Lecture 22

Logistic Regression

logit function

The sigmoid function:

o(a) = p(C1x) = Trea

p(C1]%)
p(C2[%)

where a(x) = In

The logit function (also called the/log odd
function) represents the log of the ratio of
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probabilities: >>s=0.01: 0.001: 0.99;
>> a = log(s./(1-s));
4 p(Cy|x) p(Cy1x) >> plot(s,a); grid
a(x) =1In =1In = In
1—0) = "T=p10 - G0

The logistic (sigmoid) function and the logit function are inverse of each other.

Softmax Function

Multiclass (K > 2) generalization of the logistic sigmoid to

a normalized expo et
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mcontrast to the two-class case:
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The softmax function represents a smoothed version of the “max” function

because, if a; > a; forall j # k, then
p(Cx1%) = 1, and p(¢;|x) = 0.




Generalized Linear Models and Link Function

So far we have considered classification models that work directly with the

original input vector X.

We can also make a fixed nonlinear transformation of the inputs using a
vector of basis functions ¢ (x).

The resulting decision boundaries will be linear in the feature sp G
and these correspond to nonlinear decision boundaries in the original x

space.

We begin our treatment of generalized linear models by considering the

problem of two-class classification.
Extension of logistic sigmai
probability from a(a) =

Tz_a, where a(x) = In

ction representation of the pc()gc?rior
P

X) .
1/ s the

p(C2[x)

ogic fémction, to Logistic Regression as follows:
(p(C11) F (@) = o(W'), and p(C,1$) = 1 — p(C1lh).
c Wi pX) = [y(¢)] = a[p(C;|$(x))]. The inverse of the sigmoid — the

logit function is called the link function, which converts the probability of
the response variables to a generalized linear combination of explanatory

variables (input vector X).

We have seen an example of logistic regression previously, when we fitted

Gaussian class conditional densities.

mnrval ( ) function and Decision Boundary
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>> x = mean(data)
X =
6.1741 5.9980 8

>> prob = mnrval(B, x)
prob =
0.6329 0.3671

>> B(2)*x(1) + B(3)*x(2) + B(1)
ans =
0.5447

x1
x2
plot (x1,x2)

>> log(prob(1)/prob(2)) min(data(:,1)):
ans =

0.5447

0.01:
-(B(2)*x1 + B(1))/B(3);

max (data(:,1));
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In a two-class classification problem, the posterior probability of
class C; can be written as a logistic sigmoid acting on a linear
function of the feature vector ¢ so that

p(Cilp) = y(d) = o(w'¢)



Parametric Form for p(Cy |x)

Assume that the class-conditional densities are Gaussian.

We consider first two classes, and assume that all classes share the same
covariance matrix.

Thus the density for class Cy is given by

1 1 1 _

p(x|Cr) = @)D 2172 exp {—§(x — ) T2 (x = )
P(CI)X) P(CUX)
A N

(@) = p(C,|%) = U(lnp(cllx)> _ O'(Inp(C1IX)p(x)) _ 0_<1nP(X|C1)p(C1)>
. p(C2]x) p(C21x)p(x) p(x|C)p(C2)
p(Ci]x) = (T{;\V] x + wp) where J G, %) P C G, X)
w = z_l(ﬂl — M)
| p(Cy)

wyg = _;p’l >
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% Decision boundary based on coefficients in B logistic_regression_demo.m

% B(2)*x1 + B(3)*x2 + B(1) = 0, where B(1) is the intercept
% log(P(C1|X)/P(C2|X)) >= 0, if P(C1|X)>=P(C2|X)

x1 = min(data(:,1)): 0.01: max(data(:,1)); >>B

x2 = -(B(2)*x1 + B(1))/B(3);

hold on; B=

plot(x1,x2)
19.0582
-1.2745
-1.7747

>> % Slopes and intercepts based on theoretical results
inv(Sigma)*(mul-mu2)'
-0.5*mul*inv(Sigma)*mul'+0.5*mu2*inv(Sigma)*mu2'

ans =
-1.2374 [ p(Ci|x) = of wix + u-,;.‘p] where the weight and bias are based on the means and
-1.7664 covariance matrix estimated by the MLE method — too
many parameters to estimate!
ans W= E_I(l’q 2y
wy = —%;L}'E_I’ul + é‘u:zl‘E—l”Q +In j:&,i;
18.2342 B

>> % Determine the class probability
X = mean(data)
prob = mnrval(B, x)
log(prob(1)/prob(2))
B(2)*x(1)+B(3)*x(2)+B(1)

6.1741 5.9980

prob =

0.6329 0.3671

ans = < t E_(C_I()S)

0.5447 P (Cely)



