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Discriminant Analysis

• Discriminant analysis classifies data by finding linear 
combinations of features. 

• Discriminant analysis assumes that different classes 
generate data based on Gaussian distributions. 

• Training a discriminant analysis model involves finding the 
parameters for a Gaussian distribution for each class. 

• The distribution parameters are used to calculate 
boundaries, which can be linear or quadratic functions. 
These boundaries are used to determine the class of new 
data. 

• Best used if …
– You need a simple model that is easy to interpret.
– Memory usage during training is a concern.
– When you need a model that is fast to predict.



Linearly Separable Classes

• The goal in classification is to take an input vector 𝒙 and to 
assign it to one of 𝐾 discrete classes 𝐶𝑘 where 𝑘 =
1, . . . , 𝐾.

• In the most common scenario, the classes are taken to be 
disjoint, so that each input is assigned to one and only one 
class. 

• The input space is thereby divided into decision regions 
whose boundaries are called decision boundaries or 
decision surfaces. 

• Here we consider linear models for classification, where  
the decision surfaces are linear functions of the input 
vector 𝒙 and hence are defined by (𝐷 − 1)-dimensional 
hyperplanes within the D-dimensional input space. 

• Data sets whose classes can be separated exactly by linear 
decision surfaces are said to be linearly separable.



Discriminant Functions

• A discriminant is a function that takes an input vector 𝒙 and assigns 
it to one of 𝐾 classes, denoted 𝐶𝑘. 

• Here we restrict attention to linear discriminants, for which the 
decision surfaces are hyperplanes. 

• we consider first the case of two classes and then investigate the 
extension to more than two classes.

• The simplest representation of a linear discriminant function is 
obtained by taking a linear function of the input vector so that 
𝑦(𝒙) = 𝒘𝑇𝒙 + 𝑤0, where 𝒘 is called a weight vector, and 𝑤0 is a 
bias.

• An input vector 𝒙 is assigned to class 𝐶1 if 𝑦 𝒙 ≥ 0 and to class 𝐶2
otherwise.

• The corresponding decision boundary is therefore defined by the 
relation 𝑦(𝒙) = 0, which corresponds to a (𝐷 − 1)-dimensional 
hyperplane within the 𝐷-dimensional input space.



• Consider two points 𝒙𝐴 and 𝒙𝐵, both of which lie on the 
decision surface:

• Because 𝑦(𝒙𝐴) = 𝑦(𝒙𝐵) = 0, we have
𝒘𝑇 𝒙𝐴 − 𝒙𝐵 = 0, and hence the vector 𝒘 is orthogonal 
to every vector lying within the decision surface, and so

• 𝒘 determines the orientation of the decision surface.
• Similarly, if 𝒙 is a point on the decision surface, then 
𝑦(𝒙) = 0, and so the normal distance from the origin to 
the decision surface is given below, where the bias 
parameter 𝑤0 determines the location of the decision 
surface.

𝒘𝑇𝒙

𝒘
= −

𝑤0

𝒘



Inner Product and Projection

• The inner product of two same-length 
column vectors 𝐴 and 𝐵 is given by 
𝐴𝑇𝐵, and 𝐴𝑇𝐵 = 𝐵𝑇𝐴.

• 𝐴𝑇𝐵 = 𝐵𝑇𝐴 = 𝐴 𝐵 𝑐𝑜𝑠𝜃
• The projection of 𝐴 onto 𝐵 is then: 

𝐴 𝑐𝑜𝑠𝜃 =
𝐴 (𝐴𝑇𝐵)

𝐴 𝐵
=
𝐴𝑇𝐵

𝐵
=
𝐵𝑇𝐴

𝐵

if 𝒙 is a point on the decision surface, then 
𝑾𝑇𝒙

𝒘
is the projection of the point 𝒙 onto the 

weight vector 𝑾. The projection remains the 
same regardless of the location of 𝒙.

𝒘𝑇𝒙

𝒘
= −

𝑤0

𝒘

𝒘
𝒙

−
𝑤0

𝒘



Geometry

Illustration of the geometry of a
linear discriminant function in 2D

• The decision surface, is perpendicular 
to 𝒘, and its displacement from the 
origin is controlled by the bias 
parameter 𝑤0.

• the signed orthogonal distance of a 
general point 𝒙 from the decision 

surface is given by 
𝑦(𝒙)

𝒘
.

• The value of 𝑦(𝒙) gives a signed measure 
of the perpendicular distance 𝑟 of the point 
𝒙 from the decision surface.

if 𝒙 is a point on the 
decision surface, then

𝒘𝑇𝒙

𝒘
= −

𝑤0

𝒘

𝑦(𝒙) = 𝒘𝑇𝒙 + 𝑤0



𝒘

𝐱−
𝑤0

𝒘
is the projection of x onto the 
decision surface 

x is an arbitrary point:

r is the perpendicular distance of the 
point x from the decision surface.

r

Multiplying both sides of (1) by 𝐰𝑇 and adding 𝑤0,
and making use of 𝑦(𝒙) = 𝐰𝑇𝐱 + 𝑤0, and 

… (1)

y 𝐱 = 𝐰𝑇𝐱 + 𝑤0 = 𝑟
𝐰𝑇𝐰

𝐰
= 𝑟

𝐰 2

𝐰
= 𝑟 𝐰 , thus

𝑟 =
𝑦(𝒙)

𝒘



Example
• Minimum Distance Classifier

– Compute a distance-based 
measure between an 
unknown pattern vector 
and each of the class 
prototypes.

– The prototype vectors are 
the mean vectors of the 
various pattern classes

– Then assign the unknown 
pattern to the class of its 
closest prototype.

Decision Boundary:

𝑦 𝒙 = 𝒘𝑇𝒙 + 𝑤0 =
2.8
1

𝑇 𝑥1
𝑥2

− 8.9 = 0



>> w0 = -8.9;
>> x1 = 0: 0.001: 7;
>> x2 = - 2.8*x1 - w0;
>> plot(x1, x2); grid
>> xlabel('x1'); ylabel('x2')
>> w = [2.8; 1]    % The weight vector
>> hold on; plotv(w)
>> axis equal

% Shortest distance between the 
origin and the decision line
>> dist = sqrt(x1.^2 + x2.^2);
>> min(dist)
ans =

2.9934

>> -w0/norm(w)
ans =

2.9934

% Arbitrary chosen point A
> A = [0; 2];
>> distA = sqrt((x1-A(1)).^2 + (x2-A(2)).^2);
>> min(distA)
ans =

2.3207

% Using the formula for the
% signed orthogonal distance
>> (dot(w,A) + w0)/norm(w)
ans =

-2.3207

A(0,2)

𝑟 =
𝑦(𝑨)

𝒘

−
𝑤0

𝒘

(0,0) 𝒘

𝑦 𝒙 = 𝑤𝑇
𝑥1
𝑥2

+ 𝑤0 = 0



Multiple Classes

• We can extend the linear discriminants to more than two classes. 
• We might be tempted be to build a 𝐾-class discriminant by 

combining a number of two-class discriminant functions. However, 
this leads to some difficulties (with ambiguous regions).

One-versus-one classifierOne-versus-the-rest classifier



Decision Boundaries

• We can avoid these difficulties by considering a single 𝐾-
class discriminant comprising 𝐾 linear functions of the form
𝑦𝑘(𝒙) = 𝒘𝑘

𝑇 𝒙 + 𝑤𝑘0

• We then assign a point 𝒙 to class 𝐶𝑘 if 𝑦𝑘(𝒙) > 𝑦𝑗(𝒙) for 
all 𝑗 ≠ 𝑘.

• The decision boundary between class 𝐶𝑘 and 𝐶𝑖 is given by 
𝑦𝑘 𝒙 = 𝑦𝑗(𝒙), which corresponds to a (D − 1)-
dimensional hyperplane defined by
𝒘𝑘 − 𝒘𝑗

𝑇
𝒙 + (𝑤𝑘0 − 𝑤𝑗0) = 0.

• The decision boundary has the same form as the decision 
boundary for the two-class case, and so analogous 
geometrical properties apply.



Fisher’s Linear Discriminant

• Consider case of classifying two classes using a linear 
classification model: 
– We take the 𝐷-dimensional input vector 𝐱 and project it down 

to one dimension using 𝑦 = 𝐰T𝐱. 
– If we place a threshold on 𝑦 and classify 𝑦 ≥ −𝑤0 as class 𝐶1 1, 

and otherwise class 𝐶2.
– This can be viewed as a dimensionality reduction method. 

• In general, the projection onto one dimension leads to a 
considerable loss of information, and classes that are well 
separated in the original 𝐷-dimensional space may become 
strongly overlapping in one dimension.

• However, by adjusting the components of the weight vector 
𝐰, we can select a projection that maximizes the class 
separation, which is the idea of Fisher’s Linear Discriminant 
method. 



Two-Class Problem

• Consider a two-class problem in which there are 𝑁1 points 
of class 𝐶1 and 𝑁2 points of class 𝐶2, so that the mean 
vectors of the two classes are given by 

• The simplest measure of the separation of the classes, 
when projected onto 𝐰, is the separation of the projected 
class means. Thus we might choose 𝐰 so as to maximize

where 𝑚𝑘 is the mean of the projected data from class 𝐶𝑘:



• It is possible that two classes, which are well separated in the original 
space, have considerable overlap when projected onto a the line joining 
their means.

• Fisher’s idea is to maximize a function that will give a large separation 
between the projected class means, while also giving a small variance 
within each class, thereby minimizing the class overlap.

• The projection 𝑦 = 𝐰T𝐱 transforms the set of labeled data points in 𝐱 into 
a labeled set in the one-dimensional space 𝑦. The within-class variance of 
the transformed data from class 𝐶𝑘 is therefore given by

where 𝑦𝑛 = 𝐰T𝐱n

• We can define the total within-class variance for the whole data set to be s 
𝑠1
2 + 𝑠2

2.



Fisher’s Criterion
• The Fisher criterion is defined to be the ratio of the 

between-class variance to the within-class variance and is 
given by

• This Fisher criterion can be rewritten in matrix form as:

where 𝐒B is the between-class covariance matrix given by

and 𝐒w is the total within-class covariance matrix, given by



Maximizing the Criterion

• Determine the value of 𝐰 such that 𝐽(𝐰) is maximized, by 
differentiating 𝐽(𝐰) with respect to 𝐰 :

𝐽 𝐰 =
𝐰T𝐒B𝐰

𝐰T𝐒w𝐰

𝐽′ 𝐰 =
𝐰T𝐒B𝐰

′
𝐰T𝐒w𝐰 − 𝐰T𝐒B𝐰 𝐰T𝐒w𝐰

′

𝐰T𝐒w𝐰 2

=
2𝐒B𝐰 𝐰T𝐒w𝐰 − 2𝐒𝐖𝐰 𝐰T𝐒B𝐰

𝐰T𝐒w𝐰 2
= 0

𝐒B𝐰 𝐰T𝐒w𝐰 = 𝐒𝐖𝐰 𝐰T𝐒B𝐰
Thus

𝐒𝐖
−1𝐒B𝐰 𝐰T𝐒w𝐰

𝐰T𝐒B𝐰
= 𝐰



Since 𝐰T𝐒w𝐰 , 𝐰T𝐒B𝐰 and 𝑚2 −𝑚1 are all scalar factors, we 
can drop them if we care only about the direction of the weight vector 
𝐰, instead of its magnitude. Thus we can obtain

𝐰 ∝ 𝐒𝐖
−1 𝐦2 −𝐦1

𝐰 =
𝐒𝐖
−1𝐒B𝐰 𝐰T𝐒w𝐰

𝐰T𝐒B𝐰
, where

𝐒B𝐰 = 𝐦2 −𝐦1 𝐦2 −𝐦1
T𝐰

= 𝐦2 −𝐦1 𝐰T 𝐦2 −𝐦1

T

= 𝐦2 −𝐦1 𝑚2 −𝑚1



Choice of Direction for Projection

• The result: 𝐰 ∝ 𝐒𝐖
−1 𝐦2 −𝐦1 is known as Fisher’s linear discriminant.

• If the within-class covariance is isotropic, so that 𝑺𝐰 is proportional to the 
unit matrix, then the optimal w is proportional to the difference of the 
class means.

• Although Fisher’s linear discriminant is actually a specific choice of 
direction for projection of the data down to one dimension, the 
projected data can subsequently be used to construct a discriminant, by 
choosing a threshold 𝑦0 so that we classify a new point as belonging to 𝐶1
if 𝑦 𝒙 ≥ 𝑦0 and classify it as belonging to 𝐶2 otherwise.

• For example, we can model the class-conditional densities 𝑝(𝑦|𝐶𝑘) using 
Gaussian distributions. The justification for the Gaussian assumption 
comes from the Central Limit Theorem by noting that 𝑦 = 𝐰𝑇𝐱 is the 
sum of a set of random variables.

• Having found Gaussian approximations to the projected classes, we can 
determine the optimal threshold 𝑦0, by using Bayes’ rule and assigning 
each value 𝑦 to the class having the higher posterior probability 𝑝 𝐶𝐾 𝑦 . 



Fisher’s Discriminant for Multiple Classes

• We generalize the Fisher discriminant to 𝐾 > 2 classes, and we assume 
that the dimensionality 𝐷 of the input space is greater than the number 𝐾
of classes. 

• Another generalization: instead of dimensionality reduction to 1-D, we 
introduce 𝐷′ > 1 linear “features” 𝑦𝑘 = 𝐰𝑘

𝑇𝐱, where 𝑘 = 1, . . . , 𝐷′. These 
feature values can be grouped together to form a vector 𝒚.

• The weight vectors {𝐰𝑘} can be considered to be the columns of a matrix 
𝐖, so that 𝒚 = 𝐖𝑇𝐱.

• The generalization of the within-class covariance matrix to the case of 𝐾
classes:  𝐒W = σ𝑘=1

𝐾 𝐒𝑘, where

and 𝑁𝑘 is the number of samples in class 𝐶𝑘.



• In order to find a generalization of the between-class covariance 
matrix, we consider first the total covariance matrix

where 𝒎 is the mean of the total data set

and 𝑁 = Σ𝑘𝑁𝑘 is the total number of data points.

• The total covariance matrix can be decomposed into the sum of the 
within-class covariance matrix (𝐒W), plus an additional matrix 𝐒B, 
which we identify as a measure of the between-class covariance:



• With covariance matrices having been defined in the original 𝐱-
space, we can now define similar matrices in the projected 𝐷′-
dimensional 𝐲-space:



clear all;

% 1D case (covariance become variance)

N = 100000;

X = randn(1, N);

% Split into two groups randomly

N1 = floor(N*rand);

N2 = N - N1;

X1 = X(1:N1);

X2 = X(N1+1: N);

m = mean(X);

m1 = mean(X1);

m2 = mean(X2);

ST = sum((X - m).^2);

SW = sum((X1 - m1).^2) + sum((X2 - m2).^2);

SB = N1*(m1-m)^2 + N2*(m2-m)^2;

% ST = SW + SB ?

abs(ST - (SW+SB)) 

% 2D case

m_model = [4, 0];

C_model = [9,4; 4,9];

Y = mvnrnd(m_model,C_model,N);

% Split Y into three groups randomly

N1 = floor(N*rand);

Diff = N - N1;

N2 = floor(Diff*rand);

N3 = N - (N1 + N2);

Y1 = Y(1:N1,:);

Y2 = Y(N1+1: N1+N2, :);

Y3 = Y(N1+N2+1: N, :);

my = mean(Y);

my1 = mean(Y1);

my2 = mean(Y2);

my3 = mean(Y3);

% Note the definition of cov() in Matlab, 

need to multiply by (N-1)

STy = (N-1)*cov(Y);

SWy = (N1-1)*cov(Y1) + (N2-1)*cov(Y2) + 

(N3-1)*cov(Y3);

SBy = N1*(my1-my)'*(my1-my) + N2*(my2-

my)'*(my2-my) + N3*(my3-my)'*(my3-my);

abs(STy - (SWy + SBy))



Choice of Projection Matrix
• We want to construct a scalar that is large when the between-class 

covariance is large and when the within-class covariance is small.

• One possible choice of criterion is

• This criterion can then be rewritten as an explicit function of the 
projection matrix 𝐖 in the form:

• It can be shown that the weight values are determined by those 
eigenvectors of 𝐒W

−1𝐒B, which correspond to the 𝐷′ largest 
eigenvalues.

• It can be shown 𝐒B has rank at most equal to (𝐾 − 1) and so there 
are at most (𝐾 − 1) nonzero eigenvalues. So we are therefore 
unable to find more than (𝐾 − 1) linear “features”.



Relation to LDA
• Linear discriminant analysis (LDA), normal discriminant 

analysis (NDA), or discriminant function analysis is a 
generalization of Fisher's linear discriminant.

• LDA is to find a linear combination of features that 
characterizes or separates two or more classes of objects or 
events. 

• The resulting combination may be used as a linear classifier, 
or, more commonly, for dimensionality reduction before 
subsequent classification.

• In general, discriminant analysis assumes that the class-
conditional densities to have multivariate Gaussian 
distributions.
– For linear discriminant analysis (LDA), the model assumes the 

same covariance matrix for each class -- only the means vary.
– For quadratic discriminant analysis (QDA), the model considers 

varying mean vectors and covariance matrices of each class.



Gaussian Pattern Classes

Decision Function:

𝑑𝑗 𝑥 = 𝑝 𝑥 𝑐𝑗 𝑃 𝑐𝑗 =
1

2𝜋𝜎𝑗
𝑒
−

𝑥−𝑚𝑗
2

2𝜎𝑗
2

𝑃 𝑐𝑗

where     𝑗 = 1, 2



𝑛-Dimensional Gaussian PDF

where the mean vector is

and the covariance matrix is

We can approximate with taking the averages of sample
vectors:



Logarithm of the Decision Function



LDA
• Two assumptions of linear 

discriminant analysis (LDA):
– Multivariate normality
– Homoscedasticity: Equal covariance 

for all classes

• Estimation of the covariance matrix 
in actual implementations:

Sklearn
• Shrinkage is a form of regularization used to improve the estimation of covariance 

matrices. 
• The ‘shrinkage’ parameter can be set to ‘auto’. This automatically determines the 

optimal shrinkage parameter in an analytic way.
• The shrinkage parameter can also be manually set between 0 and 1. 

• 0 corresponds to no shrinkage, which means the empirical covariance matrix 
will be used.

• 1 corresponds to complete shrinkage, which means that the diagonal matrix 
of variances will be used as an estimate for the covariance matrix.

Matlab



Two Classes As an Example
Decision functions (with a common covariance matrix 𝑪, where 𝑪T = 𝑪):

𝑑1 𝐱 = ln𝑃 𝜔1 −
1

2
ln 𝑪 −

1

2
[ 𝐱 − 𝐦𝟏

TC−1 𝐱 −𝐦𝟏 ]

𝑑2 𝐱 = ln𝑃 𝜔2 −
1

2
ln 𝑪 −

1

2
[ 𝐱 − 𝐦𝟐

TC−1 𝐱 −𝐦𝟐 ]

Decision Boundary (assuming equal class probabilities): 𝑑1 𝐱 = 𝑑2 𝐱

𝐱 −𝐦𝟏
T𝐂−1 𝐱 −𝐦𝟏 = 𝐱 −𝐦𝟐

T𝐂−1 𝐱 −𝐦𝟐

𝐱T𝐂−1𝐱 − 𝐱T𝐂−1𝐦𝟏 −𝐦𝟏
T𝐂−1𝐱 +𝐦𝟏

T𝐂−1𝐦𝟏

= 𝐱T𝐂−1𝐱 − 𝐱T𝐂−1𝐦𝟐 −𝐦𝟐
T𝐂−1𝐱 +𝐦𝟐

T𝐂−1𝐦𝟐

𝐦𝟏 −𝐦𝟐
T𝐂−1𝐱 =

1

2
(𝐦𝟏

T𝐂−1𝐦𝟏 −𝐦𝟐
T𝐂−1𝐦𝟐)

Cancellation
due to the assumption of same
covariance (LDA); otherwise
quadratic function of 𝐱, thus 
QDA results.



Decision Boundary is a Line

𝐦𝟏 −𝐦𝟐
T𝐂−1𝐱 =

1

2
(𝐦𝟏

T𝐂−1𝐦𝟏 −𝐦𝟐
T𝐂−1𝐦𝟐)

Let weight vector  𝐰 = 𝐂−1 𝐦𝟏 −𝐦𝟐 , then 

𝐦𝟏 −𝐦𝟐
T𝐂−1𝐱 = 𝐰T𝐱

𝐰T 𝐦𝟏 +𝐦𝟐 = 𝐦𝟏 −𝐦𝟐
T𝐂−1 𝐦𝟏 +𝐦𝟐

= 𝐦𝟏
T𝐂−1𝐦𝟏 +𝐦𝟏

T𝐂−1𝐦𝟐 −𝐦𝟐
T𝐂−1𝐦𝟏 −𝐦𝟐

T𝐂−1𝐦𝟐

= 𝐦𝟏
T 𝐂−1𝐦𝟏 −𝐦𝟐

T𝐂−1𝐦𝟐

Thus the decision function is a function of a linear combination of the observations:

𝐰𝐓𝐱 =
1

2
𝐰T 𝐦𝟏 +𝐦𝟐 , where 𝐰 = 𝐂−1 𝐦𝟏 −𝐦𝟐

and

Consistent with Fisher’s linear discriminant with projection: 

𝐰 ∝ 𝐒𝐖
−1 𝐦2 −𝐦1 , where 𝐒𝐖 = 2𝑪



Example

𝐱 =
𝑥1
𝑥2

, 𝐦𝟏 =
3
3

, 𝐦𝟐 =
9
9

,

𝑪1 = 𝑪2 = 𝑪 =
2 1
1 2

𝑪−1=
1

3

2 −1
−1 2

𝐰 = 𝐂−1 𝐦𝟏 −𝐦𝟐 =
1

3

2 −1
−1 2

−6
−6

=
−2
−2

1

2
𝐰T 𝐦𝟏 +𝐦𝟐 =

1

2
−2 −2

12
12

= −24

The decision boundary is 𝐰𝐓𝐱 =
1

2
𝐰T 𝐦𝟏 +𝐦𝟐

𝑥1 + 𝑥2 = 12





Varying Covariance Matrix
Decision Boundary (assuming equal class probabilities): 𝑑1 𝐱 = 𝑑2 𝐱

ln 𝐂1 + 𝐱 −𝐦𝟏
T𝐂1

−1 𝐱 −𝐦𝟏 − ln 𝐂2 + 𝐱 −𝐦𝟐
T𝐂2

−1 𝐱 −𝐦𝟐 = 0

Example:

𝐱 =
𝑥1
𝑥2

, 𝐦𝟏 =
3
3

, 𝐦𝟐 =
9
9

, 𝐂1 =
2 1
1 2

, 𝐂2 =
5 3
3 5

% Symbolic math

syms f x x1 x2

x = [x1; x2];

c1 = inv(cov1);

c2 = inv(cov2);

f = log(abs(det(cov1))) + (x-

m1).'*c1*(x-m1) - log(abs(det(cov2))) -

(x-m2).'*c2*(x-m2);

g = simplify(f)

fimplicit(g,[-10 10]); grid

g =
(17*x1^2)/48 - (7*x1*x2)/24 + x1/4 + 
(17*x2^2)/48 + x2/4 – 15.92



QDA

N = 1000;

% Class 1

m1 = [3, 3]';   % Mean vector

cov1 = [2 1; 1 2]; % Covariance matrix

r1 = mvnrnd(m1,cov1,N);

data_C1 = zeros(N, 2);

data_C1 = r1;

label_C1 = ones(N, 1);

% Generate data entries for Class 2

m2 = [9, 9]';

cov2 = [5,3; 3,5];

r2 = mvnrnd(m2,cov2,N);

data_C2 = zeros(N, 2);

data_C2 = r2;

label_C2 = 2*ones(N, 1);

hold on;
fimplicit(g)

% Combine data of two classes

data = vertcat (data_C1, data_C2);

label = vertcat (label_C1, label_C2);

% Plot the data samples of the two classes

gscatter(data(:,1),data(:,2),label,'rb','ox')

grid



What if we still use LDA?

% Use regularization to shrink the 

cov_all of all data

cov_all = cov(data);  

% Too large -- need to shrink

% Scan through the whole range of

% values of the shrinkage parameter

for gamma = 0: 0.05: 1;

diag = cov_all;

diag(1,2) = 0;

diag(2,1) = 0;

cov_est = (1-gamma)*cov_all + 

gamma*diag;

w1 = inv(cov_est)*(m1-m2);

f1 = w1.'*x - 0.5*w1.'*(m1+m2);

hold on;

fimplicit(f1)

end



Fit discriminant analysis classifier
fitcdiscr ( )

>> Model = fitcdiscr(data, label);

Model.DiscrimType

ans =

'linear'

>> K = Model.Coeffs(1,2).Const

K =

23.5780

>> L = Model.Coeffs(1,2).Linear

L =

-1.8358

-2.1190

>> Model.Gamma
ans =

0

>> K = Model.Coeffs(2,1).Const
K =

-23.5780
>> K = Model.Coeffs(2,1).Linear
K =

1.8358
2.1190

𝐰 = 𝐂−1 𝐦𝟏 −𝐦𝟐 =
1

3

2 −1
−1 2

−6
−6

=
−2
−2

1

2
𝐰T 𝐦𝟏 +𝐦𝟐 =

1

2
−2 −2

12
12

= −24



Classification Performance
>> resubLoss(Model)
ans =

0.0065
>> L = predict(Model, data);
>> diff = abs(label - L);
>> length(find(diff~=0))/length(data)
ans =

0.0065

f = @(x1,x2) K + L(1)*x1 + L(2)*x2;

gscatter(data(:,1),data(:,2),label,'rb','ox')
grid
hold on;
fimplicit(f);

K = Model.Coeffs(1,2).Const
L = Model.Coeffs(1,2).Linear



Varying Covariance Matrices

>> Model = fitcdiscr(data, label);

Model.DiscrimType

ans =

'linear‘

K = Model.Coeffs(1,2).Const

K =

13.3013

>> L = Model.Coeffs(1,2).Linear

L =

-1.0374

-1.1830

>> resubLoss(Model)

ans =

0.0380

% Class 2
m2 = [9, 9]';
cov2 = [5,3; 3,5];

% Class 1
m1 = [3, 3]';   % Mean vector
cov1 = [2 1; 1 2]; % Covariance matrix

>> Model_QDA = fitcdiscr(data, label, 'DiscrimType', 
'quadratic');
>> Model_QDA.DiscrimType
ans =

'quadratic‘

>> resubLoss(Model_QDA)
ans =

0.0280



QDA>> K = Model_QDA.Coeffs(1,2).Const;

L = Model_QDA.Coeffs(1,2).Linear; 

Q = Model_QDA.Coeffs(1,2).Quadratic;

K =

7.7810

L =

0.0890

-0.1940

Q =

-0.2119    0.0886

0.0886   -0.1971

f = @(x1,x2) K + L(1)*x1 + L(2)*x2 + 
Q(1,1)*x1.^2 + ...

(Q(1,2)+Q(2,1))*x1.*x2 + Q(2,2)*x2.^2;

gscatter(data(:,1),data(:,2),label,'rb','ox')

grid

hold on;

fimplicit(f);



‘lda_demo.py’
import numpy as np

infile = r"C:\...\lda_data.csv"

dataset = np.loadtxt(infile, delimiter=',')

X = dataset[:, 0:2]

y = dataset[:,2]  # labels

from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA

clf = LDA()

clf.fit(X, y)

clf.intercept_

clf.coef_

clf.score(X,y)

y_pred = clf.predict(X)

num_errors = np.sum(y != y_pred)

num_errors/np.size(y)



Summary
• Prototype Matching (minimum-distance classifier)

– Assign the unknown pattern to the class of its closest prototype 
(mean vectors of various classes)

• Bayes Classifier (if multivariate normality is assumed) 
– Becomes the minimum-distance classifier

• If all covariance matrices are equal to identity matrix.
• All classes are equally likely.

– Becomes the LDA
• If all covariance matrices are assumed to be the same.

– Becomes the QDA
• If there are varying covariance matrices for different classes

• LDA can be viewed as a minimum-distance classifier, with 
the distance being the Mahalanobis distance (between a 
point 𝐱 and the sample mean of a distribution), instead of 
the Euclidean distance. 

𝐱 −𝐦𝟏
T𝐂−1 𝐱 −𝐦𝟏 = 𝐱 −𝐦𝟐

T𝐂−1 𝐱 −𝐦𝟐


