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Preview 

• Spatial domain refers to the image plane itself, and image 
processing methods in this category are based on direct 
manipulation of pixels in an image.  

• Image processing in a transform domain involves first 
transforming an image into the transform domain, doing 
the processing there, and obtaining the inverse transform 
to bring the results back into the spatial domain.  

• Two principal categories of spatial processing are intensity 
transformations and spatial filtering.  
– Intensity transformations operate on single pixels of an image, 

principally for the purpose of contrast manipulation and image 
thresholding.  

– Spatial filtering deals with performing operations, such as image 
sharpening, by working in a neighborhood of every pixel in an 
image 



Topics 

• Background 

• Basic Intensity Transformation Functions 

• Histogram Processing 

• Spatial Filtering 

• Smoothing Spatial Filters 

• Sharpening Spatial Filters 

• Combining Spatial Enhancement Methods 



Intensity Transform 

𝑔 𝑥, 𝑦 = 𝑇[𝑓 𝑥, 𝑦 ] 



Contrast Stretching and Thresholding 

𝑠 = 𝑇(𝑟) 



Basic Transformation Functions 

• Image Negatives:        𝑠 = 𝐿 − 1 − 𝑟 

• Log Transformations:     𝑠 = 𝑐 𝑙𝑜𝑔(1 + 𝑟) 

• Power-Law (Gamma) Transformations 
𝑠 = 𝑐 𝑟𝛾 

• Piecewise-Linear Transformation Functions 

– Contrast Stretching 

– Intensity-Level Slicing 

– Bit-plane Slicing 





Negatives 



Log Transformation 

Used to expand the values of dark pixels while compressing the 
higher-level values 



Gamma Transformations 



Gamma Correction 

𝑠 = 𝑟1/2.5 = 𝑟0.4 



Contrast Manipulation 

See Matlab code 



Compression of Intensity Levels 



Piecewise-Linear Transformation Functions 

• A complementary approach to the methods discussed 
previously is to use piecewise linear functions.  

• The principal advantage of piecewise linear functions is 
that the form of piecewise functions can be arbitrarily 
complex.  

• In fact, a practical implementation of some important 
transformations can be formulated only as piecewise 
functions.  

• The principal disadvantage of piecewise functions is 
that their specification requires considerably more user 
input. 



Contrast Stretching 

See Matlab code 



Intensity-Level Slicing 





Bit-Plane Slicing 



See Matlab code 



Reconstruction 
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Histograms 

• Histogram gives an estimate of the probability of 
occurrence of intensity. 

• Histograms are the basis for numerous spatial domain 
processing techniques 
– Histogram manipulation can be used for image enhancement 
– In addition to providing useful image statistics, the information 

inherent in histograms also is quite useful in other image 
processing applications, such as image compression and 
segmentation.  

• Histograms are simple to calculate in software and also 
lend themselves to economic hardware implementations, 
thus making them a popular tool for real-time image 
processing. 



Note: imhist ( ) might not show you the whole 
picture: 
 
The maximum counts displayed is calculated 
below. This prevents a few large counts from 
drowning out the rest of the histogram, at the 
expense of not being able to see the whole 
plot. 
  
In “imhist.m”: 
var = sqrt(y'*y/length(y)); 
limits(4) = 2.5*var; 
axis(hist_axes,limits); 
 
To see the whole picture, use: 
>> [counts, bins] = imhist(I); 
>> stem (bins, counts); 



Histogram Equalization 



Review of Probability Theory 

• Random Variables 

• Distribution Function 

• CDF 

• PDF 

• Functions of random variables 



Continuous vs. Discrete RV 

• In probability and statistics, a random variable is 
a variable whose value is subject to variations 
due to chance. 

• A random variable can take on a set of possible 
different values, each with an associated 
probability. 

• If a random variable can assume any value within 
a specified range (possibly infinite), then it will be 
designated as a continuous random variable.  

• Discrete random variables are those assuming 
one of a countable set of values. 



Distribution Functions 

• Let 𝑋 be a random variable and 𝑥 be any allowed value of this 
random variable.  

• The probability distribution function (also known as 
Cumulative Distribution Function, or CDF) is defined as the 
probability of the event that the observed random variable 𝑋 
is less than or equal to the allowed value 𝑥.  

                       𝐹𝑋(𝑥)  =  Pr (𝑋 ≤ 𝑥 ) 
• The subscript 𝑋 denotes the random variable while the 

argument 𝑥 could be any other symbol. 
• Sometimes it is convenient to suppress the subscript 𝑋 when 

no confusion will result. Thus 𝐹𝑋(𝑥) will often be written as 
𝐹(𝑥). 

• Since the probability distribution function is a probability, it 
must satisfy the basic axioms. 



Properties of 𝐹𝑋(𝑥) 
𝐹𝑋(𝑥)  =  Pr (𝑋 ≤ 𝑥 ) 

• 0 ≤ 𝐹𝑋 𝑥 ≤ 1,    −∞ < 𝑥 < ∞ 
• 𝐹𝑋 −∞ = 0,   𝐹𝑋 ∞ = 1 
• 𝐹𝑋(𝑥) is non-decreasing  as 𝑥 increases. 
• Pr 𝑥1 < 𝑋 ≤ 𝑥2 = 𝐹𝑋 𝑥2 − 𝐹𝑋 𝑥1 . 
• Pr 𝑋 > 𝑥 = 1 − 𝐹𝑋 𝑥 . 

 
• Examples: 

 



Example Distribution 

• A particular random variable has a probability 
distribution function given by  

𝐹𝑋 𝑥 =  
0 −∞ < 𝑥 ≤ 0

1 − 𝑒−2𝑥  0 ≤ 𝑥 < ∞
  

• What is the probability that 𝑋 >  0.5? 

Pr 𝑋 > 0.5 = 1 − 𝐹𝑋 0.5 = 1 − 1 − 𝑒−2∗0.5 = 0.3679 

• What is the probability that 0.5 < 𝑋 ≤  0.51? 

 Pr 0.5 < 𝑋 ≤  0.51 = 𝐹𝑋 0.51 − 𝐹𝑋 0.5 =? 



Density Functions 

• Although the distribution function is a complete 
description of the probability model for a single 
random variable, it is not convenient for many 
calculations of interest.  

• It may be preferable to use the derivative of 𝐹𝑋(𝑥) 
rather than 𝐹𝑋(𝑥) itself. This derivative is called the 
probability density function (PDF). When it exists, it 
is defined by 

𝑓𝑋 𝑥 = lim
𝑒→0

𝐹𝑋 𝑥 + 𝑒 − 𝐹𝑋 𝑥

𝑒
=

𝑑𝐹𝑋 𝑥

𝑑𝑥
 



Properties of PDF 

• The physical significance of the PDF is best described 
in terms of the probability element,  
𝑓𝑋 𝑥 𝑑𝑥 = Pr (𝑥 < 𝑋 ≤ 𝑥 + 𝑑𝑥).  

• Properties 

1. 𝑓𝑋 𝑥 ≥ 0,  −∞ < 𝑥 < ∞ 

2.  𝑓𝑋 𝑥 𝑑𝑥 = 1
∞

−∞
 

3.  𝐹𝑋 𝑥 =  𝑓𝑋 𝑢 𝑑𝑢
𝑥

−∞
 

4.  𝑓𝑋 𝑥 𝑑𝑥 = Pr 𝑥1 < 𝑋 ≤ 𝑥2
𝑥2

𝑥1
 



Examples of CDF’s and PDF’s 



Another Example 

• 𝐹𝑥 𝑋 =  
0 −∞ < 𝑥 ≤ 0

1 − 𝑒−2𝑥  0 ≤ 𝑥 < ∞
 

• PDF: 

𝑓𝑋 𝑥 =
𝑑𝐹𝑥 𝑋

𝑑𝑥
=  

0 −∞ < 𝑥 ≤ 0
2𝑒−2𝑥  0 ≤ 𝑥 < ∞

 

How about the following properties? 

1. 𝑓𝑋 𝑥 ≥ 0,  −∞ < 𝑥 < ∞ 

2.  𝑓𝑋 𝑥 𝑑𝑥 = 1
∞

−∞
 

 

 2𝑒−2𝑥𝑑𝑥 = −𝑒−2𝑥  
0

∞
=?

∞

0

 



𝑌 = 𝑔(𝑋) 
• Given the PDF of 𝑋 is known as 𝑓𝑋(𝑥) , find the PDF of 𝑌,  which is 

denoted by 𝑓𝑌(𝑦). 

• It is clear that whenever the random variable 𝑋 lies between 𝑥 and 𝑥 +
𝑑𝑥, the random variable 𝑌 will lie between 𝑦 and 𝑦 + 𝑑𝑦.  

• Since the probabilities of these events are 𝑓𝑋(𝑥)𝑑𝑥 and 𝑓𝑌(𝑦)𝑑𝑦, 
𝑓𝑋 𝑥 𝑑𝑥 = 𝑓𝑌(𝑦)𝑑𝑦. 

• Therefore,  𝑓𝑌 𝑦 = 𝑓𝑋 𝑥
𝑑𝑥

𝑑𝑦
. 

• In general, ,  𝑓𝑌 𝑦 = 𝑓𝑋 𝑥
𝑑𝑥

𝑑𝑦
 



Example 



Returning to Intensity Transform 

𝑝𝑠 𝑠 = 𝑝𝑟 𝑟
𝑑𝑟

𝑑𝑠
 

𝑠 = 𝑇 𝑟 , 0 ≤ 𝑟 ≤ 𝐿 − 1 



Continuous Intensity Values 

𝑝𝑠 𝑠 = 𝑝𝑟 𝑟
𝑑𝑟

𝑑𝑠
 

𝑠 = 𝑇 𝑟 = 𝐿 − 1  𝑝𝑟 𝜔 𝑑𝜔
𝑟

0

 

Histogram Equalization 



Example 



Discrete Intensity Values 



Illustration 



See Matlab code 





histeq 

>> I = imread('Fig0320(2)(2nd_from_top).tif'); 

>> imshow(I) 

>> figure; imhist(I) 

>> J = histeq(I); 

>> figure; 

>> imshow(J) 

>> figure; imhist(J) 
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Fundamentals of Spatial Filtering 

• The name “filter” is borrowed from frequency domain 
processing, which is the topic of the next chapter, where 
"filtering" refers to accepting (passing) or rejecting certain 
frequency components.  

• For example, a filter that passes low frequencies is called a 
lowpass filter. The net effect produced by a lowpass filter is 
to blur (smooth) an image.  

• We can accomplish a similar smoothing directly on the 
image itself by using spatial filters (also called spatial 
masks, kernels, templates, and windows). 

• Spatial filters offer considerably more versatility because 
they can be used also for nonlinear filtering, which we 
cannot do in the frequency domain. 



Mechanics of Spatial Filtering 

• a spatial filter consists of  
– A neighborhood, (typically a small 

rectangle), and  
– a predefined operation that is performed 

on the image pixels encompassed by the 
neighborhood.  

• Filtering creates a new pixel with 
coordinates equal to the coordinates of the 
center of the neighborhood, and whose 
value is the result of the filtering operation. 

• A processed (filtered) image is generated 
as the center of the filter visits each pixel in 
the input image.  

• If the operation performed on the image 
pixels is linear, then the filter is called a 
linear spatial filter. Otherwise, the filter is 
nonlinear. 





Spatial Correlation and Convolution 

• There are two closely related concepts that must be 
understood when performing linear spatial filtering, 
One is correlation and the other is convolution. 

• Correlation is the process of moving a filter mask 
over the image and computing the sum of products 
at each location.  
 

• The mechanics of convolution are the same, except 
that the filter is first rotated by 180°.  







Vector-Representation of Linear Filtering 

When interest lies in the characteristic response, 𝑅, of a 
mask either for correlation or convolution, it is convenient 
sometimes to write the sum of products as 



Generating Spatial Filter Masks 

• Generating an 𝑚 × 𝑛 linear spatial filter requires 
that we specify 𝑚𝑛 mask coefficients. 

• In turn, these coefficients are selected based on 
what the filter is supposed to do – all we can do 
with linear filtering is to implement a sum of 
products. 

• Generating a nonlinear filter requires that we 
specify the size of a neighborhood and the 
operation(s) to be performed on the image pixels 
contained in the neighborhood.  
– For example, a 5 × 5 max filter 
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Smoothing Spatial Filters 
• Smoothing filters are used for blurring and for noise reduction.  

– Blurring is used in preprocessing tasks, such as removal of small 
details from an image prior to (large) object extraction, and 
bridging of small gaps in lines or curves. 

– Noise reduction can be accomplished by blurring with a linear 
filter and also by nonlinear filtering. 

• The output (response) of a smoothing, linear spatial filter is simply 
the average of the pixels contained in the neighborhood of the filter 
mask. These filters sometimes are called averaging filters. 

• Order-statistic filters arc nonlinear spatial filters whose response is 
based on ordering (ranking) the pixels contained in the image area 
encompassed by the filter, and then replacing the value of the 
center pixel with the value determined by the ranking result. The 
best-known filter in this category is the median filler. 



Linear Filters 



Matlab Filtering Functions 

• MATLAB has several two-dimensional and multidimensional filtering 
functions. 

• The function filter2 performs two-dimensional correlation. 
• conv2 performs twodimensional convolution, and convn performs 

multidimensional convolution.  
• Each of these filtering functions always converts the input to 

double, and the output is always double.  
• The above filtering functions always assume the input is zero 

padded, and they do not support other padding options. 
• In contrast, the imfilter function does not convert input images to 

double.  
• The imfilter function also offers a flexible set of boundary padding 

options. 



Imfilter (I, w, corr options, boundary options, size_options) 



padarray 

>> padarray(A, [2 2]) 
 
 
 
 
 
 
>> padarray(A, [2 2],'replicate') 
 
 
 
 
 
 

>> A = [1 2; 3 4] 
       0     0     0     0     0     0 
     0     0     0     0     0     0 
     0     0     1     2     0     0 
     0     0     3     4     0     0 
     0     0     0     0     0     0 
     0     0     0     0     0     0 

       1     1     1     2     2     2 
     1     1     1     2     2     2 
     1     1     1     2     2     2 
     3     3     3     4     4     4 
     3     3     3     4     4     4 
     3     3     3     4     4     4 



>> padarray(A, [2 2], 'symmetric') 
 
 
 
 
 
 
>> padarray(A, [2 2], 'circular') 
 
 
 
 
 
 

>> A = [1 2; 3 4] 
       4     3     3     4     4     3 
     2     1     1     2     2     1 
     2     1     1     2     2     1 
     4     3     3     4     4     3 
     4     3     3     4     4     3 
     2     1     1     2     2     1 

       1     2     1     2     1     2 
     3     4     3     4     3     4 
     1     2     1     2     1     2 
     3     4     3     4     3     4 
     1     2     1     2     1     2 
     3     4     3     4     3     4 



3 ×  3 Averaging Filter 

>> I = imread ('Fig0335(a)(ckt_board_saltpep_prob_pt05).tif'); 

>> h = ones(3,3) / 9; 

>> J = imfilter (I, h, 'symmetric'); 

>> imshowpair (I,J,'montage') 





Smoothing Followed by Thresholding 



Median Filters 

• The best-known order-statistic (non-linear) filter is the 
median filler, which replaces the value of a pixel by the 
median of the intensity values in the neighborhood of that 
pixel (the original value of the pixel is included in the 
computation of the median).  

• Median filters are quite popular because for certain types 
of random noise, they provide excellent noise-reduction 
capabilities, with considerably less blurring than linear 
smoothing filters of similar size.  

• Median filters are particularly effective in the presence of 
impulse noise, also called salt-and-pepper noise because of 
its appearance as white and black dots superimposed on an 
image. 



• The median 𝜁 of a set of values is such that half the values 
in the set are less than or equal to 𝜁 and half are greater 
than or equal to 𝜁  

• In order to perform median filtering at a point in an image, 
we first sort the values of the pixel in the neighborhood, 
determine the median, and assign the value to the 
corresponding pixel in the filtered image. 

• For example, in a 3 × 3 neighborhood, the median is the 5th 
largest value. 

• (10, 15, 20, 20, 20, 20, 20, 25, 100) results in a median of 
20. 

• The median filters force points with distinct intensity levels 
to be more like their neighbors. 



Denoising 



medfilt2 

>> I = imread ('coins.png'); 

>> J = imnoise (I, 'salt & pepper', 0.2); 

>> K = medfilt2 (J); 

>> imshowpair (J, K,'montage') 

 
>> I = imread ('Fig0335(a)(ckt_board_saltpep_prob_pt05).tif'); 

>> K = medfilt2(I); 

>> imshowpair(I,K,'montage') 

 

>> KS = medfilt2(I,'symmetric');        % symmetric extension 

>> imshowpair(K,KS,'montage') 
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Sharping Spatial Filters 

• The principal objective of sharpening is to 
highlight transitions in intensity. 

• Uses of image sharpening vary and include 
applications from electronic printing and 
medical imaging to industrial inspection and 
autonomous guidance in military systems.  

• While image blurring can be accomplished by 
pixel averaging, sharpening can be achieved 
by spatial differentiation.  



Foundation 

• First-order derivative of a one-dimensional 

function is:  
𝜕𝑓

𝜕𝑥
= 𝑓 𝑥 + 1 − 𝑓(𝑥) 

• Second-order derivative of the function is: 
𝜕2𝑓

𝜕2𝑥
= 𝑓 𝑥 + 1 + 𝑓(𝑥 − 1) − 2𝑓(𝑥) 

 





Edges In Digital Images 

• Edges in digital images often are ramp-like 
transitions in intensity, where the first derivative 
of the image would result in thick edges because 
the derivative is nonzero along a ramp.  

• On the other hand, the second derivative would 
produce a double edge one pixel thick, separated 
by zeros.  

• Therefore, the second derivative enhances fine 
detail much better than the first derivative, a 
property that is ideally suited for sharpening 
images. 



The Laplacian 



Extension of Laplacian Filter Mask 



Image Sharpening Using Laplacian 

• Because the Laplacian is a derivative operator, its use 
highlights intensity discontinuities in an image and 
deemphasizes regions with slowly varying intensity levels.  

• This will tend to produce images that have grayish edge 
lines and other discontinuities, all superimposed on a dark, 
featureless background. 

• Background features can be "recovered" while still 
preserving the sharpening effect of the Laplacian simply by 
adding the Laplacian image to the original. 

• 𝑔 𝑥, 𝑦 = 𝑓 𝑥, 𝑦 − [∇2𝑓(𝑥, 𝑦)], if the center coefficient is 
negative. 

• 𝑔 𝑥, 𝑦 = 𝑓 𝑥, 𝑦 + [𝛻2𝑓(𝑥, 𝑦)], if the center coefficient is 
positive. 
 

 



h = fspecial (type, parameter) 



>> I = imread('Fig0338(a)(blurry_moon).tif'); 

>> h = fspecial('laplacian', 0) 

h = 

     0     1     0 

     1    -4     1 

     0     1     0 

>> J1 = imfilter(I, h, 'replicate'); 

>> imshow(J1, [])                   % Truncation problem 

 

>> I2 = im2double(I); 

>> J2 = imfilter(I2, h, 'replicate'); 

>> imshow(J2, []) 
 

>> G = I2 - J2; 

>> imshow(G) 



𝑓𝑚 = 𝑓 − min 𝑓  

𝑓𝑠 = 𝐾
𝑓𝑚

max 𝑓𝑚
, where 𝐾 = 255  



Unsharp Masking 

• A process that has been used in the printing and publishing industry 
to sharpen images consists of subtracting an unsharp (smoothed) 
version of an image from the original image. This process, called 
unsharp masking, consists of the following steps: 

– Blur the original image 

– Subtract the blurred image from the original (the resulting 
difference is called the masks) 

𝑔𝑚𝑎𝑠𝑘 𝑥, 𝑦 = 𝑓 𝑥, 𝑦 − 𝑓 (𝑥, 𝑦) 

– Add the mask to the original: 
𝑔 𝑥, 𝑦 = 𝑓 𝑥, 𝑦 + 𝑘 × 𝑔𝑚𝑎𝑠𝑘(𝑥, 𝑦) 

– When 𝑘 = 1, we have unsharp masking; when 𝑘 > 1, the 
process is called highboost filtering. 







The Gradient for Image Sharpening 

• First derivatives in image processing are implemented using 
the magnitude of the gradient.  

• For a function 𝑓(𝑥, 𝑦), the gradient of 𝑓 at coordinates 
(𝑥, 𝑦) is defined as the two-dimensional column vector  

 

 
 

• This vector has the important geometrical property that it 
points in the direction of the greatest rate of change of 𝑓 at 
location (𝑥, 𝑦). 

• The magnitude of the vector is  
called the gradient image, or simply as gradient. 



>> hy = -fspecial('sobel') 
>> hx = hy' 



Sobel Operators 



imgradient & imgradientxy 

>> [Gx,Gy]= imgradientxy (I,'sobel'); 
>> imshowpair (Gx,Gy,'montage') 
 
>> I = imread('Fig0342(a)(contact_lens_original).tif'); 
>> sobelGradient = imgradient(I); 
>> imshow (sobelGradient,[ ]) 
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