Lecture 23

Logistic Regression

* Inatwo-class classification problem, the posterior probability of
class C; can be written as a logistic sigmoid acting on a linear
function of the feature vector ¢ so that

p(CilP) = y(p) = o(w'e)
* Note that this is a model for classification rather than regression.

* For an M-dimensional feature space @, this model has M adjustable
parameters.

* By contrast, when we previously fitted Gaussian class conditional
densities using maximum likeljhood, wewould have used 2M

parameters for the means, and MM+ 1) parameters for the (shared)
covariance matrix. Together wi reclass prior p(C;), this gives a
total of M(M+5) + 1 parameters, which grows quadratically with M.
* For large values of M, there is a clear advantage in working with the
logistic regression model directly.

* To determine the parameters of the logistic regression model, we
can use

— Maximum likelihood

S\/\MY"\QJTVf ¢ Mat r|\y

— lIterative reweighted least squares /\/8"_\
M —> X X - X
M- ——> X M
l - X

I T2+ 34wrmol+m = MO
2



'logistic_demo.py"
Logistic Regression

import numpy as np

infile = "logistic_regress.csv"

dataset = np.loadtxt(infile, delimiter=',")
X = dataset[:, 0:2]

y = dataset[:,2] # labels

from sklearn.linear_model import LogisticRegression as LG
clf = LG().fit(X, y)

clf.intercept_

clf.coef _

clf.score(X,y)

y_pred = clf.predict(X)

num_errors = np.sum(y !=y_pred)
num_errors/np.size(y)

clf.intercept_
Out[8]: array([-15.29402959])

clf.coef _
Out[9]: array([[1.05654227, 1.39895119]])

clf.score(X,y)
Out[10]: 0.985

num_errors/np.size(y)
Out[13]: 0.015

logistic_regression_demo.m
>>B

19.0582
-1.2745
-1.7747



Neural Networks

Perceptron Training Algorithm

* Let a > 0 denote a correction increment (also called the learning

increment or the learning rate)

* Let the initial weight vector w(1) take arbitrary values. Then, repeat the

following steps for k =

For an augmented pattern vector, X(k), at step k,

If x(k) € ¢, and w[' (k)x(k) < 0, let

If x(k) € ¢, and w (k)x(k) > 0, let

Otherwise, let

>>% Class 1: [33 1], Class 2: [111]
a=1; %learning rate

% Augmented input vector

=[331];
=[111];

=[000]; % initial weight vector

for epoch =1:20
w_prev =w;
X=x1;
y = dot(w, x);

if(y<=0)
W =W +a*x;
end

X =X2;
y = dot(w, x);

if (y>=0)
W =W -a*x;

w(k+1)=w(k) + ax(k)

wk+1)=w(k) — ax(k)

- |>0
= w(k) wix=i,

ifx € ¢

iftxec,

|

epoch
w

dot(w, x1)
dot(w, x2)

epoch =

6

ans =



if (y>=0) ans =
W=W-a*x;
end -1

if (w==w_prev)
break;
end
end



4\ Neural Network Training (nntraint.. —

Neural Network

Hard Limit

Input

Algorithms

Data Division: Training Only (dividetrain)
Training: Cyclical Weight/Bias Rule (trainc)
Performance: Mean Absolute Error (mae)

Calculations: MATLAB

Progress

Epoch: 0 5 iterations

1000

Time: 0:00:00

Performance: 0.500 0.00

| 0.00

Plots

E (plotperform)

Training State

(plottrainstate)

Confusion (plotconfusion)

Plot Interval: '

v Performance goal met.

@ stop Training

1 epochs

@ Cancel

% Use Matlab built-in function

% Do not use the augmented input vector
x1=1[33];

x2 =[11];

% The input matrix: (vert: features, horz: samples)
x=[x1'x2'];

% Target has to be 0/1 values for binary classification
target = [0 1];

method = perceptron;

net = train(method, x, target);

>> % View the weights for the connection from the first input to
the first layer

net.iw{1,1}
% View the bias values for the first layer
net.b{1}
ans =
-1 -1
ans =
3



