Lecture 16

Discriminant Analysis

Linearly Separable Classes:
Data sets whose classes can be separated exactly by linear
decision surfaces are said to be linearly separable
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hence the vector wis orthogonal to every vector lying within the decision surface

if x is a point on the decision surface, then
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il is the projection of the point x onto the

weight vector W. The projection remains the




Fisher’s Linear Discriminant

Fisher’s idea is to maximize a function that will give a large separation
between the projected class means, while also giving a small variance
within each class, thereby minimizing the class overlap

The projection y = wTx transforms the set of labeled data points in X into
a labeled set in the one-dimensional space y. The within-class variance of
the transformed data from class Cy, is therefore given by
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where y, = wTx,

V\ée can2 define the total within-class variance for the whole data set to be s
s{ +s35.
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where my, is the mean of the projected data from class Cy,:
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Fisher’s Criterion

* The Fisher criterion is defined to be the ratio of the
between-class variance to the within-class variance and is
given by (mg —my)? =<—
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* This Fisher criterion can be rewritten in matrix form as:
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* Determine the value of W such that /] (w) is maximized, by ) VL
differentiating J(w) with respect to w :
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, Where
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Since (W''S,,w), (W'Sgw) and (m, — m,) are all scalar factors, we
can drop them If we care only about the direction of the weight vector
w, instead of its magnitude. Thus we can obtain
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w o Syt (m, — my) is known as Fisher’s linear discriminant.



