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Research Group
• Dr. David Pan (Faculty Member)

http://www.ece.uah.edu/~dwpan/

• PhD Students
– Yuhang Dong: Biomedical Data 
– Bernard Benson: Space Science Data
– Reetu Hooda: Image Compression
– Myles Harthun: 3D Object Classification

• Recent PhD Alumni
– Dr. Zhuocheng Jiang: Hyperspectral Image Compression (Postdoc, 

Univ. of South Carolina)
– Dr. Hongda Shen (Machine Learning Technical Lead, Chubb, New York)
– Dr. Amir Liaghati (Electrical Engineer, Boeing, Huntsville, AL)
– Dr. Yi Wang (Associate Professor, Manhattan College, New York)
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The "DevBox" has four Nvidia TITAN X GPUs (12 GB of memory each)
and is capable of 7 trillion floating point operations per second.
(Tensorflow, Caffe, Theano, Torch, DIGITS, cuDNN Library …)

Dedicated Computing System for Deep Learning



Current Research

• Modeling and Prediction of Solar Activities 
Using Deep Learning

• Classification of Malaria Infected Cells Using 
Deep Convolutional Neural Networks

• Efficient Predictive Lossless Compression on 
Hyperspectral Images Using Machine Learning



In collaboration with 
Center for Space Plasma and Aeronomic Research (CSPAR)

Dept. of Space Science and Center for Space 
UAH

Bernard Benson

Modeling and Prediction of Solar Activities 
Using Deep Learning



Solar Magnetic Activity Impact on Earth 
•Large coronal eruptions like flares 

and coronal mass ejections can 

influence Earth’s magnetic field.

•This may trigger magnetic storms.

•Coronal eruptions also can cause 

harmful effects: 

- Disturbances in communications

-Damages to satellites

-Causing power outages

-Causing life-threatening radiation 

damage to astronauts in space 



Research Objectives

• Use a simple model to describe the nature of  an active region. 

• Extrapolate the magnetic field of  this pseudo-active region to 

generate synthetic data which is representative of  the observed 

data. 

• Gauge the effectiveness of  deep neural networks to determine 

magnetic field parameters of  this model.

• Repeat the process with increasingly complex representations 

of  synthetic data. 

• Extend the process to high fidelity magnetic field models. 



Image Datasets of  Coronal Loops



Datasets of  Coronal Loops Images



Convolutional Neural Networks

•Convolution Layer

•Activation Function

•Pooling Layer

•Fully Connected Layer

Images courtesy of  http://cs231n.github.io/convolutional-networks/ and http://danielnouri.org/ 



Features Learned



Deep CNN Algorithms



LeNet-5 Architecture 
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Figure from Yann LeCun et al., 1998 



Autoencoders



Computational Platform and Efficiencies
• Computational Platform: Deep Learning “DevBox”

with 4 NVIDIA Titan X GPUs, running Nvidia DIGITS software.

• Training Times 

- 2 mins for LetNet-5, 5 mins for AlexNet

• Testing Times

- 8 seconds for LetNet-5, 10 seconds for AlexNet



Simulation Results 
• Very high accuracy using AlexNet on both datasets. 

•Top-1 accuracy: 99.6% and 96.4%

•Top-5 accuracy: 100%

• Reduced top-1 accuracy (85.49%) on varying dipole dataset due to the 
absence of  dropout in LeNet-5, Top-5 accuracy of  99.88%.

• High sensitivity, specificity and precision show results are not skewed to
uneven test cases. 

Recent Publications:
B. Benson, W. D. Pan, G. A. Gary, Q. Hu, and T. Staudinger, “Determining the 
Parameter for the Linear Force-Free Magnetic Field Model with Multi-
Dipolar Configurations Using Deep Neural Networks,” Astronomy and 
Computing, vol. 26, January 2019, pp. 50 - 60. (Link)

https://doi.org/10.1016/j.ascom.2018.11.002


Classification of Malaria Infected Cells Using 
Deep Convolutional Neural Networks

Yuhang Dong, Zhuocheng Jiang, Hongda Shen, David Pan
Dept. of Electrical & Computer Engineering, U. of Alabama in Huntsville

Allen W. Bryan, Jr, Lance A. Williams, Vishnu V. B. Reddy, 
William H. Benjamin, Jr. , 

Dept. of Pathology, Univ. of Alabama at Birmingham 



Key Facts about Malaria Infection
• Malaria is a life-threatening disease caused by parasites that 

are transmitted to people through the bites of infected 
female Anopheles mosquitoes. 

• Malaria is caused by Plasmodium parasites, which are spread 
to people through the bites of infected female Anopheles 
mosquitoes, called "malaria vectors." 

• There are 5 parasite species that cause malaria in humans, 
and 2 of these species – P. falciparum and P. vivax – pose the 
greatest threat.

• P. falciparum is the most prevalent malaria parasite on the 
African continent, responsible for most malaria-related 
deaths globally.

• P. vivax is the dominant malaria parasite in most countries 
outside of sub-Saharan Africa.



Population Groups At Risk

• In 2016, nearly half of the world's population was at risk 
of malaria. 

• Most malaria cases and deaths occur in sub-Saharan 
Africa. However, the WHO regions of South-East Asia, 
Eastern Mediterranean, Western Pacific, and the 
Americas are also at risk.

• In 2016, 91 countries and areas had ongoing malaria 
transmission.

• Population groups are at considerably higher risk of 
contracting malaria, and developing severe disease, than 
others. These include infants, children under 5 years of 
age, pregnant women and patients with HIV/AIDS,.



Symptoms
• In a non-immune individual, symptoms usually appear 

10–15 days after the infective mosquito bite. 
• The first symptoms are:

fever, headache, and chills – may be mild and difficult 
to recognize as malaria. 

• If not treated within 24 hours, P. falciparum malaria 
can progress to severe illness, often leading to death.

• Children with severe malaria frequently develop one or 
more of the following symptoms: 

• severe anemia
• respiratory distress
• cerebral malaria



Life Cycles of Malaria Infection

The natural ecology of malaria involves malaria 
parasites infecting successively two types of hosts: 
humans and female Anopheles mosquitoes. In 
humans, the parasites grow and multiply first in 
the liver cells and then in the red cells of the 
blood. In the blood, successive broods of parasites 
grow inside the red cells and destroy them, 
releasing daughter parasites (“merozoites”) that 
continue the cycle by invading other red cells.

The blood stage parasites are those that cause 
the symptoms of malaria. When certain forms of 
blood stage parasites (“gametocytes”) are picked 
up by a female Anopheles mosquito during a 
blood meal, they start another, different cycle of 
growth and multiplication in the mosquito.



Fast and Reliable Diagnosis of Malaria

• Reliable malaria diagnoses require necessary training 
and specialized human resources

• Unfortunately, in many malaria-predominant areas, 
such resources are  inadequate and frequently 
unavailable. 

• Fast and reliable diagnosis will be very useful.

Blood smear from a patient with 

malaria; microscopic examination 

shows Plasmodium falciparum 

parasites (arrows) infecting some of 

the patient’s red blood cells. (CDC 
photo)



Whole Slide Imaging

• Whole slide imaging (WSI): 
• Scans conventional glass slides
• Produces high-resolution digital  slides
• The most  recent pathology imaging modality, 

available worldwide
• WSI images allow for highly-accurate automated 

identification of malaria infected cells.
• Challenge: automatic identification of malaria 

infected red blood cells in a huge-size WSI.

Whole Slide Image for malaria infected red blood 
cells from UAB

http://peir-vm.path.uab.edu/wsi.php?slide=IPLab11Malaria


Example of WSI

Image of 258×258 with 
100X magnification

Entire slide with cropped region 
delineated in green

Question:
How can we automatically 
recognize infected cells? A pattern classification problem



Research Goal and Topics
Develop automatic and reliable algorithms for 
computer assisted detection of malaria infections

• Machine Learning for Automated Classification of 
Malaria Infected Cells

• Building a Dataset of Red Blood Cell Images from WSIs 
for Malaria Infection Detection (first such pathologist 
curated dataset in the world) 

• Deep Convolutional Neural Networks
• Evaluation Results and Case Study
• Conclusions and Further Work



Machine Learning for Malaria Detection
• Machine learning (ML) is a subset of artificial intelligence in 

the field of computer science.
• ML techniques give computers the ability to "learn”, i.e., 

progressively improve performance on a specific task with 
training data.

• Feature-based supervised learning algorithms have  been 
shown to be capable for building automated diagnostic 
systems for malaria.

• Classification accuracy of feature-based supervised learning 
methods are relatively low:
• 84% (SVM)
• 83.5% (Naïve Bayes Classifier)
• 85% (Three-layer “shallow” Neural Network)



Feature-Based Machine Learning
• In machine learning, support vector 

machines (SVMs) are supervised 
learning models with associated learning 
algorithms that analyze data used for 
classification and regression analysis. 

• Given a set of training examples, each 
marked as belonging to one or the other 
of two categories, an SVM training 
algorithm builds a model that assigns 
new examples to one category or the 
other.

In the following work, we employed SVM with a set of pre-determined features 
(from training data), to classify malaria infected cells from non-infected cells:
- Hu’s moment 2,3,5,6,7
- MinIntensity
- Shannon’s Entropy

V. Muralidharan, Y. Dong, and W. D. Pan, “A comparison of feature selection 
methods for machine learning based automatic malarial cell recognition in 
wholeslide images,” IEEE BHI’16.



Deep Learning Methods
In contrast to feature-based methods, deep learning 
• is useful for problems where designing features and programming 

explicit algorithms with good performance is difficult or infeasible
• can extract hierarchical representation of the data
• higher layers represent increasingly abstract concepts (“features”)
• higher layers become invariant to transformations and scales

We employed deep convolutional neural network (CNN)
• Inspired by biological processes where the connectivity pattern 

between neurons resembles the organization of the animal visual 
cortex. 

• A CNN consists of an input and an output layer, as well as multiple 
hidden layers. 

• The convolution operation emulates the response of an individual 
neuron to visual stimuli.
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LeNet-5 CNN Architecture

LeNet-5 consists of
• Two convolution layers (C1 and C3)
• Two subsampling (pooling) layers (S2 and S4), and 
• Two fully connected layers



Training of CNNs: Data Hungry
• Deep CNN Training (determining the optimal “weights” 

assigned for) neuron connections) requires a lot of data.
• There are no publicly available datasets of high-resolution red 

blood cell images for malaria infection detection.
• We collaborated with UAB pathologist to build curated datasets.

Steps of image processing and morphological 
operations for single-cell image extraction:
(a) An image tile of interest 
(b) Otsu thresholded image
(c) Morphologically filled image



Compilation of a Pathologist Curated Dataset
• Dataset curation:

• Four board-certified pathologists
• Each single-cell image scored by          

at least two pathologists
• To include an image in “infected” 

set, all  reviewers must mark 
positively (excluded  otherwise).  

• Similarly, to be “non-infected”, all 
reviewers must mark negatively.

• Final dataset: 
• 1,034 infected cells
• 1,531 non-infected cells

Link to the dataset

http://www.ece.uah.edu/~dwpan/malaria_dataset/


Three CNNs Used

CNN LeNet-5 AlexNet GoogLeNet

Year Proposed 1998 2012 2014

# of Layers 4 8 22

Top 5 Errors on ILSVRC ? 16.4% 6.7%

# of Convolutional Layers 3 5 21

Convolutional Kernel Size 5 11, 5, 3 7, 1, 3, 5

# of Fully Connected Layers 1 3 1

# of Parameters 3,628,072 20,176,258 5,975,602

Dropout No Yes Yes

Data Augmentation No Yes Yes

Inception No No Yes

Local Response Normalization No Yes Yes



Training and Verification of CNN’s

• The dataset is still too small.
• Overfitting issue.
• LeNet-5 has no drop-out.

Label Training Testing

Infected 517 517

Normal 765 766

Note: 25% of the training set used 
for verification.



Evaluation Results
Ground Truth

Positive Negative Accuracy

LeNet-5

Positive 493 25

96.18%
Negative 24 741

AlexNet

Positive 502 39

95.79%
Negative 15 727

GoogLeNet

Positive 503 10

98.13%
Negative 14 756

SVM

Positive 500 90

91.66%
Negative 17 676



Computational Efficiencies

• Support Vector Machine (SVM) involves feature 
selection and feature extraction.

• Three CNN running times (in seconds):

More parameters means longer 
training and testing time. 

CNN LeNet-5 AlexNet GoogLeNet

Training-
Validation

7 28 141

Testing 5 5 19



Features Learned (LeNet-5)

Convolutional Layer 1 and Histogram



Convolutional Layer 2 and Histogram

Features Learned (LeNet-5)



Conclusions

Advantage of using CNN: 
• About 98% accuracy achieved with GoogleNet, significantly 

higher than SVM.
• Tradeoffs between computational complexity and 

classification accuracy.
• Deep learning methods allow features to be automatically 

extracted, which is not possible with traditional methods.

Recent Publication:
• Data augmentation 

W. D. Pan, Y. Dong, and D. Wu, “Classification of Malaria Infected Cells 

Using Deep Convolutional Neural Networks,” Book Chapter in Machine 
Learning - Advanced Techniques and Emerging Applications, IntechOpen, 
ISBN 978-1-78923-753-5. Sep, 2018. (Link)

https://www.intechopen.com/books/machine-learning-advanced-techniques-and-emerging-applications/classification-of-malaria-infected-cells-using-deep-convolutional-neural-networks


Zhuocheng (Jack) Jiang

Efficient Predictive Lossless Hyperspectral 
Image Compression Using Machine Learning

Hidden 

Visible

Residual sequence

RBM 
Layer

RBM Layer

RBM Layer

Label Units



Motivation

• Hyperspectral image compression becomes 

important as more and more hyperspectral data 

are collected over time.

• Lossless compression vs. lossy compression 

i. Lossy compression: provides lower bit rates 

but incurs loss on the original data

ii. Lossless compression: guarantees perfect 

reconstruction on the original data



Pixel Value Prediction

 On-board lossless compression is more challenging 

than ground-based compression.

 Traditional machine learning based approaches 

rely on the availability of data from all the 

spectral bands during the process of training. 

 Large quantity of uncompressed data are 

normally not available or only partially available 

in many real-time applications.

 Trained model can not provide an universal 

solution for all the hyperspectral datasets, which 

indicates that the model need to retrain for each 

new dataset



Entropy Coding

 A Golomb-Rice (GR) codes is often used to compress 

the residual due to its simplicity and minimal 

memory capacity requirement. 

 Efficiency of the Golomb-Rice codes depends on the 

accuracy of the coding parameter estimated from the 

input data.

 Existing parameter estimation methods rely on 

estimation of the sample mean from the input data 

sequence (sample mean would vary with changing 

lengths).

 Existing parameter estimation methods assume the 

data to be coded follow the geometric distributions 

(underlying distribution might deviates from the 

geometric distribution). 



Contributions

• We propose an adaptive prediction algorithm based on 

concatenated shallow neural networks (CSNN). Unlike 

most of neural network based methods reported in 

literature, the CSNN was designed as an adaptive 

prediction filter rather than a training-based network, 

thus the model need not be pre-trained before they are 

used for pixel value calculation.

• We formulate the problem of selecting the best coding 

parameter for a given input sequence as a supervised 

pattern classification problem. We propose a universal 

Golomb-Rice coding parameter estimation method using 

deep belief network, which does not rely on any 

assumption on the distribution of the input data.



Concatenated Neural Networks



Coding Parameter Estimation

• We consider the problem of parameter estimation as a 

supervised pattern classification problem.

• In practical implementations, there are only a finite 

number of parameter values to choose from for 

Golomb-Rice codes. 

• For example, coding an image with 8 bits/pixel would 

require the coding parameter m to be chosen from 9 

possible integers in the set of [0, 8]. 

• Similarly, a hyperspectral image having 16 bits/pixel 
would require a slight larger set of 17 integers, [0, 16].



Training and Testing

• In the training phase:

We train a classifier, with its input being the residual data 

sequences, the corresponding label for this residual sequence is 

the value that will give the shortest Golomb-Rice codewords.

• In the testing phase:

We feed the new residual sequences to the classifier, which 

will output the best value to code this residual sequence.

More details found in the paper:

Z. Jiang, W. D. Pan, and H. Shen, “Universal Golomb-Rice Coding 
Parameter Estimation Using Deep Belief Networks For Hyperspectral 
Image Compression,” IEEE Journal of Selected Topics in Applied Earth 
Observations and Remote Sensing (JSTARS), vol. 11, no. 10, pp. 3830 -
3840, Oct. 2018. (IEEE Xplore)

http://ieeexplore.ieee.org/document/8443992/

