EE 610, ML Fundamentals

Discriminant Analysis

Dr. W. David Pan

Dept. of ECE
UAH

Topics

- Discriminant Analysis
- Discriminant Functions
- Decision Boundaries
- Fisher's Linear Discriminant
- Linear Discriminant Analysis
- Quadratic Discriminant Analysis
- Implementations

Discriminant Analysis

- Discriminant analysis classifies data by finding linear combinations of features.
- Discriminant analysis assumes that different classes generate data based on Gaussian distributions.
- Training a discriminant analysis model involves finding the parameters for a Gaussian distribution for each class.
- The distribution parameters are used to calculate boundaries, which can be linear or quadratic functions. These boundaries are used to determine the class of new data.
- Best used if ...
- You need a simple model that is easy to interpret.
- Memory usage during training is a concern.
- When you need a model that is fast to predict.

Linearly Separable Classes

- The goal in classification is to take an input vector \boldsymbol{x} and to assign it to one of K discrete classes C_{k} where $k=$ $1, \ldots, K$.
- In the most common scenario, the classes are taken to be disjoint, so that each input is assigned to one and only one class.
- The input space is thereby divided into decision regions whose boundaries are called decision boundaries or decision surfaces.
- Here we consider linear models for classification, where the decision surfaces are linear functions of the input vector \boldsymbol{x} and hence are defined by ($D-1$)-dimensional hyperplanes within the D-dimensional input space.
- Data sets whose classes can be separated exactly by linear decision surfaces are said to be linearly separable.

Discriminant Functions

- A discriminant is a function that takes an input vector \boldsymbol{x} and assigns it to one of K classes, denoted C_{k}.
- Here we restrict attention to linear discriminants, for which the decision surfaces are hyperplanes.
- we consider first the case of two classes and then investigate the extension to more than two classes.
- The simplest representation of a linear discriminant function is obtained by taking a linear function of the input vector so that $y(\boldsymbol{x})=\boldsymbol{w}^{T} \boldsymbol{x}+w_{0}$, where \boldsymbol{w} is called a weight vector, and w_{0} is a bias.
- An input vector \boldsymbol{x} is assigned to class C_{1} if $y(\boldsymbol{x}) \geq 0$ and to class C_{2} otherwise.
- The corresponding decision boundary is therefore defined by the relation $y(\boldsymbol{x})=0$, which corresponds to a ($D-1$)-dimensional hyperplane within the D-dimensional input space.
- Consider two points \boldsymbol{x}_{A} and \boldsymbol{x}_{B}, both of which lie on the decision surface:
- Because $y\left(\boldsymbol{x}_{A}\right)=y\left(\boldsymbol{x}_{B}\right)=0$, we have $\boldsymbol{w}^{T}\left(\boldsymbol{x}_{A}-\boldsymbol{x}_{B}\right)=0$, and hence the vector \boldsymbol{w} is orthogonal to every vector lying within the decision surface, and so
- \boldsymbol{w} determines the orientation of the decision surface.
- Similarly, if \boldsymbol{x} is a point on the decision surface, then $y(\boldsymbol{x})=0$, and so the normal distance from the origin to the decision surface is given below, where the bias parameter w_{0} determines the location of the decision surface.

$$
\frac{\boldsymbol{w}^{T} \boldsymbol{x}}{\|\boldsymbol{w}\|}=-\frac{w_{0}}{\|\boldsymbol{w}\|}
$$

Inner Product and Projection

- The inner product of two same-length column vectors A and B is given by $A^{T} B$, and $A^{T} B=B^{T} A$.
- $A^{T} B=B^{T} A=\|A\|\|B\| \cos \theta$
- The projection of A onto B is then:

$$
\|A\| \cos \theta=\frac{\|A\|\left(A^{T} B\right)}{\|A\|\|B\|}=\frac{A^{T} B}{\|B\|}=\frac{B^{T} A}{\|B\|}
$$

if x is a point on the decision surface, then $\frac{W^{T} x}{\|w\|}$ is the projection of the point x onto the weight vector \boldsymbol{W}. The projection remains the same regardless of the location of \boldsymbol{x}.

$$
\frac{\boldsymbol{w}^{T} \boldsymbol{x}}{\|\boldsymbol{w}\|}=-\frac{w_{0}}{\|\boldsymbol{w}\|}
$$

if x is a point on the decision surface, then

$$
\frac{\boldsymbol{w}^{T} \boldsymbol{x}}{\|\boldsymbol{w}\|}=-\frac{w_{0}}{\|\boldsymbol{w}\|}
$$

- The decision surface, is perpendicular to \boldsymbol{w}, and its displacement from the origin is controlled by the bias parameter w_{0}.
- the signed orthogonal distance of a general point x from the decision surface is given by $\frac{y(x)}{\|w\|}$.
- The value of $y(x)$ gives a signed measure of the perpendicular distance r of the point x from the decision surface.

Geometry

Illustration of the geometry of a linear discriminant function in 2D
\mathbf{x} is an arbitrary point:

$$
\begin{equation*}
\mathbf{x}=\mathbf{x}_{\perp}+r \frac{\mathbf{w}}{\|\mathbf{w}\|} \tag{1}
\end{equation*}
$$

X_{\perp} is the projection of \mathbf{x} onto the decision surface
r is the perpendicular distance of the point \mathbf{x} from the decision surface.

Multiplying both sides of (1) by \mathbf{w}^{T} and adding w_{0}, and making use of $y(\boldsymbol{x})=\mathbf{w}^{T} \mathbf{x}+w_{0}$, and $y\left(\mathbf{x}_{\perp}\right)=\mathbf{w}^{\mathrm{T}} \mathbf{x}_{\perp}+w_{0}=0$,

$$
\begin{gathered}
\mathrm{y}(\mathbf{x})=\mathbf{w}^{T} \mathbf{x}+w_{0}=r \frac{\mathbf{w}^{T} \mathbf{w}}{\|\mathbf{w}\|}=r \frac{\|\mathbf{w}\|^{2}}{\|\mathbf{w}\|}=r\|\mathbf{w}\|, \text { thus } \\
r=\frac{y(\boldsymbol{x})}{\|\mathbf{w}\|}
\end{gathered}
$$

Example

- Minimum Distance Classifier
- Compute a distance-based measure between an unknown pattern vector and each of the class prototypes.
- The prototype vectors are the mean vectors of the various pattern classes

$$
\mathbf{m}_{j}=\frac{1}{N_{j}} \sum_{\mathbf{x} \in \omega_{i}} \mathbf{x}_{j} \quad j=1,2, \ldots, W
$$

- Then assign the unknown pattern to the class of its closest prototype.

Decision Boundary:

$$
\begin{aligned}
& D_{j}(\mathbf{x})=\left\|\mathbf{x}-\mathbf{m}_{j}\right\| \quad j=1,2, \ldots, W \\
& \|\mathbf{a}\|=\left(\mathbf{a}^{T} \mathbf{a}\right)^{1 / 2}
\end{aligned}
$$

$$
y(\boldsymbol{x})=\boldsymbol{w}^{T} \boldsymbol{x}+w_{0}=\left[\begin{array}{c}
2.8 \\
1
\end{array}\right]^{T}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]-8.9=0
$$

```
>> w0 = -8.9;
>> x1 = 0: 0.001: 7;
>> x2 = - 2.8*x1 - w0;
>> plot(x1, x2); grid
>> xlabel('x1'); ylabel('x2')
>> w = [2.8; 1] % The weight vector
>> hold on; plotv(w)
>> axis equal
% Shortest distance between the
origin and the decision line
>> dist = sqrt(x1.^2 + x2.^2);
>> min(dist)
ans=
    2.9934
>>-w0/norm(w)
ans =
                                    - \frac{\mp@subsup{w}{0}{}}{|\boldsymbol{w}|}
    2.9934
% Arbitrary chosen point A
> A = [0; 2];
>> distA = sqrt((x1-A(1)).^2 + (x2-A(2)).^2);
>> min(distA)
ans =
    2.3207
```


\% Using the formula for the
\% signed orthogonal distance
$\gg(\operatorname{dot}(\mathrm{w}, \mathrm{A})+\mathrm{w} 0) /$ norm $(\mathrm{w}) \quad r=\frac{y(\boldsymbol{A})}{\|\boldsymbol{w}\|}$ ans =
-2.3207

Multiple Classes

- We can extend the linear discriminants to more than two classes.
- We might be tempted be to build a K-class discriminant by combining a number of two-class discriminant functions. However, this leads to some difficulties (with ambiguous regions).

One-versus-the-rest classifier

One-versus-one classifier

Decision Boundaries

- We can avoid these difficulties by considering a single K class discriminant comprising K linear functions of the form $y_{k}(x)=w_{k}^{T} x+w_{k 0}$
- We then assign a point \boldsymbol{x} to class C_{k} if $y_{k}(\boldsymbol{x})>y_{j}(\boldsymbol{x})$ for all $j \neq k$.
- The decision boundary between class C_{k} and C_{i} is given by $y_{k}(\boldsymbol{x})=y_{j}(\boldsymbol{x})$, which corresponds to a $(D-1)$ dimensional hyperplane defined by
$\left(\boldsymbol{w}_{k}-\boldsymbol{w}_{j}\right)^{T} \boldsymbol{x}+\left(w_{k 0}-w_{j 0}\right)=0$.
- The decision boundary has the same form as the decision boundary for the two-class case, and so analogous geometrical properties apply.

Fisher's Linear Discriminant

- Consider case of classifying two classes using a linear classification model:
- We take the D-dimensional input vector \mathbf{x} and project it down to one dimension using $y=\mathbf{w}^{\mathrm{T}} \mathbf{x}$.
- If we place a threshold on y and classify $y \geq-w_{0}$ as class C_{1}, and otherwise class C_{2}.
- This can be viewed as a dimensionality reduction method.
- In general, the projection onto one dimension leads to a considerable loss of information, and classes that are well separated in the original D-dimensional space may become strongly overlapping in one dimension.
- However, by adjusting the components of the weight vector \mathbf{w}, we can select a projection that maximizes the class separation, which is the idea of Fisher's Linear Discriminant method.

Two-Class Problem

- Consider a two-class problem in which there are N_{1} points of class C_{1} and N_{2} points of class C_{2}, so that the mean vectors of the two classes are given by

$$
\mathbf{m}_{1}=\frac{1}{N_{1}} \sum_{n \in \mathcal{C}_{1}} \mathbf{x}_{n} \left\lvert\,, \quad \mathbf{m}_{2}=\frac{1}{N_{2}} \sum_{n \in \mathcal{C}_{2}} \mathbf{x}_{n}\right.
$$

- The simplest measure of the separation of the classes, when projected onto \mathbf{w}, is the separation of the projected class means. Thus we might choose \mathbf{w} so as to maximize

$$
m_{2}-m_{1}=\mathbf{w}^{\mathrm{T}}\left(\mathbf{m}_{2}-\mathbf{m}_{1}\right)
$$

where m_{k} is the mean of the projected data from class C_{k} :

$$
m_{k}=\mathbf{w}^{\mathrm{T}} \mathbf{m}_{k}
$$

- It is possible that two classes, which are well separated in the original space, have considerable overlap when projected onto a the line joining their means.
- Fisher's idea is to maximize a function that will give a large separation between the projected class means, while also giving a small variance within each class, thereby minimizing the class overlap.
- The projection $y=\mathbf{w}^{\mathrm{T}} \mathbf{x}$ transforms the set of labeled data points in \mathbf{x} into a labeled set in the one-dimensional space y. The within-class variance of the transformed data from class C_{k} is therefore given by
where $y_{n}=\mathbf{w}^{\mathrm{T}} \mathbf{x}_{\mathrm{n}}$

$$
s_{k}^{2}=\sum_{n \in \mathcal{C}_{k}}\left(y_{n}-m_{k}\right)^{2}
$$

- We can define the total within-class variance for the whole data set to be s $s_{1}^{2}+s_{2}^{2}$.

Fisher's Criterion

- The Fisher criterion is defined to be the ratio of the between-class variance to the within-class variance and is given by

$$
J(\mathbf{w})=\frac{\left(m_{2}-m_{1}\right)^{2}}{s_{1}^{2}+s_{2}^{2}}
$$

- This Fisher criterion can be rewritten in matrix form as:

$$
J(\mathbf{w})=\frac{\mathbf{w}^{\mathrm{T}} \mathbf{S}_{\mathrm{B}} \mathbf{w}}{\mathbf{w}^{\mathrm{T}} \mathbf{S}_{\mathrm{W}} \mathbf{w}}
$$

where \mathbf{S}_{B} is the between-class covariance matrix given by

$$
\mathbf{S}_{\mathrm{B}}=\left(\mathbf{m}_{2}-\mathbf{m}_{1}\right)\left(\mathbf{m}_{2}-\mathbf{m}_{1}\right)^{\mathrm{T}}
$$

and \mathbf{S}_{w} is the total within-class covariance matrix, given by

$$
\mathbf{S}_{\mathrm{W}}=\sum_{n \in \mathcal{C}_{1}}\left(\mathbf{x}_{n}-\mathbf{m}_{1}\right)\left(\mathbf{x}_{n}-\mathbf{m}_{1}\right)^{\mathrm{T}}+\sum_{n \in \mathcal{C}_{2}}\left(\mathbf{x}_{n}-\mathbf{m}_{2}\right)\left(\mathbf{x}_{n}-\mathbf{m}_{2}\right)^{\mathrm{T}}
$$

Maximizing the Criterion

$$
J(\mathbf{w})=\frac{\mathbf{w}^{\mathrm{T}} \mathbf{S}_{\mathrm{B}} \mathbf{w}}{\mathbf{w}^{\mathrm{T}} \mathbf{s}_{\mathrm{w}} \mathbf{w}}
$$

- Determine the value of \mathbf{w} such that $J(\mathbf{w})$ is maximized, by differentiating $J(\mathbf{w})$ with respect to \mathbf{w} :

$$
\begin{aligned}
J^{\prime}(\mathbf{w}) & =\frac{\left(\mathbf{w}^{\mathrm{T}} \mathbf{S}_{\mathrm{B}} \mathbf{w}\right)^{\prime}\left(\mathbf{w}^{\mathrm{T}} \mathbf{S}_{\mathrm{w}} \mathbf{w}\right)-\left(\mathbf{w}^{\mathrm{T}} \mathbf{S}_{\mathrm{B}} \mathbf{w}\right)\left(\mathbf{w}^{\mathrm{T}} \mathbf{S}_{\mathrm{w}} \mathbf{w}\right)^{\prime}}{\left(\mathbf{w}^{\mathrm{T}} \mathbf{S}_{\mathrm{w}} \mathbf{w}\right)^{2}} \\
& =\frac{2 \mathbf{S}_{\mathrm{B}} \mathbf{w}\left(\mathbf{w}^{\mathrm{T}} \mathbf{S}_{\mathrm{w}} \mathbf{w}\right)-2 \mathbf{S}_{\mathrm{w}} \mathbf{w}\left(\mathbf{w}^{\mathrm{T}} \mathbf{S}_{\mathrm{B}} \mathbf{w}\right)}{\left(\mathbf{w}^{\mathrm{T}} \mathbf{S}_{\mathrm{w}} \mathbf{w}\right)^{2}}=0
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \mathbf{S}_{\mathrm{B}} \mathbf{w}\left(\mathbf{w}^{\mathrm{T}} \mathbf{S}_{\mathrm{w}} \mathbf{w}\right)=\mathbf{S}_{\mathrm{W}} \mathbf{w}\left(\mathbf{w}^{\mathrm{T}} \mathbf{S}_{\mathrm{B}} \mathbf{w}\right) \\
& \frac{\mathbf{S}_{\mathrm{W}}^{-1} \mathbf{S}_{\mathrm{B}} \mathbf{w}\left(\mathbf{w}^{\mathrm{T}} \mathbf{S}_{\mathrm{w}} \mathbf{w}\right)}{\left(\mathbf{w}^{\mathrm{T}} \mathbf{S}_{\mathrm{B}} \mathbf{w}\right)}=\mathbf{w}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{w}=\frac{\mathbf{s}_{\mathbf{w}}^{-1} \mathbf{S}_{\mathbf{B}} \mathbf{w}\left(\mathbf{w}^{\mathrm{T}} \mathbf{S}_{\mathbf{w}} \mathbf{w}\right)}{\left(\mathbf{w}^{\mathrm{T}} \mathbf{S}_{\mathrm{B}} \mathbf{w}\right)}, \text { where } \\
& \qquad \begin{aligned}
\mathbf{S}_{\mathrm{B}} \mathbf{w} & =\left(\mathbf{m}_{2}-\mathbf{m}_{1}\right)\left(\mathbf{m}_{2}-\mathbf{m}_{1}\right)^{\mathrm{T}} \mathbf{w} \\
& =\left(\mathbf{m}_{2}-\mathbf{m}_{1}\right)\left(\mathbf{w}^{\mathrm{T}}\left(\mathbf{m}_{2}-\mathbf{m}_{1}\right)\right)^{\mathrm{T}} \\
& =\left(\mathbf{m}_{2}-\mathbf{m}_{1}\right)\left(m_{2}-m_{1}\right)
\end{aligned}
\end{aligned}
$$

Since $\left(\mathbf{w}^{\mathrm{T}} \mathbf{S}_{\mathbf{w}} \mathbf{W}\right),\left(\mathbf{w}^{\mathrm{T}} \mathbf{S}_{\mathbf{B}} \mathbf{w}\right)$ and $\left(m_{2}-m_{1}\right)$ are all scalar factors, we can drop them if we care only about the direction of the weight vector \mathbf{w}, instead of its magnitude. Thus we can obtain

$$
\mathbf{w} \propto \mathbf{S}_{\mathbf{w}}^{-1}\left(\mathbf{m}_{2}-\mathbf{m}_{1}\right)
$$

Choice of Direction for Projection

- The result: $\mathbf{w} \propto \mathbf{S}_{\mathbf{w}}^{-1}\left(\mathbf{m}_{2}-\mathbf{m}_{1}\right)$ is known as Fisher's linear discriminant.
- If the within-class covariance is isotropic, so that S_{w} is proportional to the unit matrix, then the optimal \mathbf{w} is proportional to the difference of the class means.
- Although Fisher's linear discriminant is actually a specific choice of direction for projection of the data down to one dimension, the projected data can subsequently be used to construct a discriminant, by choosing a threshold y_{0} so that we classify a new point as belonging to C_{1} if $y(\boldsymbol{x}) \geq y_{0}$ and classify it as belonging to C_{2} otherwise.
- For example, we can model the class-conditional densities $p\left(y \mid C_{k}\right)$ using Gaussian distributions. The justification for the Gaussian assumption comes from the Central Limit Theorem by noting that $y=\mathbf{w}^{T} \mathbf{x}$ is the sum of a set of random variables.
- Having found Gaussian approximations to the projected classes, we can determine the optimal threshold y_{0}, by using Bayes' rule and assigning each value y to the class having the higher posterior probability $p\left(C_{K} \mid y\right)$.

Fisher's Discriminant for Multiple Classes

- We generalize the Fisher discriminant to $K>2$ classes, and we assume that the dimensionality D of the input space is greater than the number K of classes.
- Another generalization: instead of dimensionality reduction to 1-D, we introduce $D^{\prime}>1$ linear "features" $y_{k}=\mathbf{w}_{k}^{T} \mathbf{x}$, where $k=1, \ldots, D^{\prime}$. These feature values can be grouped together to form a vector \boldsymbol{y}.
- The weight vectors $\left\{\mathbf{w}_{k}\right\}$ can be considered to be the columns of a matrix \mathbf{W}, so that $\boldsymbol{y}=\mathbf{W}^{T} \mathbf{x}$.
- The generalization of the within-class covariance matrix to the case of K classes: $\mathbf{S}_{\mathrm{W}}=\sum_{k=1}^{K} \mathbf{S}_{k}$, where

$$
\begin{aligned}
\mathbf{S}_{k} & =\sum_{n \in \mathcal{C}_{k}}\left(\mathbf{x}_{n}-\mathbf{m}_{k}\right)\left(\mathbf{x}_{n}-\mathbf{m}_{k}\right)^{\mathrm{T}} \\
\mathbf{m}_{k} & =\frac{1}{N_{k}} \sum_{n \in \mathcal{C}_{k}} \mathbf{x}_{n}
\end{aligned}
$$

and N_{k} is the number of samples in class C_{k}.

- In order to find a generalization of the between-class covariance matrix, we consider first the total covariance matrix

$$
\mathbf{S}_{\mathrm{T}}=\sum_{n=1}^{N}\left(\mathbf{x}_{n}-\mathbf{m}\right)\left(\mathbf{x}_{n}-\mathbf{m}\right)^{\mathrm{T}}
$$

where \boldsymbol{m} is the mean of the total data set

$$
\mathbf{m}=\frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_{n}=\frac{1}{N} \sum_{k=1}^{K} N_{k} \mathbf{m}_{k}
$$

and $N=\Sigma_{k} N_{k}$ is the total number of data points.

- The total covariance matrix can be decomposed into the sum of the within-class covariance matrix (\mathbf{S}_{W}), plus an additional matrix \mathbf{S}_{B}, which we identify as a measure of the between-class covariance:

$$
\begin{aligned}
& \mathbf{S}_{\mathrm{T}}=\mathbf{S}_{\mathrm{W}}+\mathbf{S}_{\mathrm{B}} \\
& \mathbf{S}_{\mathrm{B}}=\sum_{k=1}^{K} N_{k}\left(\mathbf{m}_{k}-\mathbf{m}\right)\left(\mathbf{m}_{k}-\mathbf{m}\right)^{\mathrm{T}}
\end{aligned}
$$

- With covariance matrices having been defined in the original \mathbf{x} space, we can now define similar matrices in the projected D^{\prime} dimensional \mathbf{y}-space:

$$
\begin{aligned}
& \mathrm{s}_{\mathrm{W}}=\sum_{k=1}^{K} \sum_{n \in \mathcal{C}_{k}}\left(\mathbf{y}_{n}-\boldsymbol{\mu}_{k}\right)\left(\mathbf{y}_{n}-\boldsymbol{\mu}_{k}\right)^{\mathrm{T}} \\
& \mathrm{~s}_{\mathrm{B}}=\sum_{k=1}^{K} N_{k}\left(\boldsymbol{\mu}_{k}-\boldsymbol{\mu}\right)\left(\boldsymbol{\mu}_{k}-\boldsymbol{\mu}\right)^{\mathrm{T}} \\
& \boldsymbol{\mu}_{k}=\frac{1}{N_{k}} \sum_{n \in \mathcal{C}_{k}} \mathbf{y}_{n}, \quad \boldsymbol{\mu}=\left\lvert\, \frac{1}{N} \sum_{k=1}^{K} N_{k} \boldsymbol{\mu}_{k}\right.
\end{aligned}
$$

```
clear all;
% 1D case (covariance become variance)
N = 100000;
X = randn(1, N);
% Split into two groups randomly
N1 = floor(N*rand);
N2 = N - N1;
X1 = X(1:N1);
X2 = X(N1+1: N);
m = mean(X);
m1 = mean(X1);
m2 = mean(X2);
ST = sum((X - m).^2);
SW = sum((X1 - m1).^2) + sum((X2 - m2).^2);
SB = N1*(m1-m)^2 + N2*(m2-m)^2;
% ST = SW + SB ?
abs(ST-(SW+SB))
```

```
% 2D case
m model = [4, 0];
C model = [9,4; 4,9];
Y = mvnrnd (m_model,C_model,N);
% Split Y into three groups randomly
N1 = floor(N*rand);
Diff = N - N1;
N2 = floor(Diff*rand);
N3 = N - (N1 + N2);
Y1 = Y(1:N1,:);
Y2 = Y(N1+1: N1+N2, :);
Y3 = Y(N1+N2+1: N, :);
my = mean(Y);
my1 = mean(Y1);
my2 = mean(Y2);
my3 = mean(Y3);
% Note the definition of cov() in Matlab,
need to multiply by (N-1)
STY = (N-1)*COV(Y);
SWy = (N1-1)*COV(Y1) + (N2-1)*COV (Y2) +
(N3-1)*Cov(Y3);
SBy = N1* (my1-my)'* (my1-my) + N2*(my2-
my)'*(my2-my) + N3*(my3-my)'* (my3-my);
abs(STy - (SWy + SBy))
```


Choice of Projection Matrix

- We want to construct a scalar that is large when the between-class covariance is large and when the within-class covariance is small.
- One possible choice of criterion is $J(\mathbf{W})=\operatorname{Tr}\left\{\mathrm{s}_{\mathrm{W}}^{-1} \mathrm{~s}_{\mathrm{B}}\right\}$
- This criterion can then be rewritten as an explicit function of the projection matrix \mathbf{W} in the form:

$$
J(\mathbf{w})=\operatorname{Tr}\left\{\left(\mathbf{W} \mathbf{S}_{\mathrm{W}} \mathbf{W}^{\mathrm{T}}\right)^{-1}\left(\mathbf{W} \mathbf{S}_{\mathrm{B}} \mathbf{W}^{\mathrm{T}}\right)\right\}
$$

- It can be shown that the weight values are determined by those eigenvectors of $\mathbf{S}_{\mathrm{W}}^{-1} \mathbf{S}_{\mathrm{B}}$, which correspond to the D^{\prime} largest eigenvalues.
- It can be shown \mathbf{S}_{B} has rank at most equal to $(K-1)$ and so there are at most ($K-1$) nonzero eigenvalues. So we are therefore unable to find more than $(K-1)$ linear "features".

Relation to LDA

- Linear discriminant analysis (LDA), normal discriminant analysis (NDA), or discriminant function analysis is a generalization of Fisher's linear discriminant.
- LDA is to find a linear combination of features that characterizes or separates two or more classes of objects or events.
- The resulting combination may be used as a linear classifier, or, more commonly, for dimensionality reduction before subsequent classification.
- In general, discriminant analysis assumes that the classconditional densities to have multivariate Gaussian distributions.
- For linear discriminant analysis (LDA), the model assumes the same covariance matrix for each class -- only the means vary.
- For quadratic discriminant analysis (QDA), the model considers varying mean vectors and covariance matrices of each class.

Gaussian Pattern Classes

Decision Function:

$$
\begin{gathered}
d_{j}(x)=p\left(x \mid c_{j}\right) P\left(c_{j}\right)=\frac{1}{\sqrt{2 \pi} \sigma_{j}} e^{-\frac{\left(x-m_{j}\right)^{2}}{2 \sigma_{j}^{2}}} P\left(c_{j}\right) \\
\text { where } \quad j=1,2
\end{gathered}
$$

n-Dimensional Gaussian PDF

$p\left(\mathbf{x} / \omega_{j}\right)=\frac{1}{(2 \pi)^{n / 2}\left|\mathbf{C}_{j}\right|^{1 / 2}} e^{-\frac{1}{2}\left(\mathbf{x}-\mathbf{m}_{j}\right)^{T} \mathbf{C}_{l}^{-1}\left(\mathbf{x}-\mathbf{m}_{j}\right)}$
where the mean vector is $\quad \mathbf{m}_{j}=E_{j}\{\mathbf{x}\}$
and the covariance matrix is

$$
\mathbf{C}_{j}=E_{j}\left\{\left(\mathbf{x}-\mathbf{m}_{j}\right)\left(\mathbf{x}-\mathbf{m}_{j}\right)^{T}\right\}
$$

We can approximate with taking the averages of sample vectors:

$$
\mathbf{m}_{j}=\frac{1}{N_{j}} \sum_{\mathbf{x} \in \omega_{j}} \mathbf{x} \quad \mathbf{C}_{j}=\frac{1}{N_{j}} \sum_{\mathbf{x} \in \omega_{j}} \mathbf{x x}^{T}-\mathbf{m}_{j} \mathbf{m}_{j}^{T}
$$

Logarithm of the Decision Function

$$
\begin{gathered}
d_{j}(\mathbf{x})=\ln \left[p\left(\mathbf{x} / \omega_{j}\right) P\left(\omega_{j}\right)\right]=\ln p\left(\mathbf{x} / \omega_{j}\right)+\ln P\left(\omega_{j}\right) \\
p\left(\mathbf{x} / \omega_{j}\right)=\frac{1}{(2 \pi)^{n / 2}\left|\mathbf{C}_{j}\right|^{1 / 2}} e^{-\frac{1}{2}\left(\mathbf{x}-\mathbf{m}_{j}\right)^{T} \mathbf{C}^{-1}\left(\mathbf{x}-\mathbf{m}_{j}\right)} \\
\left.d_{j}(\mathbf{x})=\ln P\left(\omega_{j}\right)-\frac{n}{2} \ln 2 \pi\right)-\frac{1}{2} \ln \left|\mathbf{C}_{j}\right|-\frac{1}{2}\left[\left(\mathbf{x}-\mathbf{m}_{j}\right)^{T} \mathbf{C}_{j}^{-1}\left(\mathbf{x}-\mathbf{m}_{j}\right)\right] \\
d_{j}(\mathbf{x})=\ln P\left(\omega_{j}\right)-\frac{1}{2} \ln \left|\mathbf{C}_{j}\right|-\frac{1}{2}\left[\left(\mathbf{x}-\mathbf{m}_{j}\right)^{T} \mathbf{C}_{j}^{-1}\left(\mathbf{x}-\mathbf{m}_{j}\right)\right]
\end{gathered}
$$

LDA

- Two assumptions of linear discriminant analysis (LDA):
- Multivariate normality
- Homoscedasticity: Equal covariance for all classes
- Estimation of the covariance matrix in actual implementations:

Matlab
Predictor Covariance Treatment

- All classes have the same covariance matrix.
- $\quad \hat{\Sigma}_{\gamma}=(1-\gamma) \hat{\Sigma}+\gamma \operatorname{diag}(\hat{\Sigma})$.
$\widehat{\Sigma}$ is the empirical, pooled
covariance matrix and γ is the
amount of regularization.

Sklearn

- Shrinkage is a form of regularization used to improve the estimation of covariance matrices.
- The 'shrinkage' parameter can be set to 'auto'. This automatically determines the optimal shrinkage parameter in an analytic way.
- The shrinkage parameter can also be manually set between 0 and 1.
- 0 corresponds to no shrinkage, which means the empirical covariance matrix will be used.
- 1 corresponds to complete shrinkage, which means that the diagonal matrix of variances will be used as an estimate for the covariance matrix.

Two Classes As an Example

Decision functions (with a common covariance matrix \boldsymbol{C}, where $\boldsymbol{C}^{\mathrm{T}}=\boldsymbol{C}$):

$$
\begin{aligned}
& d_{1}(\mathbf{x})=\ln P\left(\omega_{1}\right)-\frac{1}{2} \ln |\boldsymbol{C}|-\frac{1}{2}\left[\left(\mathbf{x}-\mathbf{m}_{\mathbf{1}}\right)^{\mathrm{T}} \mathrm{C}^{-1}\left(\mathbf{x}-\mathbf{m}_{\mathbf{1}}\right)\right] \\
& d_{2}(\mathbf{x})=\ln P\left(\omega_{2}\right)-\frac{1}{2} \ln |\boldsymbol{C}|-\frac{1}{2}\left[\left(\mathbf{x}-\mathbf{m}_{2}\right)^{\mathrm{T}} \mathrm{C}^{-1}\left(\mathbf{x}-\mathbf{m}_{2}\right)\right]
\end{aligned}
$$

Decision Boundary (assuming equal class probabilities): $d_{1}(\mathbf{x})=d_{2}(\mathbf{x})$

Cancellation
due to the assumption of same covariance (LDA); otherwise quadratic function of \mathbf{x}, thus QDA results.

$$
\left(\mathbf{m}_{\mathbf{1}}-\mathbf{m}_{\mathbf{2}}\right)^{\mathrm{T}} \mathbf{C}^{-1} \mathbf{X}=\frac{1}{2}\left(\mathbf{m}_{\mathbf{1}}^{\mathrm{T}} \mathbf{C}^{-1} \mathbf{m}_{\mathbf{1}}-\mathbf{m}_{\mathbf{2}}^{\mathrm{T}} \mathbf{C}^{-1} \mathbf{m}_{\mathbf{2}}\right)
$$

Decision Boundary is a Line

$$
\begin{aligned}
& \left(\mathbf{m}_{\mathbf{1}}-\mathbf{m}_{\mathbf{2}}\right)^{\mathrm{T}} \mathbf{C}^{-1} \mathbf{x}=\frac{1}{2}\left(\mathbf{m}_{\mathbf{1}}^{\mathrm{T}} \mathbf{C}^{-1} \mathbf{m}_{\mathbf{1}}-\mathbf{m}_{\mathbf{2}}^{\mathrm{T}} \mathbf{C}^{-1} \mathbf{m}_{\mathbf{2}}\right) \\
& \text { Let weight vector } \mathbf{w}=\mathbf{C}^{-1}\left(\mathbf{m}_{\mathbf{1}}-\mathbf{m}_{\mathbf{2}}\right) \text {, then } \\
& \left(\mathbf{m}_{\mathbf{1}}-\mathbf{m}_{2}\right)^{\mathrm{T}} \mathbf{C}^{-1} \mathbf{x}=\mathbf{w}^{\mathrm{T}} \mathbf{X} \quad \text { and } \\
& \mathbf{w}^{\mathrm{T}}\left(\mathbf{m}_{\mathbf{1}}+\mathbf{m}_{\mathbf{2}}\right)=\left(\mathbf{m}_{\mathbf{1}}-\mathbf{m}_{\mathbf{2}}\right)^{\mathrm{T}} \mathbf{C}^{-1}\left(\mathbf{m}_{\mathbf{1}}+\mathbf{m}_{\mathbf{2}}\right) \\
& =\mathbf{m}_{1}^{\mathrm{T}} \mathbf{C}^{-1} \mathbf{m}_{\mathbf{1}}+\mathbf{m}_{1}^{\mathrm{T}} \mathbf{C}^{-1} \mathbf{m}_{\mathbf{2}}-\mathbf{m}_{2}^{\mathrm{T}} \mathbf{C}^{-1} \mathbf{m}_{\mathbf{1}}-\mathbf{m}_{2}^{\mathrm{T}} \mathbf{C}^{-1} \mathbf{m}_{\mathbf{2}} \\
& =\mathbf{m}_{1}^{\mathrm{T}} \mathbf{C}^{-1} \mathbf{m}_{\mathbf{1}}-\mathbf{m}_{2}^{\mathrm{T}} \mathbf{C}^{-1} \mathbf{m}_{\mathbf{2}}
\end{aligned}
$$

Thus the decision function is a function of a linear combination of the observations:

$$
\mathbf{w}^{\mathbf{T}} \mathbf{X}=\frac{1}{2} \mathbf{w}^{\mathrm{T}}\left(\mathbf{m}_{\mathbf{1}}+\mathbf{m}_{\mathbf{2}}\right), \text { where } \mathbf{w}=\mathbf{C}^{-1}\left(\mathbf{m}_{\mathbf{1}}-\mathbf{m}_{\mathbf{2}}\right)
$$

Consistent with Fisher's linear discriminant with projection:

$$
\mathbf{w} \propto \mathbf{S}_{\mathbf{W}}^{-1}\left(\mathbf{m}_{2}-\mathbf{m}_{1}\right), \text { where } \mathbf{S}_{\mathbf{W}}=2 \boldsymbol{C}
$$

Example

$$
\begin{aligned}
\mathbf{x}= & {\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right], \mathbf{m}_{\mathbf{1}}=\left[\begin{array}{l}
3 \\
3
\end{array}\right], \mathbf{m}_{\mathbf{2}}=\left[\begin{array}{l}
9 \\
9
\end{array}\right], } \\
\boldsymbol{C}_{1}= & \boldsymbol{C}_{2}=\boldsymbol{C}=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right] \quad \boldsymbol{C}^{-1}=\frac{1}{3}\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right] \\
\mathbf{w}= & \mathbf{C}^{-1}\left(\mathbf{m}_{\mathbf{1}}-\mathbf{m}_{2}\right)=\frac{1}{3}\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{l}
-6 \\
-6
\end{array}\right]=\left[\begin{array}{l}
-2 \\
-2
\end{array}\right] \\
& \frac{1}{2} \mathbf{w}^{\mathrm{T}}\left(\mathbf{m}_{\mathbf{1}}+\mathbf{m}_{\mathbf{2}}\right)=\frac{1}{2}\left[\begin{array}{ll}
-2 & -2
\end{array}\right]\left[\begin{array}{l}
12 \\
12
\end{array}\right]=-24
\end{aligned}
$$

The decision boundary is $\mathbf{w}^{\mathbf{T}} \mathbf{x}=\frac{1}{2} \mathbf{w}^{\mathrm{T}}\left(\mathbf{m}_{\mathbf{1}}+\mathbf{m}_{\mathbf{2}}\right)$

$$
x_{1}+x_{2}=12
$$

Varying Covariance Matrix

Decision Boundary（assuming equal class probabilities）：$d_{1}(\mathbf{x})=d_{2}(\mathbf{x})$
$\ln \left|\mathbf{C}_{1}\right|+\left(\mathbf{x}-\mathbf{m}_{1}\right)^{\mathrm{T}} \mathbf{C}_{1}^{-1}\left(\mathbf{x}-\mathbf{m}_{\mathbf{1}}\right)-\ln \left|\mathbf{C}_{2}\right|+\left(\mathbf{x}-\mathbf{m}_{2}\right)^{\mathrm{T}} \mathbf{C}_{2}^{-1}\left(\mathbf{x}-\mathbf{m}_{\mathbf{2}}\right)=0$
Example：

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right], \mathbf{m}_{1}=\left[\begin{array}{l}
3 \\
3
\end{array}\right], \mathbf{m}_{\mathbf{2}}=\left[\begin{array}{l}
9 \\
9
\end{array}\right], \mathbf{C}_{1}=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right], \mathbf{C}_{2}=\left[\begin{array}{ll}
5 & 3 \\
3 & 5
\end{array}\right]
$$

$\mathrm{g}=$
$\left(17^{*} x 1^{\wedge} 2\right) / 48-\left(7^{*} x 1^{*} x 2\right) / 24+x 1 / 4+$
$\left(17^{*} \times 2^{\wedge} 2\right) / 48+x 2 / 4-15.92$

```
% Symbolic math
syms f x x1 x2
x = [x1; x2];
c1 = inv(cov1);
c2 = inv(cov2);
f = log(abs(det(cov1))) + (x-
m1).'*c1*(x-m1) - log(abs(det(cov2))) -
(x-m2).'*c2*(x-m2);
g = simplify(f)
fimplicit(g,[-10 10]); grid
```

（A）Figure 2
File Edit View Insert Iools Desktop Window Help
回回园国国的园

QDA

```
N = 1000;
% Class 1
data_C1 = r1;
m2 = [9, 9]';
data_C2 = r2;
```


hold on;

``` fimplicit(g)
```

$\mathrm{m1}=[3,3] ' ; \quad$ Mean vector
cov1 = [2 1; 1 2]; \% Covariance matrix
r1 $=$ mvnrnd (m1,cov1,N);
data_C1 = zeros (N, 2);
label_C1 = ones(N, 1);
\% Generate data entries for Class 2
cov2 $=[5,3 ; 3,5]$;
r2 $=$ mvnrnd (m2, cov2,N);
data_C2 = zeros(N, 2);
label_C2 = 2*ones(N, 1);

\% Combine data of two classes
data = vertcat (data_C1, data_C2);
label $=$ vertcat (labēl_C1, lā̄el_C2);
\% Plot the data samples of the two classes gscatter(data(:,1), data(:,2),label,'rb','ox') grid

What if we still use LDA?

```
% Use regularization to shrink the
cov all of all data
cov_all = cov(data);
% Too large -- need to shrink
% Scan through the whole range of
% values of the shrinkage parameter
for gamma = 0: 0.05: 1;
    diag = cov_all;
    diag(1,2) = 0;
    diag(2,1) = 0;
    cov_est = (1-gamma)*cov_all +
gamma*diag;
    w1 = inv(cov_est)*(m1-m2);
    f1 = w1.'*x - 0.5*w1.'*(m1+m2);
    hold on;
    fimplicit(f1)
end
```


Fit discriminant analysis classifier fitcdiscr ()

>> Model = fitcdiscr(data, label);

Model.DiscrimType
ans =
'linear'
>> K = Model.Coeffs(1,2).Const
$K=$
23.5780
>> L = Model.Coeffs(1,2).Linear
L =
-1.8358
-2.1190

$$
\begin{aligned}
& \text { >> Model.Gamma } \\
& \text { ans = } \\
& \quad 0 \\
& \text { >> K = Model.Coeffs(2,1).Const } \\
& \text { K }= \\
& -23.5780 \\
& \gg \text { K = Model.Coeffs(2,1).Linear } \\
& \text { K = } \\
& 1.8358 \\
& 2.1190
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{w}=\mathbf{C}^{-1}\left(\mathbf{m}_{\mathbf{1}}-\mathbf{m}_{2}\right)=\frac{1}{3}\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{l}
-6 \\
-6
\end{array}\right]=\left[\begin{array}{l}
-2 \\
-2
\end{array}\right] \\
& \frac{1}{2} \mathbf{w}^{\mathrm{T}}\left(\mathbf{m}_{\mathbf{1}}+\mathbf{m}_{\mathbf{2}}\right)=\frac{1}{2}\left[\begin{array}{ll}
-2 & -2
\end{array}\right]\left[\begin{array}{l}
12 \\
12
\end{array}\right]=-24
\end{aligned}
$$

Classification Performance

```
>> resubLoss(Model)
ans =
    0 . 0 0 6 5
>> L = predict(Model, data);
>> diff = abs(label - L);
>> length(find(diff~=0))/length(data)
ans =
    0 . 0 0 6 5
f=@(x1,x2) K + L(1)*x1 +L(2)*x2;
gscatter(data(:,1),data(:,2),label,'rb','ox')
grid
hold on;
fimplicit(f);
```


$$
K+\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right] L=0 .
$$

K = Model.Coeffs(1,2).Const
L = Model.Coeffs(1,2).Linear

Varying Covariance Matrices

```
% Class }
m1 = [3, 3]'; % Mean vector
cov1 = [2 1; 1 2]; % Covariance matrix
>> Model = fitcdiscr(data, label);
Model.DiscrimType
ans =
    'linear'
K = Model.Coeffs(1,2).Const
K=
    13.3013
>> L = Model.Coeffs(1,2).Linear
L =
    -1.0374
    -1.1830
>> resubLoss(Model)
ans =
    0 . 0 3 8 0
```

```
% Class 2
m2 = [9, 9]';
cov2 = [5,3;3,5];
```

```
>> Model_QDA = fitcdiscr(data, label, 'DiscrimType',
'quadratic');
>> Model_QDA.DiscrimType
ans =
    'quadratic'
>> resubLoss(Model_QDA)
ans =
    0.0280
```

>> K = Model_QDA.Coeffs(1,2).Const;
L = Model_QDA.Coeffs(1,2).Linear;
Q = Model_QDA.Coeffs(1,2).Quadratic;
$K=$
7.7810
$\mathrm{L}=$
0.0890
-0.1940
Q =

$$
\begin{array}{rr}
-0.2119 & 0.0886 \\
0.0886 & -0.1971
\end{array}
$$

$\mathrm{f}=@(\mathrm{x} 1, \mathrm{x} 2) \mathrm{K}+\mathrm{L}(1)^{*} \mathrm{x} 1+\mathrm{L}(2)^{*} \mathrm{x} 2+$ $Q(1,1)^{*} x 1 .{ }^{\wedge} 2+\ldots$
$(Q(1,2)+Q(2,1))^{*} x 1 .^{*} x 2+Q(2,2)^{*} x 2 .^{\wedge} 2 ;$
gscatter(data(:,1),data(:,2),label,'rb','ox') grid
hold on;
fimplicit(f);

QDA

$$
K+\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right] L+\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right] Q\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=0
$$

'Ida_demo.py’

```
import numpy as np
infile = r"C:\...\\da_data.csv"
X = dataset[:, 0:2]
y = dataset[:,2] # labels
```

dataset = np.loadtxt(infile, delimiter=',')
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA
clf $=\mathrm{LDA}()$
clf.fit(X, y)
clf.intercept_
clf.coef_
clf.score(X,y)
y_pred = clf.predict(X)
num_errors = np.sum(y != y_pred)
num_errors/np.size(y)

Summary

- Prototype Matching (minimum-distance classifier)
- Assign the unknown pattern to the class of its closest prototype (mean vectors of various classes)
- Bayes Classifier (if multivariate normality is assumed)
- Becomes the minimum-distance classifier
- If all covariance matrices are equal to identity matrix.
- All classes are equally likely.
- Becomes the LDA
- If all covariance matrices are assumed to be the same.
- Becomes the QDA
- If there are varying covariance matrices for different classes
- LDA can be viewed as a minimum-distance classifier, with the distance being the Mahalanobis distance (between a point \mathbf{x} and the sample mean of a distribution), instead of the Euclidean distance.

$$
\left(\mathbf{x}-\mathbf{m}_{\mathbf{1}}\right)^{\mathrm{T}} \mathbf{C}^{-1}\left(\mathbf{x}-\mathbf{m}_{\mathbf{1}}\right)=\left(\mathbf{x}-\mathbf{m}_{\mathbf{2}}\right)^{\mathrm{T}} \mathbf{C}^{-1}\left(\mathbf{x}-\mathbf{m}_{\mathbf{2}}\right)
$$

