two
other implementa-
tions of the
Laplacian found
frequently in
practice.



Image Sharpening Using Laplacian

Because the Laplacian is a derivative operator, its use
highlights intensity discontinuities in an image and
deemphasizes regions with slowly varying intensity levels.

This will tend to produce images that have grayish edge
lines and other discontinuities, all superimposed on a dark,
featureless background.

Background features can be "recovered" while still
preserving the sharpening effect of the Laplacian simply by
adding the Laplacian image to the original.

g(x):){) — f(x)y) o
negative.

gx,y) = flx,y) +
positive.

V2 f (%, y).

V2 f(x, ).

, if the center coefficient is

, if the center coefficient is



h = fspecial (type, parameter)

h = fspecial(type) creates a two-dimensional filter h of the specified type.
fspecial returns h as a correlation kernel, which 1s the appropriate form to use with
imfilter. type is a string having one of these values.

Value Description

average Averaging filter

disk Circular averaging filter (pillbox)

gaussian Gaussian lowpass filter

laplacian Approximates the two-dimensional Laplacian operator
log Laplacian of Gaussian filter

motion Approximates the linear motion of a camera

prewitt Prewitt horizontal edge-emphasizing filter

sobel Sobel horizontal edge-emphasizing filter

h = fspecial('laplacian', alpha) returns a 3-by-3 filter approximating the
shape of the two-dimensional Laplacian operator. The parameter alpha controls

the shape of the Laplacian and must be 1n the range 0.0 to 1.0. The default value for
alphais 0.2.



>> | = imread('Fig0338(a)(blurry_moon).tif");
>> h = fspecial('laplacian’, 0)

h =
O 1 O
1 4 1
O 1 O
>> J1 = imfilter(l, h, 'replicate’);
>> imshow(J1, []) % Truncation problem

>> 12 = im2double(l);
>> J2 = imfilter(12, h, 'replicate’');
>>imshow(J2, [])

>>G=12-J2;
>> imshow(G)



= f — min(f)
] where K = 255

=K [max( fm)]’

a
b c
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FIGURE 3.38
(a) Blurred image
of the North Pole
of the moon.
(b) Laplacian
without scaling.
(c) Laplacian with
Gealind (d) Image
sharpened using
the mask in Fig.
3.37(a). (e) Result
of using the mask
in Fig. 3.37(b).
(Original image
courtesy of
NASA.)




Unsharp Masking

* A process that has been used in the printing and publishing industry
to sharpen images consists of subtracting an unsharp (smoothed)
version of an image from the original image. This process, called
unsharp masking, consists of the following steps:

— Blur the original image

— Subtract the blurred image from the original (the resulting
difference is called the masks)
Imask (X, y) = f(x,y) — f(x,y)
— Add the mask to the original:
gx,y)=fx,y) +k X gnask(x,y)
— When k = 1, we have unsharp masking; when k > 1, the
process is called highboost filtering.



/Original signal
Blurred signal
el

Unsharp mask

VAN

N/

Sharpened signal

oo oo

FIGURE 3.39 1-D
illustration of the
mechanics of
unsharp masking.
(a) Original
signal. (b) Blurred
signal with
original shown
dashed for refere-
nce. (¢) Unsharp
mask. (d) Sharp-
ened signal,
obtained by
adding (c) to (a).



o o

Ao

c

FIGURE 3.40

(a) Original
image.

(b) Result of
blurring with a
Gaussian filter.
(c) Unsharp
mask. (d) Result
of using unsharp
masking,.

(e) Result of
using highboost
filtering.



The Gradient for Image Sharpening

* First derivatives in image processing are implemented using
the magnitude of the gradient.

* For afunction f(x,y), the gradient of f at coordinates
(x,y) is defined as the two-dimensional column vector

of |
8x ax
Vf = grad(f) = [ J 6;‘.

Ldy |

* This vector has the important geometrical property that it
points in the direction of the greatest rate of change of f at
location (x,y).

..... s

]
J

 The magnitude of the vectoris M(x,y) = mag(Vf) = Vgl + gl
called the gradient image, or simply as gradient.
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FIGURE 3.41

A 3 X 3 region of
an image (the zs
are intensity
values).

(b)—(c) Roberts
cross gradient
operators.
(d)—(e) Sobel
operators. All the
mask coefficients
sum to zero, as
expected of a
derivative
operator.

-1 0 0 -1
0 1 1 0
-1 -2 -1 -1 0
0 0 0 -2 0
1 2 1 -1 0

>> hy = -fspecial('sobel')
>> hx = hy'




Sobel Operators

4 &) 23
af | .
gxzmz(z7+238+19)_“(21+222+z3)
ox
24 Zs 26
_
27 23 29 gy - 3)‘; - (23 + 226 + Zg) — (Z; + 224 + 27)

M(x,y) = [(z7 + 228 + 29) — (21 + 225 + z3)]
+ (23 + 226 + 29) — (21 + 224 + 27)]



imgradient & imgradientxy

[GX,Gy] = imgradientxy(I)
[Gmag,Gdir] = imgradient(I)

>> [Gx,Gy]= imgradientxy (l,'sobel');
>> imshowpair (Gx,Gy,'montage’)

>> | = imread('Fig0342(a)(contact_lens_original).tif');
>> sobelGradient = imgradient(l);
>> imshow (sobelGradient,[ ])
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FIGURE 3.42

(a) Optical image
of contact lens
(note defects on
the boundary at 4
and 5 o’clock).
(b) Sobel
gradient.
(Original image
courtesy of Pete
Sites, Perceptics
Corporation.)
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a b
c d

FIGURE 3.43

(a) Image of
whole body bone
scan.

(b) Laplacian of
(a).(c) Sharpened
image obtained by
adding (a) and (b).
(d) Sobel gradient
of (a).



FIGURE 3.43
(Continued)

(e) Sobel image
smoothed with a
5 X 5 averaging
filter. (f) Mask
image formed by
the product of (c)
and (e).

(g) Sharpened
image obtained
by the sum of (a)
and (f). (h) Final
result obtained by
applying a power-
law transformation
to (g). Compare
(g) and (h) with
(a). (Original
image courtesy of
G.E. Medical
Systems.)



