
EE 604, Digital Image Processing

Chapter 3:

Intensity Transformations
and Spatial Filtering

Dr. W. David Pan

Dept. of ECE
UAH

Preview

• Spatial domain refers to the image plane itself, and image
processing methods in this category are based on direct
manipulation of pixels in an image.

• Image processing in a transform domain involves first
transforming an image into the transform domain, doing
the processing there, and obtaining the inverse transform
to bring the results back into the spatial domain.

• Two principal categories of spatial processing are intensity
transformations and spatial filtering.
– Intensity transformations operate on single pixels of an image,

principally for the purpose of contrast manipulation and image
thresholding.

– Spatial filtering deals with performing operations, such as image
sharpening, by working in a neighborhood of every pixel in an
image

Topics

• Background

• Basic Intensity Transformation Functions

• Histogram Processing

• Spatial Filtering

• Smoothing Spatial Filters

• Sharpening Spatial Filters

• Combining Spatial Enhancement Methods

Intensity Transform

𝑔 𝑥, 𝑦 = 𝑇[𝑓 𝑥, 𝑦]

Contrast Stretching and Thresholding

𝑠 = 𝑇(𝑟)

Basic Transformation Functions

• Image Negatives: 𝑠 = 𝐿 − 1 − 𝑟

• Log Transformations: 𝑠 = 𝑐 𝑙𝑜𝑔(1 + 𝑟)

• Power-Law (Gamma) Transformations
𝑠 = 𝑐 𝑟𝛾

• Piecewise-Linear Transformation Functions

– Contrast Stretching

– Intensity-Level Slicing

– Bit-plane Slicing

Negatives

Log Transformation

Used to expand the values of dark pixels while compressing the
higher-level values

Gamma Transformations

Gamma Correction

𝑠 = 𝑟1/2.5 = 𝑟0.4

Contrast Manipulation

See Matlab code

Compression of Intensity Levels

Piecewise-Linear Transformation Functions

• A complementary approach to the methods discussed
previously is to use piecewise linear functions.

• The principal advantage of piecewise linear functions is
that the form of piecewise functions can be arbitrarily
complex.

• In fact, a practical implementation of some important
transformations can be formulated only as piecewise
functions.

• The principal disadvantage of piecewise functions is
that their specification requires considerably more user
input.

Contrast Stretching

See Matlab code

Intensity-Level Slicing

Bit-Plane Slicing

See Matlab code

Reconstruction

Topics

• Background

• Basic Intensity Transformation Functions

• Histogram Processing

• Spatial Filtering

• Smoothing Spatial Filters

• Sharpening Spatial Filters

• Combining Spatial Enhancement Methods

Histograms

• Histogram gives an estimate of the probability of
occurrence of intensity.

• Histograms are the basis for numerous spatial domain
processing techniques
– Histogram manipulation can be used for image enhancement
– In addition to providing useful image statistics, the information

inherent in histograms also is quite useful in other image
processing applications, such as image compression and
segmentation.

• Histograms are simple to calculate in software and also
lend themselves to economic hardware implementations,
thus making them a popular tool for real-time image
processing.

Note: imhist () might not show you the whole
picture:

The maximum counts displayed is calculated
below. This prevents a few large counts from
drowning out the rest of the histogram, at the
expense of not being able to see the whole
plot.

In “imhist.m”:
var = sqrt(y'*y/length(y));
limits(4) = 2.5*var;
axis(hist_axes,limits);

To see the whole picture, use:
>> [counts, bins] = imhist(I);
>> stem (bins, counts);

Histogram Equalization

Review of Probability Theory

• Random Variables

• Distribution Function

• CDF

• PDF

• Functions of random variables

Continuous vs. Discrete RV

• In probability and statistics, a random variable is
a variable whose value is subject to variations
due to chance.

• A random variable can take on a set of possible
different values, each with an associated
probability.

• If a random variable can assume any value within
a specified range (possibly infinite), then it will be
designated as a continuous random variable.

• Discrete random variables are those assuming
one of a countable set of values.

Distribution Functions

• Let 𝑋 be a random variable and 𝑥 be any allowed value of this
random variable.

• The probability distribution function (also known as
Cumulative Distribution Function, or CDF) is defined as the
probability of the event that the observed random variable 𝑋
is less than or equal to the allowed value 𝑥.

 𝐹𝑋(𝑥) = Pr (𝑋 ≤ 𝑥)
• The subscript 𝑋 denotes the random variable while the

argument 𝑥 could be any other symbol.
• Sometimes it is convenient to suppress the subscript 𝑋 when

no confusion will result. Thus 𝐹𝑋(𝑥) will often be written as
𝐹(𝑥).

• Since the probability distribution function is a probability, it
must satisfy the basic axioms.

Properties of 𝐹𝑋(𝑥)
𝐹𝑋(𝑥) = Pr (𝑋 ≤ 𝑥)

• 0 ≤ 𝐹𝑋 𝑥 ≤ 1, −∞ < 𝑥 < ∞
• 𝐹𝑋 −∞ = 0, 𝐹𝑋 ∞ = 1
• 𝐹𝑋(𝑥) is non-decreasing as 𝑥 increases.
• Pr 𝑥1 < 𝑋 ≤ 𝑥2 = 𝐹𝑋 𝑥2 − 𝐹𝑋 𝑥1 .
• Pr 𝑋 > 𝑥 = 1 − 𝐹𝑋 𝑥 .

• Examples:

Example Distribution

• A particular random variable has a probability
distribution function given by

𝐹𝑋 𝑥 =
0 −∞ < 𝑥 ≤ 0

1 − 𝑒−2𝑥 0 ≤ 𝑥 < ∞

• What is the probability that 𝑋 > 0.5?

Pr 𝑋 > 0.5 = 1 − 𝐹𝑋 0.5 = 1 − 1 − 𝑒−2∗0.5 = 0.3679

• What is the probability that 0.5 < 𝑋 ≤ 0.51?

 Pr 0.5 < 𝑋 ≤ 0.51 = 𝐹𝑋 0.51 − 𝐹𝑋 0.5 =?

Density Functions

• Although the distribution function is a complete
description of the probability model for a single
random variable, it is not convenient for many
calculations of interest.

• It may be preferable to use the derivative of 𝐹𝑋(𝑥)
rather than 𝐹𝑋(𝑥) itself. This derivative is called the
probability density function (PDF). When it exists, it
is defined by

𝑓𝑋 𝑥 = lim
𝑒→0

𝐹𝑋 𝑥 + 𝑒 − 𝐹𝑋 𝑥

𝑒
=

𝑑𝐹𝑋 𝑥

𝑑𝑥

Properties of PDF

• The physical significance of the PDF is best described
in terms of the probability element,
𝑓𝑋 𝑥 𝑑𝑥 = Pr (𝑥 < 𝑋 ≤ 𝑥 + 𝑑𝑥).

• Properties

1. 𝑓𝑋 𝑥 ≥ 0, −∞ < 𝑥 < ∞

2. 𝑓𝑋 𝑥 𝑑𝑥 = 1
∞

−∞

3. 𝐹𝑋 𝑥 = 𝑓𝑋 𝑢 𝑑𝑢
𝑥

−∞

4. 𝑓𝑋 𝑥 𝑑𝑥 = Pr 𝑥1 < 𝑋 ≤ 𝑥2
𝑥2

𝑥1

Examples of CDF’s and PDF’s

Another Example

• 𝐹𝑥 𝑋 =
0 −∞ < 𝑥 ≤ 0

1 − 𝑒−2𝑥 0 ≤ 𝑥 < ∞

• PDF:

𝑓𝑋 𝑥 =
𝑑𝐹𝑥 𝑋

𝑑𝑥
=

0 −∞ < 𝑥 ≤ 0
2𝑒−2𝑥 0 ≤ 𝑥 < ∞

How about the following properties?

1. 𝑓𝑋 𝑥 ≥ 0, −∞ < 𝑥 < ∞

2. 𝑓𝑋 𝑥 𝑑𝑥 = 1
∞

−∞

 2𝑒−2𝑥𝑑𝑥 = −𝑒−2𝑥
0

∞
=?

∞

0

𝑌 = 𝑔(𝑋)
• Given the PDF of 𝑋 is known as 𝑓𝑋(𝑥) , find the PDF of 𝑌, which is

denoted by 𝑓𝑌(𝑦).

• It is clear that whenever the random variable 𝑋 lies between 𝑥 and 𝑥 +
𝑑𝑥, the random variable 𝑌 will lie between 𝑦 and 𝑦 + 𝑑𝑦.

• Since the probabilities of these events are 𝑓𝑋(𝑥)𝑑𝑥 and 𝑓𝑌(𝑦)𝑑𝑦,
𝑓𝑋 𝑥 𝑑𝑥 = 𝑓𝑌(𝑦)𝑑𝑦.

• Therefore, 𝑓𝑌 𝑦 = 𝑓𝑋 𝑥
𝑑𝑥

𝑑𝑦
.

• In general, , 𝑓𝑌 𝑦 = 𝑓𝑋 𝑥
𝑑𝑥

𝑑𝑦

Example

Returning to Intensity Transform

𝑝𝑠 𝑠 = 𝑝𝑟 𝑟
𝑑𝑟

𝑑𝑠

𝑠 = 𝑇 𝑟 , 0 ≤ 𝑟 ≤ 𝐿 − 1

Continuous Intensity Values

𝑝𝑠 𝑠 = 𝑝𝑟 𝑟
𝑑𝑟

𝑑𝑠

𝑠 = 𝑇 𝑟 = 𝐿 − 1 𝑝𝑟 𝜔 𝑑𝜔
𝑟

0

Histogram Equalization

Example

Discrete Intensity Values

Illustration

See Matlab code

histeq

>> I = imread('Fig0320(2)(2nd_from_top).tif');

>> imshow(I)

>> figure; imhist(I)

>> J = histeq(I);

>> figure;

>> imshow(J)

>> figure; imhist(J)

Topics

• Background

• Basic Intensity Transformation Functions

• Histogram Processing

• Spatial Filtering

• Smoothing Spatial Filters

• Sharpening Spatial Filters

• Combining Spatial Enhancement Methods

Fundamentals of Spatial Filtering

• The name “filter” is borrowed from frequency domain
processing, which is the topic of the next chapter, where
"filtering" refers to accepting (passing) or rejecting certain
frequency components.

• For example, a filter that passes low frequencies is called a
lowpass filter. The net effect produced by a lowpass filter is
to blur (smooth) an image.

• We can accomplish a similar smoothing directly on the
image itself by using spatial filters (also called spatial
masks, kernels, templates, and windows).

• Spatial filters offer considerably more versatility because
they can be used also for nonlinear filtering, which we
cannot do in the frequency domain.

Mechanics of Spatial Filtering

• a spatial filter consists of
– A neighborhood, (typically a small

rectangle), and
– a predefined operation that is performed

on the image pixels encompassed by the
neighborhood.

• Filtering creates a new pixel with
coordinates equal to the coordinates of the
center of the neighborhood, and whose
value is the result of the filtering operation.

• A processed (filtered) image is generated
as the center of the filter visits each pixel in
the input image.

• If the operation performed on the image
pixels is linear, then the filter is called a
linear spatial filter. Otherwise, the filter is
nonlinear.

Spatial Correlation and Convolution

• There are two closely related concepts that must be
understood when performing linear spatial filtering,
One is correlation and the other is convolution.

• Correlation is the process of moving a filter mask
over the image and computing the sum of products
at each location.

• The mechanics of convolution are the same, except
that the filter is first rotated by 180°.

Vector-Representation of Linear Filtering

When interest lies in the characteristic response, 𝑅, of a
mask either for correlation or convolution, it is convenient
sometimes to write the sum of products as

Generating Spatial Filter Masks

• Generating an 𝑚 × 𝑛 linear spatial filter requires
that we specify 𝑚𝑛 mask coefficients.

• In turn, these coefficients are selected based on
what the filter is supposed to do – all we can do
with linear filtering is to implement a sum of
products.

• Generating a nonlinear filter requires that we
specify the size of a neighborhood and the
operation(s) to be performed on the image pixels
contained in the neighborhood.
– For example, a 5 × 5 max filter

Topics

• Background

• Basic Intensity Transformation Functions

• Histogram Processing

• Spatial Filtering

• Smoothing Spatial Filters

• Sharpening Spatial Filters

• Combining Spatial Enhancement Methods

Smoothing Spatial Filters
• Smoothing filters are used for blurring and for noise reduction.

– Blurring is used in preprocessing tasks, such as removal of small
details from an image prior to (large) object extraction, and
bridging of small gaps in lines or curves.

– Noise reduction can be accomplished by blurring with a linear
filter and also by nonlinear filtering.

• The output (response) of a smoothing, linear spatial filter is simply
the average of the pixels contained in the neighborhood of the filter
mask. These filters sometimes are called averaging filters.

• Order-statistic filters arc nonlinear spatial filters whose response is
based on ordering (ranking) the pixels contained in the image area
encompassed by the filter, and then replacing the value of the
center pixel with the value determined by the ranking result. The
best-known filter in this category is the median filler.

Linear Filters

Matlab Filtering Functions

• MATLAB has several two-dimensional and multidimensional filtering
functions.

• The function filter2 performs two-dimensional correlation.
• conv2 performs twodimensional convolution, and convn performs

multidimensional convolution.
• Each of these filtering functions always converts the input to

double, and the output is always double.
• The above filtering functions always assume the input is zero

padded, and they do not support other padding options.
• In contrast, the imfilter function does not convert input images to

double.
• The imfilter function also offers a flexible set of boundary padding

options.

Imfilter (I, w, corr options, boundary options, size_options)

padarray

>> padarray(A, [2 2])

>> padarray(A, [2 2],'replicate')

>> A = [1 2; 3 4]
 0 0 0 0 0 0
 0 0 0 0 0 0
 0 0 1 2 0 0
 0 0 3 4 0 0
 0 0 0 0 0 0
 0 0 0 0 0 0

 1 1 1 2 2 2
 1 1 1 2 2 2
 1 1 1 2 2 2
 3 3 3 4 4 4
 3 3 3 4 4 4
 3 3 3 4 4 4

>> padarray(A, [2 2], 'symmetric')

>> padarray(A, [2 2], 'circular')

>> A = [1 2; 3 4]
 4 3 3 4 4 3
 2 1 1 2 2 1
 2 1 1 2 2 1
 4 3 3 4 4 3
 4 3 3 4 4 3
 2 1 1 2 2 1

 1 2 1 2 1 2
 3 4 3 4 3 4
 1 2 1 2 1 2
 3 4 3 4 3 4
 1 2 1 2 1 2
 3 4 3 4 3 4

3 × 3 Averaging Filter

>> I = imread ('Fig0335(a)(ckt_board_saltpep_prob_pt05).tif');

>> h = ones(3,3) / 9;

>> J = imfilter (I, h, 'symmetric');

>> imshowpair (I,J,'montage')

Smoothing Followed by Thresholding

Median Filters

• The best-known order-statistic (non-linear) filter is the
median filler, which replaces the value of a pixel by the
median of the intensity values in the neighborhood of that
pixel (the original value of the pixel is included in the
computation of the median).

• Median filters are quite popular because for certain types
of random noise, they provide excellent noise-reduction
capabilities, with considerably less blurring than linear
smoothing filters of similar size.

• Median filters are particularly effective in the presence of
impulse noise, also called salt-and-pepper noise because of
its appearance as white and black dots superimposed on an
image.

• The median 𝜁 of a set of values is such that half the values
in the set are less than or equal to 𝜁 and half are greater
than or equal to 𝜁

• In order to perform median filtering at a point in an image,
we first sort the values of the pixel in the neighborhood,
determine the median, and assign the value to the
corresponding pixel in the filtered image.

• For example, in a 3 × 3 neighborhood, the median is the 5th
largest value.

• (10, 15, 20, 20, 20, 20, 20, 25, 100) results in a median of
20.

• The median filters force points with distinct intensity levels
to be more like their neighbors.

Denoising

medfilt2

>> I = imread ('coins.png');

>> J = imnoise (I, 'salt & pepper', 0.2);

>> K = medfilt2 (J);

>> imshowpair (J, K,'montage')

>> I = imread ('Fig0335(a)(ckt_board_saltpep_prob_pt05).tif');

>> K = medfilt2(I);

>> imshowpair(I,K,'montage')

>> KS = medfilt2(I,'symmetric'); % symmetric extension

>> imshowpair(K,KS,'montage')

Topics

• Background

• Basic Intensity Transformation Functions

• Histogram Processing

• Spatial Filtering

• Smoothing Spatial Filters

• Sharpening Spatial Filters

• Combining Spatial Enhancement Methods

Sharping Spatial Filters

• The principal objective of sharpening is to
highlight transitions in intensity.

• Uses of image sharpening vary and include
applications from electronic printing and
medical imaging to industrial inspection and
autonomous guidance in military systems.

• While image blurring can be accomplished by
pixel averaging, sharpening can be achieved
by spatial differentiation.

Foundation

• First-order derivative of a one-dimensional

function is:
𝜕𝑓

𝜕𝑥
= 𝑓 𝑥 + 1 − 𝑓(𝑥)

• Second-order derivative of the function is:
𝜕2𝑓

𝜕2𝑥
= 𝑓 𝑥 + 1 + 𝑓(𝑥 − 1) − 2𝑓(𝑥)

Edges In Digital Images

• Edges in digital images often are ramp-like
transitions in intensity, where the first derivative
of the image would result in thick edges because
the derivative is nonzero along a ramp.

• On the other hand, the second derivative would
produce a double edge one pixel thick, separated
by zeros.

• Therefore, the second derivative enhances fine
detail much better than the first derivative, a
property that is ideally suited for sharpening
images.

The Laplacian

Extension of Laplacian Filter Mask

Image Sharpening Using Laplacian

• Because the Laplacian is a derivative operator, its use
highlights intensity discontinuities in an image and
deemphasizes regions with slowly varying intensity levels.

• This will tend to produce images that have grayish edge
lines and other discontinuities, all superimposed on a dark,
featureless background.

• Background features can be "recovered" while still
preserving the sharpening effect of the Laplacian simply by
adding the Laplacian image to the original.

• 𝑔 𝑥, 𝑦 = 𝑓 𝑥, 𝑦 − [∇2𝑓(𝑥, 𝑦)], if the center coefficient is
negative.

• 𝑔 𝑥, 𝑦 = 𝑓 𝑥, 𝑦 + [𝛻2𝑓(𝑥, 𝑦)], if the center coefficient is
positive.

h = fspecial (type, parameter)

>> I = imread('Fig0338(a)(blurry_moon).tif');

>> h = fspecial('laplacian', 0)

h =

 0 1 0

 1 -4 1

 0 1 0

>> J1 = imfilter(I, h, 'replicate');

>> imshow(J1, []) % Truncation problem

>> I2 = im2double(I);

>> J2 = imfilter(I2, h, 'replicate');

>> imshow(J2, [])

>> G = I2 - J2;

>> imshow(G)

𝑓𝑚 = 𝑓 − min 𝑓

𝑓𝑠 = 𝐾
𝑓𝑚

max 𝑓𝑚
, where 𝐾 = 255

Unsharp Masking

• A process that has been used in the printing and publishing industry
to sharpen images consists of subtracting an unsharp (smoothed)
version of an image from the original image. This process, called
unsharp masking, consists of the following steps:

– Blur the original image

– Subtract the blurred image from the original (the resulting
difference is called the masks)

𝑔𝑚𝑎𝑠𝑘 𝑥, 𝑦 = 𝑓 𝑥, 𝑦 − 𝑓 (𝑥, 𝑦)

– Add the mask to the original:
𝑔 𝑥, 𝑦 = 𝑓 𝑥, 𝑦 + 𝑘 × 𝑔𝑚𝑎𝑠𝑘(𝑥, 𝑦)

– When 𝑘 = 1, we have unsharp masking; when 𝑘 > 1, the
process is called highboost filtering.

The Gradient for Image Sharpening

• First derivatives in image processing are implemented using
the magnitude of the gradient.

• For a function 𝑓(𝑥, 𝑦), the gradient of 𝑓 at coordinates
(𝑥, 𝑦) is defined as the two-dimensional column vector

• This vector has the important geometrical property that it
points in the direction of the greatest rate of change of 𝑓 at
location (𝑥, 𝑦).

• The magnitude of the vector is
called the gradient image, or simply as gradient.

>> hy = -fspecial('sobel')
>> hx = hy'

Sobel Operators

imgradient & imgradientxy

>> [Gx,Gy]= imgradientxy (I,'sobel');
>> imshowpair (Gx,Gy,'montage')

>> I = imread('Fig0342(a)(contact_lens_original).tif');
>> sobelGradient = imgradient(I);
>> imshow (sobelGradient,[])

Topics

• Background

• Basic Intensity Transformation Functions

• Histogram Processing

• Spatial Filtering

• Smoothing Spatial Filters

• Sharpening Spatial Filters

• Combining Spatial Enhancement Methods

