
EE 610, ST: ML Fundamentals

Nearest Neighbor Classifiers

Dr. W. David Pan

Dept. of ECE

UAH

Probability Density Estimation

• Pattern recognition is concerned with the automatic discovery of
regularities in data through the use of computer algorithms and
with the use of these regularities to take actions such as classifying
the data into different categories.

• Probability theory plays a central role in the solution of pattern
recognition problems.

• Density Estimation
– Model the probability distribution 𝑝(𝑥) of a random variable 𝑥, given a

finite set 𝑥1, . . . , 𝑥𝑁 of observations.
– Assume that the data points are independent and identically
– distributed.

• The problem of density estimation is fundamentally ill-posed,
because there are infinitely many probability distributions that
could have given rise to the observed finite data set.

• The central issue of pattern recognition to choose an appropriate
distribution relates to the problem of model selection.

Parametric Approaches

• Example models
– Discrete random variables: binomial distribution and multinomial

distribution
– Continuous random variables: Gaussian distribution

• These are examples of parametric distributions, because they are
governed by a small number of adaptive parameters, e.g., mean
and variance in the case of a Gaussian.

• One limitation of the parametric approach is that it assumes a
specific functional form for the distribution, which may turn out to
be inappropriate for a particular application.

• The distribution chosen might be a poor model of the distribution
that generates the data, which can result in poor predictive
performance.
– For example, if the process that generates the data is multimodal,

then this aspect of the distribution can never be captured by a
Gaussian, which is necessarily unimodal.

Nonparametric Methods

• An alternative approach is nonparametric density
estimation methods, where the form of the
distribution typically depends on the size of the
dataset.

• Such models still contain parameters, but these
control the model complexity rather than the
form of the distribution.

• Examples
– Histogram methods for density estimation

– Nearest-Neighbor methods

Histogram Methods

• Standard histograms simply partition the values (𝑥) taken
by a continuous random variable (𝑋) into distinct bins of
width Δ𝑖, and then count the number 𝑛𝑖 of observations of
𝑥 falling in bin 𝑖.

• In order to turn this count into a normalized probability
density, we divide 𝑛𝑖 by the total number (𝑁) of
observations and by the width (Δ𝑖) of the bins to obtain
probability density values for each bin given by 𝑓𝑖 =

𝑛𝑖

𝑁Δ𝑖
.

• This gives a model for the density 𝑓(𝑥), which is constant
over the width of each bin, and ∫ 𝑓 𝑥 𝑑𝑥 = 1

• Often the bins are chosen to have the same width Δ𝑖 = Δ.

‘hist_demo.m’

X = [randn(M, 1); 5+randn(M, 1)];

h = histogram(X, 10, 'Normalization',

'pdf');

h.BinLimits

sum(h.Values)

h.BinWidth

sum(h.Values)*h.BinWidth

% The true pdf

x = -6: 0.01: 10;

f = 1/2*(normpdf(x,0,1)+normpdf(x,5,1));

% Check the area under the curve

trapz(x,f)

hold on;

plot(x,f)

Keep reducing the bin size

Δ = 100Δ = 20

Summary

• Δ being very large might cause over-smoothing and a
washing out of structure that might otherwise be extracted
from the data.

• Δ being too small can lead to noisy estimates, with the
resulting density model being very spiky, with a lot of
structure that is not present in the underlying distribution
that generated the data set.

• The best results can be possibly obtained for some
intermediate values of Δ.

• In principle, a histogram density model is also dependent
on the choice of edge location for the bins, although this is
typically much less significant than the value of Δ.

Advantages and Limitations

• The histogram method has the property (unlike the KNN method to be
introduced next) that, once the histogram has been computed, the data
set itself can be discarded, which can be advantageous if the data set is
large.

• The histogram approach is easily applied if the data points are arriving
sequentially.

• In practice, the histogram technique can be useful for obtaining a quick
visualization of data in one or two dimensions but is unsuited to most
density estimation applications.
– The estimated density has discontinuities that are due to the bin edges rather

than any property of the underlying distribution that generated the data.
– Another major limitation is its scaling with dimensionality.
– If we divide each variable in a 𝐷-dimensional space into 𝑀 bins, then the total

number of bins will be 𝑀𝐷 -- an example of the Curse of Dimensionality.
– In a space of high dimensionality, the quantity of data needed to provide

meaningful estimates of local probability density would be prohibitive.

Lessons Learned

• to estimate the probability density at a particular location,
we should consider the data points that lie within some
local neighborhood of that point.

• This concept of locality requires that we assume some form
of distance, e.g., the Euclidean distance.

• For histograms, this neighborhood property was defined by
the bins, and there is a natural “smoothing” parameter (the
bin width) describing the spatial extent of the local region.

• The value of the smoothing parameter should be neither
too large nor too small in order to obtain good results.

• Nearest-neighbor methods are nonparametric techniques
that have better scaling with dimensionality than the
simple histogram model.

K-Nearest Neighbor Density Estimation

• Suppose we have collected a data set comprising 𝑁
observations drawn from the distribution with PDF being
𝑓(𝒙).

• We consider a small sphere centered on the point 𝒙 at
which we want to estimate the probability density 𝑓(𝒙).

• We allow the radius of the sphere to grow until it contains
precisely 𝐾 data points.

• The estimate of the density 𝑓(𝒙) is then given by 𝑓 𝒙 =
𝐾

𝑁𝑉
, where 𝑉 is the volume of the resulting sphere.

– For a simple 1-D dataset, 𝑉 is the “bin” width, where the “bin”
contains the nearest 𝐾 data points.

• This technique is known as the K-nearest neighbors.

K = 5;
% For each unique data point, find the distance
% between this point and all other points
Y = unique(sort(X));

Density = zeros(length(Y), 1);
Dist = zeros(N, 1);

for i = 1: length(Y)
Dist = (Y(i) - X).^2;
[Dist_sorted, Index] = sort(Dist);

% Among the K nearest neighbors, find the range
% of these value

V = range(X(Index(1:K)));
Density(i) = K/(N*V);

end

figure;
plot(Y, Density)

K = 50 K = 150

Extension to Classification

• The K-nearest-neighbor technique for density estimation can be
extended to the problem of classification, where we apply the K-
nearest-neighbor density estimation technique to each class
separately and then use the Bayes’ theorem.

• Suppose that we have a data set comprising 𝑁𝑖 points in class 𝐶𝑖
with 𝑁 points in total, so that Σ𝑖 𝑁𝑖 = 𝑁.

• The class priors (a priori probabilities) are given by 𝑝 𝐶𝑖 =
𝑁𝑖

𝑁
.

• If we want to classify a new point 𝒙, we draw a sphere centered on
𝒙 containing precisely K points irrespective of their class.

• Suppose this sphere has volume 𝑉 and contains 𝐾𝑖 points from class
𝐶𝑖, then an estimate of the density associated with each class is
𝑓 𝒙 𝐶𝑖 =

𝐾𝑖

𝑁𝑖𝑉
, where Σ𝑖 𝐾𝑖 = 𝐾.

• The unconditional density is given by 𝑓 𝒙 =
𝐾

𝑁𝑉
.

Posterior Probability

Using Bayes’ theorem to obtain the posterior probability of class
membership:

f 𝐶𝑖 𝒙 =
𝑓 𝒙 𝐶𝑖 𝑝 𝐶𝑖

𝑓 𝒙
=

𝐾𝑖

𝐾

where
𝑓 𝒙 𝐶𝑖 =

𝐾𝑖

𝑁𝑖𝑉
, 𝑝 𝐶𝑖 =

𝑁𝑖

𝑁
, and 𝑓 𝒙 =

𝐾

𝑁𝑉

• In order to minimize the probability of misclassification, we assign
the test point 𝒙 to the class having the largest posterior probability,
corresponding to the largest value of

𝐾𝑖

𝐾
.

• Thus to classify a new point, we identify the K nearest points from
the training data set and then assign the new point to the class
having the largest number of representatives amongst this set.

• The particular case of K = 1 is called the nearest-neighbor rule,
because a test point is simply assigned to the same class as the
nearest point from the training set.

Some Distance Metrics

Given two (1-by-𝑛) row vectors 𝒙 and 𝒚, the various distances between
these two vectors are defined as follows:

• Minkowski distance (or L𝑝 metric)

𝐷𝑀 = Σ𝑗=1
𝑛 𝑥𝑗 − 𝑦𝑗

𝑝
1
𝑝

• City block distance (or Manhattan distance)
𝐷𝐶𝐵 = Σ𝑗=1

𝑛 𝑥𝑗 − 𝑦𝑗
– A special case of Minkowski distance when 𝑝 = 1.

• Euclidean distance

𝐷𝐸 = Σ𝑗=1
𝑛 𝑥𝑗 − 𝑦𝑗

2
1
2

– A special case of Minkowski distance when 𝑝 = 2.

• Chebychev distance (maximum metric, or L∞ metric)

𝐷𝐶 = max
𝑗

𝑥𝑗 − 𝑦𝑗

– A special case of Minkowski distance when 𝑝 = ∞.

𝑝 → ∞

>> x = [1 2]
>> y = [4 3]
>> pdist2(x,y,'minkowski',1)
>> pdist2(x,y,'minkowski',2)
>> norm(x-y)
>> pdist2(x,y,'minkowski',3)

>> for p=1:10
d(p) = pdist2(x,y,'minkowski',p);

end
>> plot(1:10, d); grid

Proof using the Squeeze Theorem

Show that

lim
𝑝→∞

𝑎𝑝 + 𝑏𝑝
1

𝑝 = max 𝑎, 𝑏 , where 𝑎 ≥ 0, and 𝑏 ≥ 0.

Assume that max 𝑎, 𝑏 = 𝑎, without loss of generality.

Cosine Similarity
• The cosine of two non-zero vectors can

be derived by using the Euclidean dot
product formula:

𝑨 ⋅ 𝑩 = 𝑨 𝑩 cos 𝜃

X

Y

0

A B

𝜃• Cosine Similarity measures the similarity
between two vectors of an inner product
space as:

𝑆𝐶 𝑨,𝑩 ≜ cos 𝜃 =
𝑨 ⋅ 𝑩

𝑨 𝑩

• The resulting similarity ranges from −1 (exactly opposite),
to 1 (exactly the same), with 0 indicating orthogonality or
decorrelation.

• In-between values indicate intermediate similarity/dissimilarity.

Cosine Distance

• Cosine Distance is used for the complement of cosine
similarity in positive space.

𝐷𝐶 𝑨,𝑩 ≜ 1 −
𝑨⋅𝑩

𝑨 𝑩
= 1 −

σ𝑖=1
𝑛 𝐴𝑖𝐵𝑖

σ𝑖=1
𝑛 𝐴𝑖

2 σ𝑖=1
𝑛 𝐵𝑖

2

• Cosine Distance is a non-metric measure.
– Coincidence axiom is violated:

𝐷𝐶 𝑨,𝑩 = 0 not ↔ 𝑨 = 𝑩

• Can be used to measure distance when the magnitude
of the vectors does not matter.

• It is often used to measure document similarity in text
analysis.

Matlab, numpy, scipy, sklearn
>> A = [1 0]
>> B = [2 2]
>> pdist2(A,B,'cosine')
>> 1 - dot(A,B)/(norm(A)*norm(B))
>> acos(dot(A,B)/(norm(A)*norm(B)))*180/pi

>> C = 2*B
C =

4 4
>> pdist2(A,C,'cosine')
ans =

0.2929

scipy:

from scipy import spatial
spatial.distance.cosine(A, B)

numpy:

from numpy import dot
from numpy.linalg import norm
A = [1, 0]
B = [2, 2]
1 - dot(A, B)/(norm(A) * norm(B))

sklearn:

from sklearn.metrics.pairwise import cosine_distances
cosine_distances([A], [B])

Mahalanobis Distance

• Mahalanobis distance between 𝒙 and 𝒚.

𝐷𝑀 = 𝒙 − 𝒚 𝑪−1 𝒙 − 𝒚 𝑇, where 𝑪 is
the sample covariance matrix.

• 𝑪 is a positive definite matrix
– It is symmetric.
– All of its eigenvalues are positive.

• The Mahalanobis distance can be used to
measure the distance between a point X and the
sample mean of a distribution Q, thus finds
application in outlier analysis.

‘mahal_dist_demo.m’

m = [0, 0]
C =[8 4; 4 8]
eig(C)
Q = mvnrnd(m,C,1000);
figure; scatter(Q(:,1),Q(:,2))
grid; axis equal; axis square
smean = mean(Q)
scov = cov(Q)
hold on;
x = linspace(-12,12);
y = linspace(-12,12);
[X,Y] = meshgrid(x,y);

% Euclidean Distances
D_Euc = sqrt((X - smean(1)).^2 + (Y - smean(2)).^2);
contour(X,Y,D_Euc,'ShowText', 'on')

% Mahalanobis Distance from the sample mean vector
D_Mah = zeros(100, 100);
for i = 1: 100

for j = 1: 100
D_Mah(i,j) = pdist2([X(i,j),Y(i,j)], smean, 'mah', scov);

end
End

contour(X,Y,D_Mah,'ShowText', 'on')

Matlab, numpy, scipy
>> sm = [-0.1235 0.0187]

>> x = [0 -10]

>> pdist2(x, sm, 'mah', scov)

ans =

4.0930

scipy:
from scipy import spatial
spatial.distance.mahalanobis([-0.1235, 0.0187],[0, 10], np.linalg.inv(scov))
4.093030999968769

numpy:
x = np.array([0, -10])
sm = np.array([-0.1235, 0.0187])
scov = np.array([[8.6404, 4.2092],[4.2092, 8.1148]]);
d = x - sm
from numpy.linalg import multi_dot
np.sqrt(np.linalg.multi_dot([d, np.linalg.inv(scov), np.matrix.transpose(d)]))

>> sqrt((sm-x)*inv(scov)*(sm-x)')

>> scov
scov =

8.6404 4.2092
4.2092 8.1148

Dataset Generation

function [data, label] = dataset_generate(N)

close all
% Generate data entries for Class 1
m1 = [-4, 0]; % Mean vector
c1 = [1,0; 0,1]; % Covariance matrix
rng default % For reproducibility
r1 = mvnrnd(m1,c1,N);

data_C1 = zeros(N, 2);
data_C1 = r1;
label_C1 = ones(N, 1);

% Generate data entries for Class 2
m2 = [4, 0];
c2 = [9,4; 4,9];
rng default % For reproducibility
r2 = mvnrnd(m2,c2,N);

data_C2 = zeros(N, 2);
data_C2 = r2;
label_C2 = 2*ones(N, 1);

% Combine data of two classes
data = vertcat (data_C1, data_C2);
label = vertcat (label_C1, label_C2);

% Export the dataset to a csv file
% (to be imported by sklearn or other
apps)
data_label = horzcat(data, label);
writematrix(data_label, 'mvnrnd.csv');

‘knn_demo.m’

N = 10;
% Number of samples per class

% X is the data array, C is the class label
vector
[X, C] = dataset_generate(N);

% Plot the data samples of the two classes
figure;
gscatter(X(:,1),X(:,2), C, 'rb','ox');
axis square
axis equal

% An example input query vector
Xin = mean(X)

Xin =
1.2486 1.7158

Xin

K = 5; % Look at the K nearest neighbors

L = length(X);

% Calculate the Euclidean distances
Dist = zeros(1, L);
for i = 1:L

Dist(i) = norm(X(i,:) - Xin);
end

% Sort the distances
[D_sorted, Index] = sort(Dist);

% First 5 values of the index vector: Index[1:5]
% 9 10 17 2 15

% Look at the first K classes
Classes = C(Index(1:K));

% Classes = 1, 1, 2, 1, 2
% Posterior Prob. for Class 1: 3/5 = 60%

% The predicted label for Xin (majority vote)

label = mode(Classes)

% When there are multiple values occurring equally
frequently, % mode returns the smallest of those values
(tie breaker)

fitcknn ()

Model = fitcknn(X, C, 'NumNeighbors',K);
Model.Prior
%ans =
% 0.5000 0.5000
>> Model.Distance
ans =

'euclidean‘
>> Model.BreakTies
ans =

'smallest‘

[label,score,cost] = predict(Model, Xin)
label =

1
score =

0.6000 0.4000
cost =

0.4000 0.6000

Data Preprocessing

• Standardization standards for mean removal and variance
scaling

• Standardization of datasets is a common requirement for
many machine learning algorithms, which might behave
badly if the individual features do not more or less look like
standard normally distributed data (Gaussian with zero
mean and unit variance).

• For example, if a feature has a variance that is orders of
magnitude larger than others, this dominating feature
might make it difficult for the algorithm to learn from other
features correctly as expected.

• In practice we often ignore the shape of the distribution
and just transform the data to center it by removing the
mean value of each feature, then scale it by dividing non-
constant features by their standard deviation.

KNN Classification with Data
Preprocessing / Standardization

% Plot the standardized samples after normalization
X_std_1 = zeros(L, 2);
X_std = zeros(L, 2);

Mu = zeros(1,2);
Std = zeros(1,2);

for i = 1:2
Mu(i) = mean(X(:,i));
Std(i) = std(X(:,i));
X_std_1(:,i) = (X(:,i) - Mu(i))/Std(i);

end

>> % Alternatively, use the function
X_std = normalize(X);
>> isequal(X_std, X_std_1)
ans =
logical
1

figure; gscatter(X_std(:,1),X_std(:,2),C,'rb','ox');
axis square; axis equal; grid

Repeat the KNN Algorithm with the
Standardized Data

% Normalize the Xin
for i = 1:2

Xin_std(:,i) = (Xin(:,i) - Mu(i))/Std(i);
end
hold on;
plot(Xin_std(1), Xin_std(2), 'gd');

% Calculate the Euclidean distances
Dist_std = zeros(1, L);
for i = 1:L

Dist_std(i) = norm(X_std(i,:) -
Xin_std);
end

% Sort the distances
[D_sorted_std, Index_std] = sort(Dist_std);
% First 5 values of the index vector are
different from above
%Index_std(1:5)
%ans =
% 9 10 15 2 17
% Previously, 9 10 17 2 15

% Look at the first K classes
Classes_std = C(Index_std(1:K));

% The predicted label for the input vector Xin
(majority vote)
label_std = mode(Classes_std)

fitcknn() with ‘standardize’ option

Model_std = fitcknn(X, C,
'NumNeighbors',K, 'Standardize', 1);
Mu =

1.2486 1.7158
>> Model_std.Mu
ans =

1.2486 1.7158
>> Std
Std =

6.1113 3.5793
>> Model_std.Sigma
ans =

6.1113 3.5793

>> [label,score,cost] = predict(Model_std,Xin)
label =

1
score =

0.6000 0.4000
cost =

0.4000 0.6000

'preprocessing_demo.py'
import numpy as np

infile = r"C:\...\mvnrnd.csv"

dataset = np.loadtxt (infile, delimiter=',')

X = dataset[:, 0:2]

y = dataset[:,2]

from sklearn import preprocessing

scaler = preprocessing.StandardScaler().fit(X)

Mean
scaler.mean_
X.mean(axis = 0)

Standard deviation
scaler.scale_
X.std(axis = 0)

X_scaled = scaler.transform(X)
X_scaled.mean(axis = 0)
X_scaled.var(axis = 0)

Pipeline in sklearn

from sklearn.neighbors import
KNeighborsClassifier

neigh =
KNeighborsClassifier(n_neighbors=5)

neigh.fit(X_scaled, y)

Apply the same scaling on the test
data Xin

Xin_scaled = scaler.transform([Xin])

neigh.predict(Xin_scaled)

neigh.predict_proba(Xin_scaled)

Alternatively, use pipeline

from sklearn.pipeline import make_pipeline
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler

pipe = make_pipeline(StandardScaler(),
KNeighborsClassifier(n_neighbors=5))

pipe.fit(X, y)
pipe.predict([Xin])
pipe.predict_proba([Xin])

Computational Complexity

• The K-nearest-neighbor method requires the entire training data
set to be stored, leading to expensive computation if the data set is
large.

• This effect can be offset by constructing tree-based search
structures to allow (approximate) near neighbors to be found
efficiently without doing an exhaustive search of the data set.

• fitcknn() function has the option ‘NSMethod’, or Nearest neighbor
search method, specified as either 'kdtree' or 'exhaustive'.
– 'kdtree' — Creates and uses a Kd-tree to find nearest neighbors.
– 'exhaustive' — Uses the exhaustive search algorithm. When predicting

the class of a new point xnew, the software computes the distance
values from all points in X to xnew to find nearest neighbors.

• In computer science, a Kd-tree (short for K-dimensional tree) is a
space-partitioning data structure for organizing points in a K-
dimensional space.

Summary

• KNN categorizes objects based on the classes of
their nearest neighbors in the dataset.

• KNN predictions assume that objects near each
other are similar.

• Best
– When you need a simple algorithm to establish

benchmark learning rules

– When memory usage of the trained model is a lesser
concern

– When prediction speed of the trained model is a
lesser concern

