Lecture 16

Discriminant Analysis

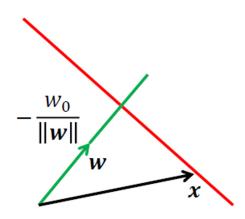
Linearly Separable Classes:

Data sets whose classes can be separated exactly by linear decision surfaces are said to be linearly separable

$$y(x) = w^{T}x + w_{0} = 0$$
; decision boundary

 $y(x_{A}) = 0 \Rightarrow w^{T}x_{A} + w_{0} = 0$
 $y(x_{B}) = 0 \Rightarrow w^{T}x_{B} + w_{0} = 0$
 $y(x_{B}) = 0 \Rightarrow w^{T}x_{B} + w_{0} = 0$
 $y(x_{B}) = 0 \Rightarrow w^{T}x_{B} + w_{0} = 0$
 $y(x_{B}) = 0 \Rightarrow w^{T}x_{B} + w_{0} = 0$

hence the vector \boldsymbol{w} is orthogonal to every vector lying within the decision surface



if x is a point on the decision surface, then $\frac{W^Tx}{\|w\|}$ is the projection of the point x onto the weight vector W. The projection remains the same regardless of the location of x.

$$\frac{\mathbf{w}^{T} \mathbf{x}}{\|\mathbf{w}\|} = -\frac{\mathbf{w}_{0}}{\|\mathbf{w}\|}$$

$$\mathbf{w}^{T} \mathbf{x} + \mathbf{w}_{0} = 0$$

Fisher's Linear Discriminant

Fisher's idea is to maximize a function that will give a large separation between the projected class means, while also giving a small variance within each class, thereby minimizing the class overlap

The projection $y = \mathbf{w}^\mathsf{T} \mathbf{x}$ transforms the set of labeled data points in \mathbf{x} into a labeled set in the one-dimensional space y. The within-class variance of the transformed data from class C_k is therefore given by

$$s_k^2 = \sum_{n \in \mathcal{C}_k} (y_n - m_k)^2$$

where $y_n = \mathbf{w}^{\mathrm{T}} \mathbf{x}_{\mathrm{n}}$

We can define the total within-class variance for the whole data set to be s $s_1^2 + s_2^2$.

$$m_2 - m_1 = \mathbf{w}^{\mathrm{T}}(\mathbf{m}_2 - \mathbf{m}_1)$$

where m_k is the mean of the projected data from class C_k :

$$m_k = \mathbf{w}^{\mathrm{T}} \mathbf{m}_k$$

Fisher's Criterion

The Fisher criterion is defined to be the ratio of the between-class variance to the within-class variance and is given by

 $J(\mathbf{w}) = \frac{(m_2 - m_1)^2}{s_1^2 + s_2^2}$

• This Fisher criterion can be rewritten in matrix form as:
$$J(\mathbf{w}) = \frac{\mathbf{w}^{\mathrm{T}}\mathbf{S}_{\mathrm{B}}\mathbf{w}}{\mathbf{w}^{\mathrm{T}}\mathbf{S}_{\mathrm{W}}\mathbf{w}} \leftarrow |\mathbf{x}|$$

$$S_{R} = S_{R}^{T} \angle S_{R} = (m_{2} - m_{1})(m_{2} - m_{1})^{T}$$

$$J(\mathbf{w}) = \frac{\mathbf{w}^{\mathsf{T}} \mathbf{S}_{\mathsf{B}} \mathbf{w}}{\mathbf{w}^{\mathsf{T}} \mathbf{S}_{\mathsf{W}} \mathbf{w}} \leftarrow |\mathbf{x}|$$
 where \mathbf{S}_{B} is the between-class covariance matrix given by
$$\mathsf{S}_{\mathsf{B}} = \mathsf{S}_{\mathsf{B}}^{\mathsf{T}} \quad \not \in \quad \mathbf{S}_{\mathsf{B}} = (\mathbf{m}_2 - \mathbf{m}_1)(\mathbf{m}_2 - \mathbf{m}_1)^{\mathsf{T}} \qquad \mathsf{w}^{\mathsf{T}} \mathsf{S}_{\mathsf{B}} \mathbf{w} = \mathsf{w}^{\mathsf{T}} \underbrace{(\mathsf{M}_2 - \mathsf{M}_1)}_{\mathsf{M}_2 - \mathsf{M}_1}^{\mathsf{T}}_{\mathsf{W}} \underbrace{(\mathsf{M}_2 - \mathsf{M}_1)^{\mathsf{T}}_{\mathsf{W}}}_{\mathsf{S}_{\mathsf{Calar}}} = (\mathbf{m}_2 - \mathbf{m}_1)(\mathbf{m}_2 - \mathbf{m}_1)^{\mathsf{T}} + \sum_{n \in \mathcal{C}_2} (\mathbf{x}_n - \mathbf{m}_2)(\mathbf{x}_n - \mathbf{m}_2)^{\mathsf{T}}.$$

$$J(\mathbf{w}) = \frac{\mathbf{w}^{\mathrm{T}} \mathbf{S}_{\mathrm{B}} \mathbf{w}}{\mathbf{w}^{\mathrm{T}} \mathbf{S}_{\mathrm{w}} \mathbf{w}}$$

Determine the value of ${\bf w}$ such that $J({\bf w})$ is maximized, by differentiating $J({\bf w})$ with respect to ${\bf w}$:

$$J'(\mathbf{w}) = \frac{\left(\mathbf{w}^{\mathrm{T}}\mathbf{S}_{\mathrm{B}}\mathbf{w}\right)'\left(\mathbf{w}^{\mathrm{T}}\mathbf{S}_{\mathrm{w}}\mathbf{w}\right) - \left(\mathbf{w}^{\mathrm{T}}\mathbf{S}_{\mathrm{B}}\mathbf{w}\right)\left(\mathbf{w}^{\mathrm{T}}\mathbf{S}_{\mathrm{w}}\mathbf{w}\right)'}{\left(\mathbf{w}^{\mathrm{T}}\mathbf{S}_{\mathrm{w}}\mathbf{w}\right)^{2}}$$

 $\frac{\left(2\mathbf{S}_{\mathrm{B}}\mathbf{w}(\mathbf{w}^{\mathrm{T}}\mathbf{S}_{\mathrm{w}}\mathbf{w}) - 2\mathbf{S}_{\mathbf{W}}\mathbf{w}(\mathbf{w}^{\mathrm{T}}\mathbf{S}_{\mathrm{B}}\mathbf{w})}{(\mathbf{w}^{\mathrm{T}}\mathbf{S}_{\mathrm{w}}\mathbf{w})^{2}} = 0$

Thus

$$S_{B}w(w^{T}S_{w}w) = S_{W}w(w^{T}S_{B}w)$$
$$\frac{S_{W}^{-1}S_{B}w(w^{T}S_{w}w)}{(w^{T}S_{B}w)} = w$$

$$\left(\frac{U}{V}\right)' = \frac{U'V - UV'}{V^2}$$

For a scalar α given by a quadratic form: $\alpha = \mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x}$

For the special case
$$\mathbf{A}^{\mathrm{T}} = \mathbf{A}$$
, then $\frac{\partial \left[\mathbf{x}^{\mathrm{T}}(\mathbf{A} + \mathbf{A}^{\mathrm{T}})\right]}{\partial \mathbf{x}} = \left(2\mathbf{x}^{\mathrm{T}}\mathbf{A}\right)^{\mathrm{T}} = 2\mathbf{A}$

For the special case
$$\mathbf{A}^{T} = \mathbf{A}$$
, then $\frac{\partial [\mathbf{x}^{T}(\mathbf{A} + \mathbf{A}^{T})]}{\partial \mathbf{x}} = (2\mathbf{x}^{T}\mathbf{A})^{T} = 2\mathbf{A}^{T}\mathbf{x}$

$$(\mathbf{w}^{T} \mathbf{S} \mathbf{g} \mathbf{w})^{T} = 2\mathbf{S} \mathbf{g} \mathbf{w} = 2\mathbf{S} \mathbf{g} \mathbf{w}$$

$$\mathbf{v}^{T} \mathbf{s} \mathbf{g} \mathbf{w}^{T} = \mathbf{S} \mathbf{g} \mathbf{w}$$

$$\mathbf{v}^{T} \mathbf{s} \mathbf{g} \mathbf{w}^{T} \mathbf{s} \mathbf{g}$$

$$\mathbf{v}^{T} \mathbf{s} \mathbf{g} \mathbf{w}^{T} \mathbf{s} \mathbf{g}$$

$$\mathbf{w} = \frac{\mathbf{S}_{\mathbf{W}}^{-1} \mathbf{\hat{S}}_{\mathbf{B}} \mathbf{w} (\mathbf{w}^{\mathsf{T}} \mathbf{S}_{\mathbf{W}} \mathbf{w})}{(\mathbf{w}^{\mathsf{T}} \mathbf{S}_{\mathbf{B}} \mathbf{w})}, \text{ where}$$

$$\mathbf{S}_{\mathbf{B}} \mathbf{w} = (\mathbf{m}_2 - \mathbf{m}_1) (\mathbf{m}_2 - \mathbf{m}_1)^{\mathsf{T}} \mathbf{w}$$

$$= (\mathbf{m}_2 - \mathbf{m}_1) (\mathbf{w}^{\mathsf{T}} (\mathbf{m}_2 - \mathbf{m}_1))^{\mathsf{T}}$$

$$= (\mathbf{m}_2 - \mathbf{m}_1) (m_2 - m_1)$$

Since $(\mathbf{w}^{\mathrm{T}}\mathbf{S}_{\mathrm{w}}\mathbf{w})$, $(\mathbf{w}^{\mathrm{T}}\mathbf{S}_{\mathrm{B}}\mathbf{w})$ and (m_2-m_1) are all scalar factors, we can drop them if we care only about the direction of the weight vector \mathbf{w} , instead of its magnitude. Thus we can obtain

$$\mathbf{w} \propto \mathbf{S}_{\mathbf{W}}^{-1}(\mathbf{m}_2 - \mathbf{m}_1)$$

 $\mathbf{w} \propto \mathbf{S}_{\mathbf{W}}^{-1}(\mathbf{m}_2 - \mathbf{m}_1)$ is known as Fisher's linear discriminant.