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Topics
• Overview of Machine Learning (ML) and its relation to AI
• Categories of ML Techniques

– Supervised Learning
• Classification (KNN, Bayes Classifier, discriminant analysis, logistic regression)
• Regression (linear and non-linear models, curve fitting)
• Neural Networks (perceptron, multilayer network, backpropagation method, deep learning)

– Unsupervised Learning 
• Cluster Analysis
• Principal Component Analysis

– Reinforcement Learning, Evolutionary Learning, etc.

• Math Required
– Linear Algebra (singular value decomposition, QR decomposition, least square, …)
– Multivariate Calculus (gradient, Jacobian, Hessian, etc.)
– Probability and Statistics (Bayes theorem, maximum likelihood estimation, …)
– Optimization Method (gradient decent, …)

• Implementations
– Matlab

• Statistics and Machine Learning Toolbox, Deep Learning Toolbox, Image Processing Toolbox, …

– Python
• Scikit-learn, Keras, Tensorflow

• Examples
– Naïve Bayes classifier with the Iris dataset, CNN classifier with handwritten digits dataset.



Example of ML

• Suppose that you have a website selling software that you’ve 
written. 

• You want to make the website more personalized to the user, so 
you start to collect data about visitors, such as their computer 
type/operating system, web browser, the country that they live in, 
and the time of day they visited the website.

• Once you have collected a large set of such data, the problem you 
have is one of prediction: given the data you have, predict what the 
next person will buy.

• Because we know what the right answer are for some examples, we 
can give the learner these examples with the right answer.

• The reason this approach might work is that people who seem to 
be similar often act similarly.

• This is an example of Supervised Learning.



Questions Addressed by ML

• Data Explosion: computers, sensors, smart 
devices, etc. capture and store massive amount 
of data every day. The challenge is to do 
something useful with the data.

• However, the size and complexity of these 
datasets mean that humans are unable to extract 
useful information from them.

• Computing machines can learn from the data to 
answer many questions

• This is why machine learning is becoming so 
popular.



Learning

• Humans and other animals can display 
intelligent behaviors by learning from 
experience. 

• By learning, we can adjust and adapt to new 
circumstances.

• Important parts of learning: 
– Remembering

– Adapting

– Generalizing.



Learning Steps

• Remembering
– recognizing that last time we were in this situation (saw 

this data)
– we tried out some particular action (gave this output) and 

it worked (was correct), so we’ll try it again

• Adapting
– If it didn’t work, we’ll try something different.

• Generalizing
– Recognizing similarity between different situations, so that 

things that applied in one place can be used in another. 
– This is what makes learning useful, because we can use our 

knowledge in lots of different places.



Link to Artificial Intelligence

• We are interested in the most fundamental parts of 
intelligence — learning and adapting—and how we can 
model them in a computer. 

• There has also been a lot of interest in making 
computers reason and deduce facts, which was the 
basis of most early Artificial Intelligence, and is 
sometimes known as symbolic processing because the 
computer manipulates symbols that reflect the 
environment. 

• In contrast, machine learning methods are sometimes 
called subsymbolic because no symbols or symbolic 
manipulation are involved.



Artificial Intelligence (AI)

• Using math and logic, a computer system simulates the 
reasoning that humans use to learn from new information 
and make decisions.

• An AI computer system makes predictions or takes actions 
based on patterns in existing data and can then learn from 
its errors to increase its accuracy. 

• A mature AI processes new information extremely quickly 
and accurately, which makes it useful for complex scenarios 
such as self-driving cars, image recognition programs, and 
virtual assistants.

• Examples of AI
– Self-driving cars, Bots and digital assistants, Recommendation 

engines, Spam filters, Smart home technology, Health data 
analysis, etc.



Types of AI

• Narrow
– Also called “weak AI”— refers to the ability of a 

computer system to perform a narrowly defined task 
better than a human can.

• General
– sometimes called “strong AI” or “human-level AI”—

refers to the ability of a computer system to 
outperform humans in any intellectual task. 

• Artificial super intelligence (ASI)
– the ability to outperform humans in almost every 

field, including scientific creativity, general wisdom, 
and social skills.



ML achieves Narrow AI

• Machine learning is a process that computer systems follow 
to achieve artificial intelligence. 

• It uses algorithms to identify patterns within data, and 
those patterns are then used to create a data model that 
can make predictions.

• Machine-learning models are trained on subsets of data.
• When the data that’s used to train the model accurately 

represents the full dataset that will be analyzed, the 
algorithm calculates more accurate results. 

• When the machine learning model has been trained well 
enough to perform its task quickly and accurately enough 
to be useful and trustworthy, it’s achieved narrow AI.



ML 
• Machine learning is about making computers modify or 

adapt their actions (whether these actions are making 
predictions, or controlling a robot) so that these 
actions get more accurate.

• Accuracy is measured by how well the chosen actions 
reflect the correct ones.

• Generalization
– Imagine that you are playing a game against a computer, 

you might beat it every time in the beginning, but after 
lots of games it starts beating you.

– The computer can go on and use the same strategies 
against other players, so that it doesn’t start from scratch 
with each new player -- a form of generalization.



Computation Complexity

• Computation complexity of ML is particularly important 
because we might want to use some of the methods on 
very large datasets.

• Algorithms that have high degree of polynomial complexity 
in the size of the dataset will be a problem. 

• The complexity is often broken into two parts: 
– the complexity of training, and 
– the complexity of applying the trained algorithm (testing). 

• Training does not happen very often, and is not usually 
time critical, so it can take longer. 

• However, we often want a decision about a test point 
quickly, and there are potentially lots of test points when 
an algorithm is in use, so testing needs to have low 
computational cost.



Types of ML Algorithms

• Supervised learning
– A training set of examples with the correct responses 

(targets) is provided and, based on this training set, the 
algorithm generalizes to respond correctly to all possible 
inputs. This is also called learning from exemplars.

• Unsupervised learning
– Correct responses are not provided, but instead the 

algorithm tries to identify similarities between the inputs 
so that inputs that have something in common are 
categorized together. 

– The statistical approach to unsupervised learning is known 
as density estimation.



• Reinforcement learning

– somewhere between supervised and unsupervised 
learning.

– The algorithm gets told when the answer is wrong, 
but does not get told how to correct it. 

– It has to explore and try out different possibilities until 
it works out how to get the answer right.

– Reinforcement learning is sometime called learning 
with a critic, because of this monitor scores the 
answer, but does not suggest improvements.



• Evolutionary learning

– Biological evolution can be seen as a learning 
process: biological organisms adapt to improve 
their survival rates and chance of having offspring 
in their environment. 

– We can model this in a computer, using an idea of 
fitness, which corresponds to a score for how 
good the current solution is.



Supervised Learning

• Classification
– Taking input vectors and deciding which of N classes they belong 

to, based on training from exemplars of each class. 
– The classification problem is discrete — each example belongs 

to precisely one class, and the set of classes covers the whole 
possible output space.

• Regression
– Output has continuous values. The goal to predict a value as 

close to the actual output value.
– Evaluation is done by calculating the error value. The smaller the 

error the greater the accuracy of the regression model. 
– Example applications: 

• predicting changes in temperature, fluctuations in power demand, 
electricity load forecasting, algorithmic trading, etc.



Unsupervised Learning

• Unsupervised learning finds hidden patterns or 
intrinsic structures in data. 

• It is used to draw inferences from datasets 
consisting of input data without labeled 
responses. 

• Clustering is the most common unsupervised 
learning technique. It is used for exploratory data 
analysis to find hidden patterns or groupings in 
data. 

• Applications for clustering include gene sequence 
analysis, market research, and object recognition.





ML Process

Training Data

Machine 
Learning

Model



• Data Collection and Preparation
– For supervised learning, target data (labels) are 

also needed, which can require the involvement of 
experts in the relevant field and significant 
investments of time.

• Feature Selection
– Identifying the features that are most useful for 

the problem under examination. 

– This invariably requires prior knowledge of the 
problem and the data.



• Algorithm Choice

– Given the dataset, the knowledge of the 
underlying principles of each algorithm and 
examples of their use is needed.

• Parameter and Model Selection

– For many of the algorithms there are parameters 
that have to be set manually, or that require 
experimentation to identify appropriate values.



• Training
– Given the dataset, algorithm, and parameters, training 

is the use of computational resources in order to build 
a model of the data in order to predict the outputs on 
new data.

• Evaluation (testing)
– Before a system can be deployed it needs to be tested 

and evaluated for accuracy on data that it was not 
trained on. 

– This can often include a comparison with human 
experts in the field, and the selection of appropriate 
metrics for this comparison.





Iris Flower Dataset

Fisher's iris dataset consists of 150 samples of iris flower measurements (cm) 
• sepal length
• sepal width
• petal length
• petal width

There are three species, with 50 samples/specie.

Iris setosa Iris versicolor Iris virginica



Feature Vector (Predictors)

Classes 3

Samples per class 50

Samples total 150

Dimensionality 4

Features real, positive



Dataset Content

https://en.wikipedia.org/wiki/Iris_flower_data_set#Data_set

>> load fisheriris
meas 150x4 double

species 150x1 cell

>> meas(1,:)
ans =

5.1000    3.5000    1.4000    0.2000

>> 
species(51)
ans =
1×1 cell 

array
{'versicolor'}

>> species(1)
ans =
1×1 cell 

array
{'setosa'}

>> 
species(101)
ans =
1×1 cell 

array
{'virginica'}

https://en.wikipedia.org/wiki/Iris_flower_data_set#Data_set


>> load fisheriris
>> X = meas;
>> Y = species;
>> Mdl = fitcnb(X,Y)        % Train a naïve Bayes classifier
Mdl = 

ClassificationNaiveBayes
ResponseName: ‘Y‘
…

ClassNames: {'setosa'  'versicolor'  'virginica'}
NumObservations: 150
DistributionNames: {'normal'  'normal'  'normal'  'normal'}

>> L = resubLoss(Mdl)
L =

0.0400

The naive Bayes classifier misclassifies 4% of the training observations.

Matlab (Statistical and 
Machine Learning Toolbox)



Prediction (Resubstitution)

>> X = meas;
>> Y = species;
>> Mdl = fitcnb (X, Y);              % Train the classifier with (X, Y)

>> label = predict (Mdl, X);     % Predict using the same training data X

>> diff = strcmp (label, Y);
>> length(find(diff ==0))           % Number of prediction errors   

ans =
6

>> 6/150
ans =

0.0400



scikit-learn (sklearn): ML in Python

• Python IDE Installation
– Transition from Matlab to Python

• https://realpython.com/matlab-vs-python/

– Anaconda Data Science Platform:
https://www.anaconda.com

– Installation includes Python, NumPy, and many other 
commonly used packages for scientific computing and data 
science.

– Includes the Spyder (with IPython, or interactive Python) 
development environment that supports advanced editing, 
analysis, debugging, etc. 

• scikit-learn is an open source machine learning library 
that supports supervised and unsupervised learning.
– https://scikit-learn.org/stable/index.html

https://realpython.com/matlab-vs-python/
https://www.anaconda.com/
https://scikit-learn.org/stable/index.html


scikit-learn (sklearn): ML in Python
• Transition from Matlab to Python/Numpy

– https://realpython.com/matlab-vs-python/
– https://docs.python.org/3.9/tutorial/
– https://numpy.org/doc/stable/user/quickstart.html

• Python IDE Installation
– Anaconda Data Science Platform:

https://www.anaconda.com
– Installation includes Python, NumPy, and many other commonly 

used packages packages for scientific computing and data 
science.

– Includes the Spyder (with IPython, or interactive Python) 
development environment that supports advanced editing, 
analysis, debugging, etc. 

• scikit-learn is an open source machine learning library that 
supports supervised and unsupervised learning.
– https://scikit-learn.org/stable/index.html

https://realpython.com/matlab-vs-python/
https://docs.python.org/3.9/tutorial/
https://numpy.org/doc/stable/user/quickstart.html
https://www.anaconda.com/
https://scikit-learn.org/stable/index.html


Fisher Iris Dataset

>>> from sklearn.datasets import load_iris
>>> samples = load_iris()
>>> samples.target_names

array(['setosa', 'versicolor', 'virginica'], dtype='<U10')



sklearn
# ‘naive_bayes_demo.py’

from sklearn.naive_bayes import GaussianNB
clf = GaussianNB()

from sklearn.datasets import load_iris
train_samples = load_iris()
X = train_samples.data
Y = train_samples.target

clf.fit(X, Y)

clf.score(X, Y)

# Verify the classification accuracy
Y_pred = clf.predict(X)

num_correct = np.sum(Y == Y_pred)
num_sample = np.size(Y_pred)
num_correct/num_sample



Example: CNN 
• Intro. to Deep Learning

– What are Convolutional Neural Networks (CNNs)?

• Dataset
– [XTrain, YTrain] = digitTrain4DArrayData;  loads the digit training set as 4-D 

array data. 
– XTrain is a 28-by-28-by-1-by-5000 array, where:

• 28 is the height and width of the images.
• 1 is the number of channels.
• 5000 is the number of synthetic images of handwritten digits (0, 1, 2, …, 9).

– YTrain is a categorical vector containing the labels for each observation.

>> size(XTrain)
ans =

28          28           1        5000

>> size(YTrain)
ans =

5000           1

https://www.mathworks.com/videos/introduction-to-deep-learning-what-are-convolutional-neural-networks--1489512765771.html


perm = randperm(5000,64);

for i = 1:64

subplot(8,8,i);

imshow(XTrain(:,:,:,perm(i)));

end



Dataset Partitioning

% Set aside 1000 of the images for testing

after the network is trained

idx = randperm(size(XTrain,4),1000);

XTest = XTrain(:,:,:,idx);

XTrain(:,:,:,idx) = [];

YTest = YTrain(idx);

YTrain(idx) = [];

% Set aside 1000 of the training images 

for validation during training.

idx = randperm(size(XTrain,4),1000);

XValidation = XTrain(:,:,:,idx);

XTrain(:,:,:,idx) = [];

YValidation = YTrain(idx);

YTrain(idx) = [];

>> size(XTrain)
ans =

28          28           1        5000

>> size(XTrain)
ans =

28          28           1        4000

>> size(XTrain)
ans =

28          28           1        3000

Partitioning: Training (3000), Validation (1000), Testing (1000)



Network Structure and Training Options
layers = [

imageInputLayer([28 28 1])

convolution2dLayer(3,32)

reluLayer

maxPooling2dLayer(2, 'Stride',2)

convolution2dLayer(3,64)

reluLayer

maxPooling2dLayer(2, 'Stride',2)

fullyConnectedLayer(10)

softmaxLayer

classificationLayer];

options = trainingOptions('adam', ...

'InitialLearnRate',0.01, ...

'MaxEpochs',5, ...

'Shuffle','every-epoch', ...

'MiniBatchSize',64, ...

'ValidationData', {XValidation,YValidation}, ...

'ValidationFrequency', 20, ...

'Verbose',false, ...

'Plots','training-progress');



Lots of Parameters to Learn!

>> analyzeNetwork (net)
>> net = trainNetwork (XTrain, YTrain, layers, options);



Training and Validation Progress
>> net = trainNetwork (XTrain, YTrain, layers, options);



Testing
>> YPred = classify (net, XTest);
accuracy = sum(YPred == YTest)/numel(YPred)

accuracy =
0.9790



Layers and Weights
>> net.Layers(1)
ans = 
ImageInputLayer with properties:

Name: 'imageinput'
InputSize: [28 28 1]

Hyperparameters
DataAugmentation: 'none'

Normalization: 'zerocenter'
NormalizationDimension: 'auto'

Mean: 0.0886

>> W2 = net.Layers(2).Weights;
>> whos W2
Name      Size                Bytes  Class     Attributes

W2        3x3x1x32             1152  single              

I_weight1 = imtile(W2, 'GridSize',[4 8]);

figure; imagesc(I_weight1); colorbar



Visualization of Features and Outputs

act1 = activations(net,im,'conv_1');

I1 = imtile(act1, 'GridSize',[4 8]);

figure; imagesc(I1); colorbar

im = XTrain(:,:,:,1);

figure; imshow(im)



Probability of the Digits

act2 = activations(net,im,'conv_2');

I2 = imtile(act2, 'GridSize',[8 8]);

figure; imagesc(I2); colorbar

act9 = activations(net,im,'softmax');

figure;

stem(reshape(act9(1,1,:), 10, 1)); grid


