Lecture 19

Linear Models for Regression

Simple example of fitting data to a straight line order $n=1$

$$
\left[\begin{array}{ll}
x_{1} & 1 \\
x_{2} & 1 \\
x_{3} & 1
\end{array}\right]\left[\begin{array}{l}
p_{1} \\
p_{2}
\end{array}\right]=\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right] \text {, or } V_{(3 \times 2)} p_{(2 \times 1)}=y_{(3 \times 1)}
$$

Given training data samples $(x, y):(2,5),(3,7),(4,9)$, the system of equations (with 2 unknowns and 3 equations):

$$
\underbrace{\left[\begin{array}{ll}
2 & 1 \\
3 & 1 \\
4 & 1
\end{array}\right]}_{V} \underbrace{\left[\begin{array}{l}
p_{1} \\
p_{2}
\end{array}\right]}_{p}=\underbrace{\left[\begin{array}{l}
5 \\
7 \\
9
\end{array}\right] \quad \text { if } n=1}_{N} \Rightarrow\left\{\begin{array}{l}
2 p_{1}+p_{2}=5 \\
3 p_{1}+p_{2}=9 \\
4 p_{1}+p_{2}=9
\end{array}\right]
$$

- $p=$ polyfit (x, y, n) returns the coefficients for a polynomial $p(x)$ of degree n that is a best fit (in a least-squares sense) for the data in y .
The coefficients in p are in descending powers, and the length of p is $\mathrm{n}+1$.

$$
p(x)=p_{1} x^{n}+p_{2} x^{n-1}+\ldots+p_{n} x+p_{n+1} .
$$

- polyfit uses x to form a Vandermonde matrix V with $\mathrm{m}=$ length (x) rows and $(n+1)$ columns, resulting in the linear system below, which polyfit solves with $p=V \backslash y=\operatorname{pinv}(V) * y$.

$$
n=0
$$

Goal: Find a solution vector p such that the approximation error (squared) below is minimized: $E^{2}(p)=\|V p-y\|^{2}$.

$$
\begin{aligned}
& \left(2 p_{1}+p_{2}-5\right)^{2} \\
= & 4 p_{1}^{2}+p_{2}^{2}+25+4 p_{1} p_{2}-20 p_{1}-10 p_{2}
\end{aligned}
$$

Symbolic Matrix Operations

$$
\begin{aligned}
& (1 \times m)(m \times 1) \\
& E^{2}(p)=\overbrace{\|V p-y\|^{2}}=(V p-y)^{T}(V p-y)=\left(p^{T} V^{T}-y^{T}\right)(V p-y) \\
& =p^{T} V^{T} V p-p^{T} V^{T} \mathrm{y}-\mathrm{y}^{\mathrm{T}} V p+\mathrm{y}^{\mathrm{T}} \mathrm{y} \\
& \text { >> sims pf pf p E2(p1,p2) } \\
& \mathrm{p}=[\mathrm{p} 1 ; \mathrm{p} 2] \text {; } \\
& V=[2,1 ; 3,1 ; 4,1] \text {; } \\
& y=\left[\begin{array}{ll}
5 & 7
\end{array}\right]^{\prime} ; \\
& \left.E 2(\mathrm{p} 1, \mathrm{p} 2)=(\mathrm{p} .)^{*}\right)^{*}\left(\mathrm{~V}^{\prime}\right)^{*} \mathrm{~V}^{*} \mathrm{p}-\left(\mathrm{p} . .^{\prime}\right)^{*}\left(\mathrm{~V}^{\prime}\right)^{*} \mathrm{y}- \\
& y^{\prime *} V^{*} p+y^{\prime *} y \text {; } \\
& \text { >> simplify(E2) } \\
& \text { ans }=29^{*} \mathrm{p} 1^{\wedge} 2+18^{*} \mathrm{p} 1^{*} \mathrm{p} 2-134^{*} \mathrm{p} 1+ \\
& \text { 3*p2^2-42*p2 }+155 \\
& f(x)=\left(v_{x}-y\right)^{\top}\left(v_{x}-y\right)=\left\|v_{x}-y\right\|^{2} \\
& =29 p_{1}^{2}+18 p_{1} p_{2}-134 p_{1}-42 p_{2}+155+3 p_{2}^{2} \\
& \nabla E^{2}(p)=\left[\begin{array}{c}
\frac{\partial E^{2}}{\partial p_{1}} \\
\frac{\partial E^{2}}{\partial p_{2}}
\end{array}\right]=58 p_{1}+18 p_{2}-134=0, \frac{\partial f}{\partial p_{2}}=\cdots=0 \quad \nabla_{p}(p^{T} V^{T} V \mathrm{p}-p^{T} V^{T} \mathrm{y}-\underbrace{\mathrm{y}^{\mathrm{T}} V p}+\mathrm{y}^{\mathrm{T}} \mathrm{y})=\left[\begin{array}{l}
0 \\
0
\end{array}\right], \text { in order to }
\end{aligned}
$$

determine the critical point that can potentially minimize $E^{2}(p)$, where
$\left.\nabla_{p}\left(p^{T} V^{T} V p\right)=2\left(V^{T} V\right) p,\right\rangle \quad \nabla_{p}\left(p^{T} V^{T} \mathrm{y}\right)=\nabla_{p}\left(y^{T} V p\right)=V^{T} \mathrm{y}, \quad \nabla_{p}\left(y^{T} y\right)=0$
Thus

$$
\left(V^{T} V\right) p-V^{T} \mathrm{y}=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \text {, or } V^{T} V p=V^{T} \mathrm{y} \text { (Normal Equation in Statistics) }
$$

For a scalar α given by a quadratic form: $\alpha=\mathbf{x}^{\top} \mathbf{A} \mathbf{x}$

And. $|x|$

Normal Equation:

$$
\left(V^{T} V\right) p-V^{T} \mathrm{y}=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \text {, or } V^{(n+1) \times m} \operatorname{\nu } V p^{m \times(n+1)}=V^{T} \mathrm{y} \text { (Normal Equation in Statistics) }
$$

Thus
$V^{T} V$ is invertible when the columns of V are linearly independent.
Best estimate (in least square sense): $\hat{p}=\left[\left(V^{T} V\right)^{-1} V^{T}\right] y=\operatorname{pinv}(V) y$

$$
\begin{aligned}
& \text { >> V }=[2,1 ; 3,1 ; 4,1] ; \\
& \left.\gg \operatorname{inv}\left(\mathrm{V}^{\prime} * \mathrm{~V}\right)\right)^{*} \mathrm{~V}^{\prime *} \mathrm{y} \\
& \gg y=\left[\begin{array}{ll}
5 & 7
\end{array}\right]^{\prime} ; \\
& \gg \operatorname{pinv}(\mathrm{V})^{*} y \\
& \begin{array}{l}
\text { ans }= \\
2.0000 \\
1.0000
\end{array} \\
& V^{\top} V_{p}=V^{\top} y \\
& p=\binom{2}{1} \\
& \left(v^{\top} v\right)^{-1}\left(v^{\top} v\right) p=\left(v^{\top} v\right)^{-1} v^{\top} y \\
& \text { I } \quad p=\left[\left(V^{\top} V\right)^{-1} V^{\top}\right] y
\end{aligned}
$$

$V=$	$y=$	
2	1	5
3	1	7
4	1	9

Hessian Matrix (Derivative of Gradient)

$$
\begin{aligned}
\nabla_{p}^{2} E^{2}(p) & =\left[\begin{array}{cc}
\frac{\partial^{2} E^{2}}{\partial p_{1}^{2}} & \frac{\partial^{2} E^{2}}{\partial p_{1} \partial p_{2}} \\
\frac{\partial^{2} E^{2}}{\partial p_{2} \partial p_{1}} & \frac{\partial^{2} E^{2}}{\partial p_{2}^{2}}
\end{array}\right]=\nabla_{p}\left[\begin{array}{l}
\frac{\partial E^{2}}{\partial p_{1}} \\
\frac{\partial E^{2}}{\partial p_{2}}
\end{array}\right]^{T}=\nabla_{p}\left(2 V^{T} V p-2 V^{T} y\right)^{T} \\
& =\nabla_{p}\left(2 p^{T} V^{T} V-2 y^{T} V\right)=2 V^{T} V
\end{aligned}
$$

- $V^{T} V$ is always symmetric and positive definite (with all eigenvalues being positive, all pivots being positive), thus $\hat{p}=\left[\left(V^{T} V\right)^{-1} V^{T}\right] y$ is not only a critical point, but also a local minima.
- In addition, due to the Hessian being a (everywhere in general) positive definite matrix, $E^{2}(p)$ is a convex function, and \hat{p} is also a global minima.

Geometric Interpretation

$$
\begin{aligned}
& \begin{array}{ll}
x_{1} & x_{2}
\end{array} \\
& {\left[\begin{array}{l}
2 \\
3 \\
4
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\left[\begin{array}{l}
p_{1} \\
p_{2}
\end{array}\right]=\left[\begin{array}{l}
5 \\
7 \\
9
\end{array}\right]=y, \text { Solution: } \hat{p}=\left[\begin{array}{l}
p_{1} \\
p_{2}
\end{array}\right]=\left[\begin{array}{l}
2 \\
1
\end{array}\right]} \\
& y=\left[\begin{array}{l}
5 \\
7 \\
9
\end{array}\right]=p_{1}\left[\begin{array}{l}
2 \\
3 \\
4
\end{array}\right]+p_{2}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \\
& \left(\begin{array}{cc}
x_{1} & x_{2}
\end{array}\right)\binom{p_{1}}{p_{2}}=y \\
& x_{1} p_{1}+x_{2} p_{2}=y
\end{aligned}
$$

In this specific example (with zero estimation error), the 3×1 vector y happens to be in the column space of the matrix V, with the solution 2×1 vector \hat{p} containing the components (linear combination coefficients).

- Consider the following (slightly changed) least square problem:

$$
\begin{aligned}
& V: m \times(n+1), V^{\top}:(n+1) \times m, \quad V^{\top} V:(n+1) \times(n+1) \\
& {\left[\begin{array}{ll}
2 & 1 \\
3 & 1 \\
4 & 1
\end{array}\right]\left[\begin{array}{l}
p_{1} \\
p_{2}
\end{array}\right]=\left[\begin{array}{l}
5 \\
6 \\
9
\end{array}\right]=y \text {, then } V^{\mathrm{T}} V=\left[\begin{array}{lll}
2 & 3 & 4 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 1 \\
3 & 1 \\
4 & 1
\end{array}\right]=\left[\begin{array}{cc}
29 & 9 \\
9 & 3
\end{array}\right]} \\
& \hat{p}=\left(V^{T} V\right)^{-1} V^{T} y=\left[\begin{array}{cc}
29 & 9 \\
9 & 3
\end{array}\right]^{-1}\left[\begin{array}{lll}
2 & 3 & 4 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
5 \\
6 \\
9
\end{array}\right]=\left[\begin{array}{ccc}
-\frac{1}{2} & 0 & \frac{1}{2} \\
\frac{11}{6} & \frac{1}{3} & -\frac{7}{6}
\end{array}\right]\left[\begin{array}{l}
5 \\
6 \\
9
\end{array}\right]=\left[\begin{array}{l}
2 \\
\frac{2}{3}
\end{array}\right] \\
& y=\left[\begin{array}{l}
5 \\
\hat{6} \\
9
\end{array}\right] \approx\left[\begin{array}{r}
4 \frac{2}{3} \\
6 \frac{2}{3} \\
8 \frac{2}{3}
\end{array}\right]=p_{1}\left[\begin{array}{l}
2 \\
3 \\
4
\end{array}\right]+p_{2}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=2\left[\begin{array}{l}
2 \\
3 \\
4
\end{array}\right]+\frac{2}{3}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
\end{aligned}
$$

