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Probability Density Estimation

• Pattern recognition is concerned with the automatic discovery of 
regularities in data through the use of computer algorithms and 
with the use of these regularities to take actions such as classifying 
the data into different categories.

• Probability theory plays a central role in the solution of pattern 
recognition problems.

• Density Estimation
– Model the probability distribution 𝑝(𝑥) of a random variable 𝑥, given a 

finite set 𝑥1, . . . , 𝑥𝑁 of observations.
– Assume that the data points are independent and identically
– distributed.

• The problem of density estimation is fundamentally ill-posed, 
because there are infinitely many probability distributions that 
could have given rise to the observed finite data set.

• The central issue of pattern recognition to choose an appropriate 
distribution relates to the problem of model selection. 



Parametric Approaches

• Example models
– Discrete random variables: binomial distribution and multinomial 

distribution
– Continuous random variables: Gaussian distribution

• These are examples of parametric distributions, because they are 
governed by a small number of adaptive parameters, e.g., mean 
and variance in the case of a Gaussian.

• One limitation of the parametric approach is that it assumes a 
specific functional form for the distribution, which may turn out to 
be inappropriate for a particular application.

• The distribution chosen might be a poor model of the distribution 
that generates the data, which can result in poor predictive 
performance. 
– For example, if the process that generates the data is multimodal, 

then this aspect of the distribution can never be captured by a 
Gaussian, which is necessarily unimodal.



Nonparametric Methods

• An alternative approach is nonparametric density 
estimation methods, where the form of the 
distribution typically depends on the size of the 
dataset. 

• Such models still contain parameters, but these 
control the model complexity rather than the 
form of the distribution.

• Examples
– Histogram methods for density estimation

– Nearest-Neighbor methods



Histogram Methods

• Standard histograms simply partition the values (𝑥) taken 
by a continuous random variable (𝑋) into distinct bins of 
width Δ𝑖,  and then count the number 𝑛𝑖 of observations of 
𝑥 falling in bin 𝑖. 

• In order to turn this count into a normalized probability 
density, we divide 𝑛𝑖 by the total number (𝑁) of 
observations and by the width (Δ𝑖) of the bins to obtain 
probability density values for each bin given by 𝑓𝑖 =

𝑛𝑖

𝑁Δ𝑖
. 

• This gives a model for the density 𝑓(𝑥), which is constant 
over the width of each bin, and ∫ 𝑓 𝑥 𝑑𝑥 = 1

• Often the bins are chosen to have the same width Δ𝑖 = Δ.



‘hist_demo.m’

X = [randn(M, 1); 5+randn(M, 1)];

h = histogram(X, 10, 'Normalization', 

'pdf');

h.BinLimits

sum(h.Values)

h.BinWidth

sum(h.Values)*h.BinWidth

% The true pdf 

x = -6: 0.01: 10;

f = 1/2*(normpdf(x,0,1)+normpdf(x,5,1));

% Check the area under the curve

trapz(x,f)

hold on;

plot(x,f)



Keep reducing the bin size

Δ = 100Δ = 20



Summary

• Δ being very large might cause over-smoothing and a 
washing out of structure that might otherwise be extracted 
from the data. 

• Δ being too small can lead to noisy estimates, with the 
resulting density model being very spiky, with a lot of 
structure that is not present in the underlying distribution 
that generated the data set. 

• The best results can be possibly obtained for some 
intermediate values of Δ. 

• In principle, a histogram density model is also dependent 
on the choice of edge location for the bins, although this is 
typically much less significant than the value of Δ.



Advantages and Limitations

• The histogram method has the property (unlike the KNN method to be 
introduced next) that, once the histogram has been computed, the data 
set itself can be discarded, which can be advantageous if the data set is 
large. 

• The histogram approach is easily applied if the data points are arriving 
sequentially.

• In practice, the histogram technique can be useful for obtaining a quick 
visualization of data in one or two dimensions but is unsuited to most 
density estimation applications. 
– The estimated density has discontinuities that are due to the bin edges rather 

than any property of the underlying distribution that generated the data. 
– Another major limitation is its scaling with dimensionality. 
– If we divide each variable in a 𝐷-dimensional space into 𝑀 bins, then the total 

number of bins will be 𝑀𝐷 -- an example of the Curse of Dimensionality.
– In a space of high dimensionality, the quantity of data needed to provide 

meaningful estimates of local probability density would be prohibitive.



Lessons Learned

• to estimate the probability density at a particular location, 
we should consider the data points that lie within some 
local neighborhood of that point. 

• This concept of locality requires that we assume some form 
of distance, e.g., the Euclidean distance. 

• For histograms, this neighborhood property was defined by 
the bins, and there is a natural “smoothing” parameter (the 
bin width) describing the spatial extent of the local region. 

• The value of the smoothing parameter should be neither 
too large nor too small in order to obtain good results.

• Nearest-neighbor methods are nonparametric techniques 
that have better scaling with dimensionality than the 
simple histogram model.



K-Nearest Neighbor Density Estimation

• Suppose we have collected a data set comprising 𝑁
observations drawn from the distribution with PDF being 
𝑓(𝒙).

• We consider a small sphere centered on the point 𝒙 at 
which we want to estimate the probability density 𝑓(𝒙).

• We allow the radius of the sphere to grow until it contains 
precisely 𝐾 data points. 

• The estimate of the density 𝑓(𝒙) is then given by 𝑓 𝒙 =
𝐾

𝑁𝑉
, where 𝑉 is the volume of the resulting sphere. 

– For a simple 1-D dataset, 𝑉 is the “bin” width, where the “bin” 
contains the nearest 𝐾 data points.

• This technique is known as the K-nearest neighbors.



K = 5;
% For each unique data point, find the distance 
% between this point and all other points
Y = unique(sort(X));

Density = zeros(length(Y), 1);
Dist = zeros(N, 1);

for i = 1: length(Y)
Dist = (Y(i) - X).^2;
[Dist_sorted, Index] = sort(Dist);

% Among the K nearest neighbors, find the range 
% of these value

V = range(X(Index(1:K)));
Density(i) = K/(N*V);

end

figure;
plot(Y, Density)



K = 50 K = 150



Extension to Classification

• The K-nearest-neighbor technique for density estimation can be 
extended to the problem of classification, where we apply the K-
nearest-neighbor density estimation technique to each class 
separately and then use the Bayes’ theorem. 

• Suppose that we have a data set comprising 𝑁𝑖 points in class 𝐶𝑖
with 𝑁 points in total, so that Σ𝑖 𝑁𝑖 = 𝑁. 

• The class priors (a priori probabilities) are given by 𝑝 𝐶𝑖 =
𝑁𝑖

𝑁
.

• If we want to classify a new point 𝒙, we draw a sphere centered on 
𝒙 containing precisely K points irrespective of their class. 

• Suppose this sphere has volume 𝑉 and contains 𝐾𝑖 points from class 
𝐶𝑖, then an estimate of the density associated with each class is 
𝑓 𝒙 𝐶𝑖 =

𝐾𝑖

𝑁𝑖𝑉
, where Σ𝑖 𝐾𝑖 = 𝐾.

• The unconditional density is given by 𝑓 𝒙 =
𝐾

𝑁𝑉
. 



Posterior Probability

Using Bayes’ theorem to obtain the posterior probability of class 
membership:

f 𝐶𝑖 𝒙 =
𝑓 𝒙 𝐶𝑖 𝑝 𝐶𝑖

𝑓 𝒙
=

𝐾𝑖

𝐾

where
𝑓 𝒙 𝐶𝑖 =

𝐾𝑖

𝑁𝑖𝑉
, 𝑝 𝐶𝑖 =

𝑁𝑖

𝑁
, and 𝑓 𝒙 =

𝐾

𝑁𝑉

• In order to minimize the probability of misclassification, we assign 
the test point 𝒙 to the class having the largest posterior probability, 
corresponding to the largest value of 

𝐾𝑖

𝐾
. 

• Thus to classify a new point, we identify the K nearest points from 
the training data set and then assign the new point to the class 
having the largest number of representatives amongst this set.

• The particular case of K = 1 is called the nearest-neighbor rule, 
because a test point is simply assigned to the same class as the 
nearest point from the training set.



Some Distance Metrics

Given two (1-by-𝑛) row vectors 𝒙 and 𝒚, the various distances between 
these two vectors are defined as follows:

• Minkowski distance (or L𝑝 metric)

𝐷𝑀 = Σ𝑗=1
𝑛 𝑥𝑗 − 𝑦𝑗

𝑝
1
𝑝

• City block distance (or Manhattan distance)
𝐷𝐶𝐵 = Σ𝑗=1

𝑛 𝑥𝑗 − 𝑦𝑗
– A special case of Minkowski distance when 𝑝 = 1.

• Euclidean distance

𝐷𝐸 = Σ𝑗=1
𝑛 𝑥𝑗 − 𝑦𝑗

2
1
2

– A special case of Minkowski distance when 𝑝 = 2.

• Chebychev distance (maximum metric, or L∞ metric)

𝐷𝐶 = max
𝑗

𝑥𝑗 − 𝑦𝑗

– A special case of Minkowski distance when 𝑝 = ∞.



𝑝 → ∞

>> x = [1 2]
>> y = [4 3]
>> pdist2(x,y,'minkowski',1)
>> pdist2(x,y,'minkowski',2)
>> norm(x-y)
>> pdist2(x,y,'minkowski',3)

>> for p=1:10  
d(p) = pdist2(x,y,'minkowski',p); 

end
>> plot(1:10, d); grid



Proof using the Squeeze Theorem

Show that 

lim
𝑝→∞

𝑎𝑝 + 𝑏𝑝
1

𝑝 = max 𝑎, 𝑏 , where 𝑎 ≥ 0, and 𝑏 ≥ 0.

Assume that max 𝑎, 𝑏 = 𝑎, without loss of generality.



Cosine Similarity
• The cosine of two non-zero vectors can 

be derived by using the Euclidean dot 
product formula:

𝑨 ⋅ 𝑩 = 𝑨 𝑩 cos 𝜃

X

Y

0

A B

𝜃• Cosine Similarity measures the similarity 
between two vectors of an inner product 
space as:

𝑆𝐶 𝑨,𝑩 ≜ cos 𝜃 =
𝑨 ⋅ 𝑩

𝑨 𝑩

• The resulting similarity ranges from −1 (exactly opposite), 
to 1 (exactly the same), with 0 indicating orthogonality or 
decorrelation.

• In-between values indicate intermediate similarity/dissimilarity.



Cosine Distance

• Cosine Distance is used for the complement of cosine 
similarity in positive space.

𝐷𝐶 𝑨,𝑩 ≜ 1 −
𝑨⋅𝑩

𝑨 𝑩
= 1 −

σ𝑖=1
𝑛 𝐴𝑖𝐵𝑖

σ𝑖=1
𝑛 𝐴𝑖

2 σ𝑖=1
𝑛 𝐵𝑖

2

• Cosine Distance is a non-metric measure.
– Coincidence axiom is violated: 

𝐷𝐶 𝑨,𝑩 = 0 not ↔ 𝑨 = 𝑩

• Can be used to measure distance when the magnitude 
of the vectors does not matter. 

• It is often used to measure document similarity in text 
analysis.



Matlab, numpy, scipy, sklearn
>> A = [1 0]
>> B = [2 2]
>> pdist2(A,B,'cosine')
>> 1 - dot(A,B)/(norm(A)*norm(B))
>> acos(dot(A,B)/(norm(A)*norm(B)))*180/pi

>> C = 2*B
C =

4     4
>> pdist2(A,C,'cosine')
ans =

0.2929

scipy:

from scipy import spatial
spatial.distance.cosine(A, B)

numpy:

from numpy import dot
from numpy.linalg import norm
A = [1, 0]
B = [2, 2]
1 - dot(A, B)/(norm(A) * norm(B))

sklearn:

from sklearn.metrics.pairwise import cosine_distances
cosine_distances([A], [B])



Mahalanobis Distance

• Mahalanobis distance between 𝒙 and 𝒚.

𝐷𝑀 = 𝒙 − 𝒚 𝑪−1 𝒙 − 𝒚 𝑇, where 𝑪 is 
the sample covariance matrix.

• 𝑪 is a positive definite matrix
– It is symmetric.
– All of its eigenvalues are positive.

• The Mahalanobis distance can be used to 
measure the distance between a point X and the 
sample mean of a distribution Q, thus finds 
application in outlier analysis.



‘mahal_dist_demo.m’

m = [0, 0]
C =[8 4; 4 8]
eig(C)
Q = mvnrnd(m,C,1000);
figure; scatter(Q(:,1),Q(:,2))
grid; axis equal; axis square
smean = mean(Q)
scov = cov(Q)
hold on;
x = linspace(-12,12);
y = linspace(-12,12);
[X,Y] = meshgrid(x,y);

% Euclidean Distances
D_Euc = sqrt((X - smean(1)).^2 + (Y - smean(2)).^2);
contour(X,Y,D_Euc,'ShowText', 'on')



% Mahalanobis Distance from the sample mean vector
D_Mah = zeros(100, 100);
for i = 1: 100

for j = 1: 100
D_Mah(i,j) = pdist2([X(i,j),Y(i,j)], smean, 'mah', scov);

end
End

contour(X,Y,D_Mah,'ShowText', 'on')



Matlab, numpy, scipy
>> sm = [-0.1235    0.0187]

>> x = [0 -10]

>> pdist2(x, sm, 'mah', scov)

ans =

4.0930

scipy:
from scipy import spatial
spatial.distance.mahalanobis([-0.1235, 0.0187],[0, 10], np.linalg.inv(scov))
4.093030999968769

numpy:
x = np.array([0, -10])
sm = np.array([-0.1235, 0.0187])
scov = np.array([[8.6404, 4.2092],[4.2092, 8.1148]]);
d = x - sm
from numpy.linalg import multi_dot
np.sqrt(np.linalg.multi_dot([d, np.linalg.inv(scov), np.matrix.transpose(d)]))

>> sqrt((sm-x)*inv(scov)*(sm-x)')

>> scov
scov =

8.6404    4.2092
4.2092    8.1148



Dataset Generation

function [data, label] = dataset_generate(N)

close all
% Generate data entries for Class 1
m1 = [-4, 0];   % Mean vector
c1 = [1,0; 0,1]; % Covariance matrix
rng default  % For reproducibility
r1 = mvnrnd(m1,c1,N);

data_C1 = zeros(N, 2);
data_C1 = r1;
label_C1 = ones(N, 1);

% Generate data entries for Class 2
m2 = [4, 0];
c2 = [9,4; 4,9];
rng default  % For reproducibility
r2 = mvnrnd(m2,c2,N);

data_C2 = zeros(N, 2);
data_C2 = r2;
label_C2 = 2*ones(N, 1);

% Combine data of two classes
data = vertcat (data_C1, data_C2);
label = vertcat (label_C1, label_C2);

% Export the dataset to a csv file 
% (to be imported by sklearn or other 
apps)
data_label = horzcat(data, label);
writematrix(data_label, 'mvnrnd.csv');



‘knn_demo.m’

N = 10;     
% Number of samples per class

% X is the data array, C is the class label 
vector
[X, C] = dataset_generate(N);

% Plot the data samples of the two classes
figure;
gscatter(X(:,1),X(:,2), C, 'rb','ox');
axis square
axis equal

% An example input query vector
Xin = mean(X)

Xin =
1.2486    1.7158

Xin



K = 5;           % Look at the K nearest neighbors

L = length(X);

% Calculate the Euclidean distances
Dist = zeros(1, L);
for i = 1:L

Dist(i) = norm(X(i,:) - Xin);
end

% Sort the distances
[D_sorted, Index] = sort(Dist);

% First 5 values of the index vector: Index[1:5]
% 9    10    17     2    15

% Look at the first K classes
Classes = C(Index(1:K));

% Classes = 1, 1, 2, 1, 2 
% Posterior Prob. for Class 1: 3/5 = 60%

% The predicted label for Xin (majority vote)

label = mode(Classes)

% When there are multiple values occurring equally 
frequently, % mode returns the smallest of those values 
(tie breaker)



fitcknn ( )

Model = fitcknn(X, C, 'NumNeighbors',K);
Model.Prior
%ans =
%    0.5000    0.5000
>> Model.Distance
ans =

'euclidean‘
>> Model.BreakTies
ans =

'smallest‘

[label,score,cost] = predict(Model, Xin)
label =

1
score =

0.6000    0.4000
cost =

0.4000    0.6000



Data Preprocessing

• Standardization standards for mean removal and variance 
scaling

• Standardization of datasets is a common requirement for 
many machine learning algorithms, which might behave 
badly if the individual features do not more or less look like 
standard normally distributed data (Gaussian with zero 
mean and unit variance).

• For example, if a feature has a variance that is orders of 
magnitude larger than others, this dominating feature 
might make it difficult for the algorithm to learn from other 
features correctly as expected.

• In practice we often ignore the shape of the distribution 
and just transform the data to center it by removing the 
mean value of each feature, then scale it by dividing non-
constant features by their standard deviation.



KNN Classification with Data 
Preprocessing / Standardization

% Plot the standardized samples after normalization
X_std_1 = zeros(L, 2);
X_std = zeros(L, 2);

Mu = zeros(1,2);
Std = zeros(1,2);

for i = 1:2
Mu(i) = mean(X(:,i));
Std(i) = std(X(:,i));
X_std_1(:,i) = (X(:,i) - Mu(i))/Std(i);

end

>> % Alternatively, use the function
X_std = normalize(X);
>> isequal(X_std, X_std_1)
ans =
logical
1

figure; gscatter(X_std(:,1),X_std(:,2),C,'rb','ox');
axis square; axis equal; grid



Repeat the KNN Algorithm with the 
Standardized Data

% Normalize the Xin
for i = 1:2

Xin_std(:,i) = (Xin(:,i) - Mu(i))/Std(i);
end
hold on;
plot(Xin_std(1), Xin_std(2), 'gd');

% Calculate the Euclidean distances
Dist_std = zeros(1, L);
for i = 1:L

Dist_std(i) = norm(X_std(i,:) -
Xin_std);
end

% Sort the distances
[D_sorted_std, Index_std] = sort(Dist_std);
% First 5 values of the index vector are 
different from above
%Index_std(1:5)
%ans =
%     9    10    15     2    17  
%     Previously,  9    10    17     2    15 

% Look at the first K classes
Classes_std = C(Index_std(1:K));

% The predicted label for the input vector Xin 
(majority vote)
label_std = mode(Classes_std)



fitcknn( ) with ‘standardize’ option

Model_std = fitcknn(X, C, 
'NumNeighbors',K, 'Standardize', 1);
Mu =

1.2486    1.7158
>> Model_std.Mu
ans =

1.2486    1.7158
>> Std
Std =

6.1113    3.5793
>> Model_std.Sigma
ans =

6.1113    3.5793

>> [label,score,cost] = predict(Model_std,Xin)
label =

1
score =

0.6000    0.4000
cost =

0.4000    0.6000



'preprocessing_demo.py'
import numpy as np

infile = r"C:\...\mvnrnd.csv"

dataset = np.loadtxt (infile, delimiter=',')

X = dataset[:, 0:2]

y = dataset[:,2]

from sklearn import preprocessing

scaler = preprocessing.StandardScaler().fit(X)

# Mean
scaler.mean_
X.mean(axis = 0)

# Standard deviation
scaler.scale_
X.std(axis = 0)

X_scaled = scaler.transform(X)
X_scaled.mean(axis = 0)
X_scaled.var(axis = 0)



Pipeline in sklearn

from sklearn.neighbors import 
KNeighborsClassifier

neigh = 
KNeighborsClassifier(n_neighbors=5)

neigh.fit(X_scaled, y)

# Apply the same scaling on the test 
data Xin

Xin_scaled = scaler.transform([Xin])

neigh.predict(Xin_scaled)

neigh.predict_proba(Xin_scaled)

# Alternatively, use pipeline

from sklearn.pipeline import make_pipeline
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler

pipe = make_pipeline(StandardScaler(), 
KNeighborsClassifier(n_neighbors=5))

pipe.fit(X, y)
pipe.predict([Xin])
pipe.predict_proba([Xin])



Computational Complexity

• The K-nearest-neighbor method requires the entire training data 
set to be stored, leading to expensive computation if the data set is 
large.

• This effect can be offset by constructing tree-based search 
structures to allow (approximate) near neighbors to be found 
efficiently without doing an exhaustive search of the data set.

• fitcknn( )  function has the option ‘NSMethod’, or Nearest neighbor 
search method, specified as either 'kdtree' or 'exhaustive'.
– 'kdtree' — Creates and uses a Kd-tree to find nearest neighbors.
– 'exhaustive' — Uses the exhaustive search algorithm. When predicting 

the class of a new point xnew, the software computes the distance 
values from all points in X to xnew to find nearest neighbors.

• In computer science, a Kd-tree (short for K-dimensional tree) is a 
space-partitioning data structure for organizing points in a K-
dimensional space. 



Summary

• KNN categorizes objects based on the classes of 
their nearest neighbors in the dataset. 

• KNN predictions assume that objects near each 
other are similar. 

• Best 
– When you need a simple algorithm to establish 

benchmark learning rules

– When memory usage of the trained model is a lesser 
concern

– When prediction speed of the trained model is a 
lesser concern


