Logistic Regression

- In a two-class classification problem, the posterior probability of class C_1 can be written as a logistic sigmoid acting on a linear function of the feature vector ϕ so that $p(C_1|\phi) = y(\phi) = \sigma(\mathbf{w}^T\phi)$
- Note that this is a model for classification rather than regression.
- For an M-dimensional feature space Φ , this model has M adjustable parameters.
- By contrast, when we previously fitted Gaussian class conditional densities using maximum likelihood, we would have used 2M parameters for the means, and $\frac{M(M+1)}{2}$ parameters for the (shared) covariance matrix. Together with the class prior $p(\mathcal{C}_1)$, this gives a total of $\frac{M(M+5)}{2}+1$ parameters, which grows quadratically with M.
- For large values of M, there is a clear advantage in working with the logistic regression model **directly**.
- To determine the parameters of the logistic regression model, we can use
 - Maximum likelihood
 - Iterative reweighted least squares

ares
$$M \longrightarrow X \times --- \times$$

$$M-1 \longrightarrow X$$

$$|+2+3+...+M-|+M| = \frac{M(M+1)}{2}$$

```
111111
'logistic_demo.py'
Logistic Regression
111111
import numpy as np
infile = "logistic_regress.csv"
dataset = np.loadtxt(infile, delimiter=',')
X = dataset[:, 0:2]
                                                                          clf.intercept_
                                                                          Out[8]: array([-15.29402959])
y = dataset[:,2] # labels
                                                                          clf.coef
from sklearn.linear_model import LogisticRegression as LG
                                                                          Out[9]: array([[1.05654227, 1.39895119]])
clf = LG().fit(X, y)
                                                                          clf.score(X,y)
clf.intercept_
                                                                          Out[10]: 0.985
clf.coef_
                                                                          num_errors/np.size(y)
clf.score(X,y)
                                                                          Out[13]: 0.015
y_pred = clf.predict(X)
num_errors = np.sum(y != y_pred)
num_errors/np.size(y)
                                                                          logistic_regression_demo.m
                                                                          >> B
                                                                          B =
                                                                           19.0582
                                                                           -1.2745
                                                                           -1.7747
```

Perceptron Training Algorithm

- Let $\alpha > 0$ denote a correction increment (also called the learning increment or the **learning rate**)
- Let the initial weight vector w(1) take arbitrary values. Then, repeat the following steps for k = 2, 3, ...:

For an augmented pattern vector, $\mathbf{x}(k)$, at step k,

If
$$\mathbf{x}(k) \in c_1$$
 and $\mathbf{w}^T(k)\mathbf{x}(k) \leq 0$, let

$$\boldsymbol{w}(k+1) = \boldsymbol{w}(k) + \alpha \mathbf{x}(k)$$

If $\mathbf{x}(k) \in c_2$ and $\mathbf{w}^T(k)\mathbf{x}(k) \ge 0$, let

$$\boldsymbol{w}(k+1) = \boldsymbol{w}(k) - \alpha \boldsymbol{x}(k)$$

Otherwise, let

$$\boldsymbol{w}(k+1) = \boldsymbol{w}(k)$$

$$\boldsymbol{w}^T \mathbf{x} = \begin{cases} > 0 & \text{if } \mathbf{x} \in c_1 \\ < 0 & \text{if } \mathbf{x} \in c_2 \end{cases}$$

```
>> % Class 1: [3 3 1], Class 2: [1 1 1]
                                                      epoch
a = 1; % learning rate
                                                       w
                                                       dot(w, x1)
% Augmented input vector
                                                       dot(w, x2)
x1 = [3 \ 3 \ 1];
x2 = [1 1 1];
                                                       epoch =
w = [0 0 0]; % initial weight vector
                                                         6
for epoch = 1:20
  w_prev = w;
  x = x1;
                                                       w =
  y = dot(w, x);
                                                         1 1 -3
  if (y \le 0)
    w = w + a*x;
                                                       ans =
  end
                                                         3
  x = x2;
  y = dot(w, x);
  if (y \ge 0)
                                                       ans =
    w = w - a*x;
```

