Logistic Regression

logit function

The sigmoid function:

$$\sigma(a) = p(C_1|\mathbf{x}) = \frac{1}{1 + e^{-a}}$$

where
$$a(\mathbf{x}) = \ln \frac{p(C_1|\mathbf{x})}{p(C_2|\mathbf{x})}$$

The **logit** function (also called the **log odd** function) represents the log of the ratio of probabilities:

$$a(\mathbf{x}) = \ln\left(\frac{\sigma}{1 - \sigma}\right) = \ln\frac{p(C_1|\mathbf{x})}{1 - p(C_1|\mathbf{x})} = \ln\frac{p(C_1|\mathbf{x})}{p(C_2|\mathbf{x})}$$

>> s = 0.01: 0.001: 0.99; >> a = log(s./(1-s)); >> plot(s,a); grid

The **logistic** (sigmoid) function and the **logit** function are inverse of each other.

Softmax Function

Multiclass (K > 2) generalization of the logistic sigmoid to

a normalized exponential:

$$p(\mathcal{C}_k|\mathbf{x}) = \underbrace{\frac{p(\mathbf{x}|\mathcal{C}_k)p(\mathcal{C}_k)}{\sum_j p(\mathbf{x}|\mathcal{C}_j)p(\mathcal{C}_j)}}_{\sum_j p(\mathbf{x}|\mathcal{C}_j)p(\mathcal{C}_j)} = \underbrace{\frac{\exp(a_k)}{\sum_j \exp(a_j)}}_{\text{where}} = \underbrace{\frac{1}{1 + \exp(-a)} = \sigma(a)}_{\text{dk} = \ln p(\mathbf{x}|\mathcal{C}_k)p(\mathcal{C}_k)} = \underbrace{\frac{1}{1 + \exp(-a)} = \sigma(a)}_{\text{p(\mathbf{x}}|\mathcal{C}_1)p(\mathcal{C}_1)} = \underbrace{\frac{p(\mathbf{x}|\mathcal{C}_1)p(\mathcal{C}_1)}{p(\mathbf{x}|\mathcal{C}_2)p(\mathcal{C}_2)}}_{\text{dk} = e^{\text{ln}} p(\mathbf{x}|\mathcal{C}_k)p(\mathcal{C}_k)} = \underbrace{p(\mathbf{x}|\mathcal{C}_k)p(\mathcal{C}_k)}_{\text{p(\mathbf{x}}|\mathcal{C}_2)p(\mathcal{C}_2)}$$

The softmax function represents a smoothed version of the "max" function because, if $a_k \gg a_j$ for all $j \neq k$, then $p(\mathcal{C}_k | \mathbf{x}) \approx 1$, and $p(\mathcal{C}_j | \mathbf{x}) \approx \mathbf{0}$.

Generalized Linear Models and Link Function

- So far we have considered classification models that work directly with the original input vector x.
- We can also make a fixed nonlinear transformation of the inputs using a vector of **basis functions** $\phi(\mathbf{x})$.
- The resulting decision boundaries will be linear in the feature space Φ, and these correspond to nonlinear decision boundaries in the original x space.
- We begin our treatment of generalized linear models by considering the problem of two-class classification.
- Extension of logistic sigmoid function representation of the posterior probability from $\sigma(a) = p(C_1|\mathbf{x}) \Rightarrow \frac{1}{1+e^{-a}}$, where $a(\mathbf{x}) = \ln \frac{p(C_1|\mathbf{x})}{p(C_2|\mathbf{x})}$ is the logic function, to **Logistic Regression** as follows: $p(C_1|\phi) = y(\phi) = \sigma(\mathbf{w}^T\phi)$, and $p(C_2|\phi) = 1 p(C_1|\phi)$.
- $\mathbf{w}^{\mathrm{T}}\phi(\mathbf{x}) = \sigma^{-1}[y(\phi)] = \mathbf{a}[p(C_1|\phi(\mathbf{x}))]$. The inverse of the sigmoid the logit function is called the **link function**, which converts the probability of the response variables to a generalized linear combination of explanatory variables (input vector \mathbf{x}).
- We have seen an example of logistic regression previously, when we fitted Gaussian class conditional densities.

linear

$$\phi(x) = -1.2745x_1 - 1.7747x_2 + 19.0582$$

$$\uparrow$$

$$(x_1, x_2)$$

$$\rho(c|\phi) = \frac{1}{1+e^{-}} = y(\phi) = \sigma(z)$$

• In a two-class classification problem, the posterior probability of class C_1 can be written as a logistic sigmoid acting on a linear function of the feature vector ϕ so that $p(C_1|\phi) = y(\phi) = \sigma(\mathbf{w}^T\phi)$

mnrval () function and Decision Boundary

Parametric Form for $p(C_k|\mathbf{x})$

- Assume that the class-conditional densities are Gaussian.
- We consider first two classes, and assume that all classes share the same covariance matrix.
- Thus the density for class C_k is given by

$$p(\mathbf{x}|\mathcal{C}_{k}) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\mathbf{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_{k})^{\mathrm{T}} \mathbf{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu}_{k})\right\}$$

$$p(\mathcal{C}_{1}|\mathbf{x}) = \sigma\left(\ln \frac{p(\mathcal{C}_{1}|\mathbf{x})}{p(\mathcal{C}_{2}|\mathbf{x})}\right) = \sigma\left(\ln \frac{p(\mathcal{C}_{1}|\mathbf{x})p(\mathbf{x})}{p(\mathcal{C}_{2}|\mathbf{x})p(\mathbf{x})}\right) = \sigma\left(\ln \frac{p(\mathbf{x}|\mathcal{C}_{1})p(\mathcal{C}_{1})}{p(\mathbf{x}|\mathcal{C}_{2})p(\mathcal{C}_{2})}\right)$$

$$p(\mathcal{C}_{1}|\mathbf{x}) = \sigma(\mathbf{w}^{\mathrm{T}}\mathbf{x} + \mathbf{w}_{0}) \quad \text{where} \qquad \qquad P(\mathcal{C}_{2}, \mathbf{x}) \qquad \qquad P(\mathcal{C}_{2}, \mathbf{x})$$

$$\mathbf{w} = \mathbf{\Sigma}^{-1}(\boldsymbol{\mu}_{1} - \boldsymbol{\mu}_{2})$$

$$w_{0} = -\frac{1}{2}\boldsymbol{\mu}_{1}^{\mathrm{T}}\mathbf{\Sigma}^{-1}\boldsymbol{\mu}_{1} + \frac{1}{2}\boldsymbol{\mu}_{2}^{\mathrm{T}}\mathbf{\Sigma}^{-1}\boldsymbol{\mu}_{2} + \ln \frac{p(\mathcal{C}_{1})}{p(\mathcal{C}_{2})}$$

```
logistic_regression_demo.m
```

>> B

B =

19.0582 -1.2745 -1.7747

>> % Slopes and intercepts based on theoretical results inv(Sigma)*(mu1-mu2)'

-0.5*mu1*inv(Sigma)*mu1'+0.5*mu2*inv(Sigma)*mu2'

$$p(C_1|\mathbf{x}) = \sigma(\mathbf{w}^T\mathbf{x} + w_0)$$

where the weight and bias are based on the means and covariance matrix estimated by the MLE method – too many parameters to estimate!

ans =
$$\begin{aligned} \mathbf{w} &=& \boldsymbol{\Sigma}^{-1}(\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2) \\ w_0 &=& -\frac{1}{2}\boldsymbol{\mu}_1^{\mathrm{T}}\boldsymbol{\Sigma}^{-1}\boldsymbol{\mu}_1 + \frac{1}{2}\boldsymbol{\mu}_2^{\mathrm{T}}\boldsymbol{\Sigma}^{-1}\boldsymbol{\mu}_2 + \ln\frac{p(\mathcal{C}_1)}{p(\mathcal{C}_2)} \end{aligned}$$

>> % Determine the class probability

x = mean(data) prob = mnrval(B, x) log(prob(1)/prob(2)) B(2)*x(1)+B(3)*x(2)+B(1)

prob =

ans = -1.2374

-1.7664

0.6329 0.3671