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Topics
• Generative and discriminative models for interference 

and decision
• Logistic sigmoid function and its inverse (logit function)
• Parametric form of the posterior class probabilities
• Maximum likelihood solution for multivariate Gaussian 

distributions
• Linear algebra and matrix calculus
• Generalized linear models and link functions
• Logistic regression using maximum likelihood solution
• Newton-Raphson iterative optimization
• Implementations



• Logistic regression, despite its name, is a linear model for 
classification rather than regression. 

• Meaning of “Regression”:
– A return to a former or less developed state.
– In statistics, regression is the technique that allows one "to go back" 

from messy, hard to interpret data, to a clearer and more meaningful 
model.

• The most significant difference between regression versus 
classification is that regression helps predict a continuous quantity, 
while classification predicts discrete class labels.

• Logistic regression is also known in the literature as logit regression, 
maximum-entropy classification (MaxEnt), or the log-linear 
classifier. 

• In this model, the probabilities describing the possible outcomes of 
a single trial are modeled using a logistic function.



Inference and Decision
• We can break the classification problem down into two separate stages:

– Inference stage, where we use training data to learn a model for 𝑝(𝐶𝑘|𝐱), and 
– The subsequent decision stage, where we use these posterior probabilities to 

make optimal class assignments.

• Approaches that model the distribution of inputs as well as outputs are 
known as generative models, because by sampling from them it is 
possible to generate synthetic data points in the input space.



• Discriminative Models
– First solve the inference problem of determining the posterior 

class probabilities 𝑝(𝐶𝑘|𝐱), and then subsequently use decision 
theory to assign each new x to one of the classes. Approaches 
that model the posterior probabilities directly are called 
discriminative models.

• Discriminant Function
– Find a function 𝑓(𝐱), called a discriminant function, which maps 

each input 𝐱 directly onto a class label. 
– For instance, in the case of two-class problems, f(·) might be 

binary valued such that 𝑓 = 0 represents class 𝐶1 and 𝑓 =
1 represents class 𝐶2. 

– In this case, we no longer have access to the posterior 
probabilities 𝑝(𝐶𝑘|𝐱).



Probabilistic Generative Models

• Here we adopt a generative approach, where we model the class-
conditional densities, and class priors, then use these to compute 
posterior probabilities through Bayes’ theorem (using the two-class 
problem as an example):

where

𝜎(𝑎) is the logistic sigmoid function defined by

The logistic sigmoid function is sometimes called logistic function. 



Sigmoid Function

>> a = -10: 0.01: 10;
>> s = 1./(1 + exp(a));
>> plot(a, s); grid

• The term “sigmoid” means S-
shaped. 

• This type of function is sometimes 
also called a “squashing function” 
because it maps the whole real 
axis into a finite interval.

• It satisfies the following symmetry 
property

• The inverse of the logistic sigmoid is 
given by the logit function:



logit function

𝜎 𝑎 = 𝑝 𝐶1 𝐱 =
1

1 + 𝑒−𝑎

𝑎(𝐱) = ln
𝜎

1 − 𝜎
= ln

𝑝 𝐶1 𝐱

1 − 𝑝 𝐶1 𝐱
= ln

𝑝 𝐶1 𝐱

𝑝 𝐶2 𝐱

The logit function (also called the log odd
function) represents the log of the ratio of 
probabilities:

The sigmoid function: 

>> s = 0.01: 0.001: 0.99;
>> a = log(s./(1-s));
>> plot(s,a); grid

where a(𝐱) = ln
𝑝 𝐶1 𝐱
𝑝 𝐶2 𝐱

The logistic (sigmoid) function and the logit function are inverse of each other.



Two Functions Side by Side

𝜎 𝑎 = 𝑝 𝐶1 𝐱 =
1

1 + 𝑒−𝑎
Logistic function outputs probability

logit function Logistic (sigmoid) function 

The logistic (sigmoid) function and the logit function are inverse of each other.

Logit function outputs log likelihood ratio

𝑎 = ln
𝜎

1 − 𝜎



Softmax Function

Multiclass (𝐾 > 2) generalization of the logistic sigmoid to 
a normalized exponential: 

where

The softmax function represents a smoothed version of the “max” function 

because, if 𝑎𝑘 ≫ 𝑎𝑗 for all 𝑗 ≠ 𝑘, then

𝑝 𝐶𝑘 𝐱 ≈ 1, and 𝑝 𝐶𝑗 𝐱 ≈ 𝟎.

In contrast to the two-class case:



Parametric Form for 𝑝 𝐶𝑘 𝐱

• Assume that the class-conditional densities are Gaussian.
• We consider first two classes, and assume that all classes share the same 

covariance matrix. 
• Thus the density for class 𝐶𝑘 is given by

𝜎 𝑎 = 𝑝 𝐶1 𝐱 = 𝜎 ln
𝑝 𝐶1 𝐱

𝑝 𝐶2 𝐱
= 𝜎 ln

𝑝 𝐶1 𝐱 𝒑(𝐱)

𝑝 𝐶2 𝐱 𝒑(𝐱)
= 𝜎 ln

𝑝 𝐱 𝐶1 𝒑(𝐶1)

𝑝 𝐱 𝐶2 𝒑(𝐶2)

where



Similar to Two Classes for LDA
Decision functions (with a common covariance matrix 𝑪, where 𝑪T = 𝑪):

𝑑1 𝐱 = ln𝑃 𝜔1 −
1

2
ln 𝑪 −

1

2
[ 𝐱 − 𝐦𝟏

TC−1 𝐱 −𝐦𝟏 ]

𝑑2 𝐱 = ln𝑃 𝜔2 −
1

2
ln 𝑪 −

1

2
[ 𝐱 − 𝐦𝟐

TC−1 𝐱 −𝐦𝟐 ]

Decision Boundary (assuming equal class probabilities): 𝑑1 𝐱 = 𝑑2 𝐱

𝐱 −𝐦𝟏
T𝐂−1 𝐱 −𝐦𝟏 = 𝐱 −𝐦𝟐

T𝐂−1 𝐱 −𝐦𝟐

𝐱T𝐂−1𝐱 − 𝐱T𝐂−1𝐦𝟏 −𝐦𝟏
T𝐂−1𝐱 +𝐦𝟏

T𝐂−1𝐦𝟏

= 𝐱T𝐂−1𝐱 − 𝐱T𝐂−1𝐦𝟐 −𝐦𝟐
T𝐂−1𝐱 +𝐦𝟐

T𝐂−1𝐦𝟐

𝐦𝟏 −𝐦𝟐
T𝐂−1𝐱 =

1

2
(𝐦𝟏

T𝐂−1𝐦𝟏 −𝐦𝟐
T𝐂−1𝐦𝟐)

Cancellation
due to the assumption of same
covariance (LDA); otherwise
quadratic function of 𝐱, thus 
QDA results.



Maximum Likelihood Solution
• Once we have specified a parametric functional form for the class-

conditional densities, we can then determine the values of the 
parameters, together with the prior class probabilities 𝑝(𝐶𝑘), using 
maximum likelihood. 

• This requires a data set comprising observations of x along with 
their corresponding class labels.

• Consider first the case of two classes, each having a Gaussian class-
conditional density with a shared covariance matrix, and suppose 
we have a data set {𝐱𝑛, 𝑡𝑛}, where 𝑛 = 1, . . . , 𝑁. Here 𝑡𝑛 =
1 denotes class 𝐶1 and 𝑡𝑛 = 0 denotes class 𝐶2.

• We denote the prior class probability 𝑝(𝐶1) = 𝜋, so that 𝑝(𝐶2) =
1 − 𝜋. 

• For a data point 𝐱𝑛 from class 𝐶1, we have 𝑡𝑛 = 1 and hence

• Similarly, for a data point 𝐱𝑛 from class 𝐶2, we have 𝑡𝑛 = 0 and 
hence



The likelihood function is given by

where

It is convenient to maximize the log of the likelihood function. 

• Consider first the maximization with respect to 𝜋. 
• The terms in the log likelihood function that depend on 𝜋 are

• Setting the derivative with respect to 𝜋 equal to zero, we obtain

• Thus the maximum likelihood estimate for 𝜋 is the fraction of points in class 
𝐶1as expected. This can be generalized to the multiclass case, where the 
maximum likelihood estimate of the prior probability associated with class 𝐶𝑘
is given by the fraction of the training set points assigned to that class.

.



Maximum Likelihood Estimate of the Means
• We can pick out of the log likelihood function those terms that depend on 𝝁1

• Setting the derivative with respect to 𝝁1 to zero, we can obtain

which is simply the mean of all the input vectors 𝑥𝑛 assigned to class 𝐶1.

• By a similar argument, we have

which is simply the mean of all the input vectors 𝑥𝑛 assigned to class 𝐶2.



Matrix Calculus
For a scalar 𝛼 given by a quadratic form:

For the special case 𝐀T = 𝐀, then 
𝜕 𝐱T(𝐀+𝐀T)

𝜕𝑥
= 2𝐱TA



Maximum Likelihood Solution for the Shared Covariance Matrix

where we defined

Setting to zero the derivative of the above expression with respect to 𝚺−𝟏 , we 
can show that 𝚺 = 𝐒, where 𝐒 represents a weighted average of the covariance 
matrices associated with each of the two classes separately. 
Details of the proof are as follows.



Linear Algebra and Calculus Formulas



Cyclic Property

>> A = rand(2,2); B = rand(2,2); C = rand(2,2);
>> trace(A*B*C); trace(B*C*A); trace(C*A*B)



Derivative of the Trace of Matrix Product



Determinant and Adjoint Matrix

>> A = magic(2)
A =

1     3
4     2

>> det(A)
ans =

-10
>> X = adjoint(A)
ans =

2.0000   -3.0000
-4.0000    1.0000

>> A*X
ans =

-10.0000   -0.0000
0  -10.0000

X = adjoint(A) returns the Classical Adjoint
(Adjugate) Matrix X of A, such that A*X = 
det(A)*eye(n) = X*A, where n is the number of 
rows in A.

The adjugate or classical adjoint of a square 
matrix is the transpose of its cofactor matrix.

cofactor of A:
2.0000   -4.0000

-3.0000    1.0000



• The (𝑖, 𝑗) minor of 𝐴, denoted 𝑀𝑖𝑗 is the determinant of the 
𝑛 − 1 × 𝑛 − 1 matrix that remains after removing the 𝑖th

row and 𝑗th column from 𝐴.
• The cofactor matrix of 𝐴, denoted 𝐶, is an 𝑛 × 𝑛 matrix such 

that 𝐶𝑖𝑗 = −1 𝑖+𝑗𝑀𝑖𝑗 .
• The adjugate matrix of 𝐴, denoted adj(𝐴), is simply the 

transpose of 𝐶.

• If 𝐴 is invertible, then 𝐴−1 =
1

𝐴
adj 𝐴 , so 𝐴−1 𝑖𝑗

T =
1

𝐴
𝐶𝑖𝑗 .

>> X = adjoint(A)
X =

2.0000   -3.0000
-4.0000    1.0000

>> X/det(A)
ans =

-0.2000    0.3000
0.4000   -0.1000

>> inv(A)
ans =

-0.2000    0.3000
0.4000   -0.1000

>> inv(A)'
ans =

-0.2000    0.4000
0.3000   -0.1000

>> C = X'
C =

2.0000   -4.0000
-3.0000    1.0000

>> C/det(A)
ans =

-0.2000    0.4000
0.3000   -0.1000

A =
1     3
4     2



Cofactor Expansion of the Determinant
𝐴 = Σ𝑘=1

𝑛 𝐴𝑖𝑘𝐶𝑖𝑘, thus

The derivative of a scalar function 𝐴 , of the matrix 𝐴 of independent variables, with 
respect to (each of the elements of) the matrix 𝐴 is:

𝜕 𝐴

𝜕𝐴𝑖𝑗
= 

𝑘=1

𝑛
𝜕𝐴𝑖𝑘
𝜕𝐴𝑖𝑗

𝐶𝑖𝑘 + 𝐴𝑖𝑘
𝜕𝐶𝑖𝑘
𝜕𝐴𝑖𝑗

= 𝐶𝑖𝑗 + 0 = 𝐶𝑖𝑗

For any 𝑘, the elements of 𝐴 which affect 𝐶𝑖𝑘 are those which do not lie on row i or 
column 𝑘. Hence, 

𝜕𝐶𝑖𝑘

𝜕𝐴𝑖𝑗
= 0 for all 𝑘! 

>> [diff(det(A),a), diff(det(A),b); diff(det(A),c), 
diff(det(A),d)]
ans =
[  d, -c]
[ -b,  a]

>> A
A =
[ a, b]
[ c, d]
>> det(A)
ans =
a*d - b*c >> adjoint(A)

ans =
[  d, -b]
[ -c,  a]

Cofactor matrix is the transpose:

[  d, -c]
[ -b,  a]



Differentiation of the Log Determinant

𝜕ln 𝐴

𝜕𝐴𝑖𝑗
=

1

𝐴

𝜕 𝐴

𝜕𝐴𝑖𝑗
=

1

𝐴
𝐶𝑖𝑗 = 𝐴−1 𝑖𝑗

T

since 𝐴−1 𝑖𝑗
T =

1

𝐴
𝐶𝑖𝑗

>> f = log(det(A))
f =
log(a*d - b*c)
>> [diff(f,a), diff(f,b); diff(f,c), diff(f,d)]
ans =
[  d/(a*d - b*c), -c/(a*d - b*c)]
[ -b/(a*d - b*c),  a/(a*d - b*c)]

>> inv(A).'
ans =
[  d/(a*d - b*c), -c/(a*d - b*c)]
[ -b/(a*d - b*c),  a/(a*d - b*c)]

>> inv(A.')
ans =
[  d/(a*d - b*c), -c/(a*d - b*c)]
[ -b/(a*d - b*c),  a/(a*d - b*c)]





Generalized Linear Models and Link Function
• So far we have considered classification models that work directly with the 

original input vector 𝐱.
• We can also make a fixed nonlinear transformation of the inputs using a 

vector of basis functions 𝜙(𝐱). 
• The resulting decision boundaries will be linear in the feature space 𝛷, 

and these correspond to nonlinear decision boundaries in the original 𝐱
space. 

• We begin our treatment of generalized linear models by considering the 
problem of two-class classification.

• Extension of logistic sigmoid function representation of the posterior 

probability from 𝜎 𝑎 = 𝑝 𝐶1 𝐱 =
1

1+𝑒−𝑎
, where a(𝐱) = ln

𝑝 𝐶1 𝐱
𝑝 𝐶2 𝐱

is the 

logic function, to Logistic Regression as follows:
𝑝 𝐶1 𝜙 = 𝑦 𝜙 = 𝜎 𝐰T𝜙 , and 𝑝 𝐶2 𝜙 = 1 − 𝑝 𝐶1 𝜙 .

• 𝐰T𝜙(𝐱) = 𝜎−1 𝑦 𝜙 = a 𝑝 𝐶1 𝜙(𝐱) . The inverse of the sigmoid – the 
logit function is called the link function, which converts the probability of 
the response variables to a generalized linear combination of explanatory 
variables (input vector 𝐱).

• We have seen an example of logistic regression previously, when we fitted 
Gaussian class conditional densities.



Parametric Form for 𝑝 𝐶𝑘 𝐱

• Assume that the class-conditional densities are Gaussian.
• We consider first two classes, and assume that all classes share the same 

covariance matrix. 
• Thus the density for class 𝐶𝑘 is given by

𝜎 𝑎 = 𝑝 𝐶1 𝐱 = 𝜎 ln
𝑝 𝐶1 𝐱

𝑝 𝐶2 𝐱
= 𝜎 ln

𝑝 𝐶1 𝐱 𝒑(𝐱)

𝑝 𝐶2 𝐱 𝒑(𝐱)
= 𝜎 ln

𝑝 𝐱 𝐶1 𝒑(𝐶1)

𝑝 𝐱 𝐶2 𝒑(𝐶2)

where the weight and bias are based on the means and
covariance matrix estimated by the MLE method – too 
many parameters to estimate!



Logistic Regression
• In a two-class classification problem, the posterior probability of 

class 𝐶1 can be written as a logistic sigmoid acting on a linear 
function of the feature vector 𝜙 so that
𝑝(𝐶1|𝜙) = 𝑦(𝜙) = 𝜎(𝐰T𝜙)

• Note that this is a model for classification rather than regression.
• For an 𝑀-dimensional feature space 𝛷, this model has 𝑀 adjustable 

parameters.
• By contrast, when we previously fitted Gaussian class conditional 

densities using maximum likelihood, we would have used 2𝑀
parameters for the means, and 

𝑀 𝑀+ 1

2
parameters for the (shared) 

covariance matrix. Together with the class prior 𝑝(𝐶1), this gives a 
total of 

𝑀 𝑀+5

2
+ 1 parameters, which grows quadratically with 𝑀.

• For large values of 𝑀, there is a clear advantage in working with the 
logistic regression model directly.

• To determine the parameters of the logistic regression model, we 
can use
– Maximum likelihood
– Iterative reweighted least squares



Maximum Likelihood
• For a data set {𝛷𝑛, 𝑡𝑛}, where 𝑡𝑛 ∈ {0, 1} and 𝜙𝑛 = 𝜙(𝐱𝑛), with 𝑛 =

1, . . . , 𝑁, the likelihood function can be written as

where 𝐭 = 𝑡1, … , 𝑡𝑁
T and 𝑦𝑛 = 𝑝 𝐶1 𝜙𝑛 = 𝜎(𝑎𝑛), and 𝑎𝑛 = 𝐰T𝜙𝑛.

• we define an error function by taking the negative logarithm of the 
likelihood, which gives the cross-entropy error function as

• Taking the gradient of the error function with respect to 𝐰, by making 
use of the derivative of the logistic sigmoid function 𝜎 𝑎𝑛 =

1

1+𝑒−𝑎𝑛
, as 

𝑑𝜎 𝑎𝑛

𝑑𝑎𝑛
= 𝜎 1 − 𝜎 , we obtain:



𝑑 𝑡𝑛 l𝑛 𝑦𝑛
𝑑𝐰

=
𝑑 𝑡𝑛 l𝑛 𝑦𝑛

𝑑𝑎𝑛

𝑑𝑎𝑛
𝑑𝐰

=
𝑡𝑛𝑦𝑛 1 − 𝑦𝑛

𝑑𝑎𝑛
𝑑𝐰

𝑦𝑛
= 𝑡𝑛 1 − 𝑦𝑛 𝜙𝑛

𝑑[ 1 − 𝑡𝑛 ln(1 − 𝑦𝑛)]

𝑑𝐰
=
− 1 − 𝑡𝑛 𝑦𝑛 1 − 𝑦𝑛

𝑑𝑎𝑛
𝑑𝐰

1 − 𝑦𝑛
= − 1 − 𝑡𝑛 𝑦𝑛𝜙𝑛

𝛻𝐸 𝐰 = −

𝑛=1

𝑁

𝑡𝑛𝜙𝑛 − 𝑦𝑛𝜙𝑛 = 

𝑛=1

𝑁

𝑦𝑛 − 𝑡𝑛 𝜙𝑛

𝑦𝑛 = 𝑝 𝐶1 𝜙𝑛 = 𝜎(𝑎𝑛),
𝑑𝑦𝑛

𝑑𝑎𝑛
= 𝜎 1 − 𝜎 = 𝑦𝑛 1 − 𝑦𝑛 , 𝑎𝑛 = 𝐰T𝜙𝑛

• The contribution to the gradient of the log likelihood from data point 𝑛 is given 

by the “error” 𝑦𝑛 − 𝑡𝑛 between the target value and the prediction of the 

model, times the basis function vector 𝜙𝑛.

• While there is no closed-form solution to the minimization problem, the error 

function can be minimized by an efficient iterative technique based on the 

Newton-Raphson iterative optimization scheme.



Newton’ Method
• Newton's method is an iterative method, 

𝑥𝑘+1 = 𝑥𝑘 −
𝑓 𝑥𝑘

𝑓′(𝑥𝑘)
, for finding the roots of a differentiable function 

𝐹, which are solutions to the equation 𝑓(𝑥) = 0. 
• Newton's method can be applied to the derivative 𝑓′ of a twice-

differentiable function 𝑓 to find the roots of the derivative 
(solutions to 𝑓′(𝑥) = 0), which are known as the critical points of 
𝑓. These solutions may be minima, maxima, or saddle points.

• The second-order Taylor expansion of 𝑓 around 𝑥𝑘 is

• If the second derivative is positive, the quadratic approximation is a 
convex function of 𝑡, and its minimum can be found by:



The Newton-Raphson Method for 𝐸(𝐰)

where 𝐇 is the Hessian matrix whose elements comprise the second 

derivatives of 𝐸(𝐰) with respect to the components of 𝐰.

Where 𝐑 is the 𝑁 × 𝑁 diagonal matrix with elements

𝑑𝑦𝑛

𝑑𝑎𝑛
= 𝜎 1 − 𝜎 = 𝑦𝑛 1 − 𝑦𝑛 , and 𝑎𝑛 = 𝐰T𝜙𝑛

𝛻𝛻𝐸 𝐰 =
𝑑 σ𝑛=1

𝑁 𝑦𝑛 − 𝑡𝑛 𝜙𝑛
T

d𝐰
=
𝑑 σ𝑛=1

𝑁 𝑦𝑛 − 𝑡𝑛 𝜙𝑛
T

d𝑎𝑛

𝑑𝑎𝑛
d𝒘

where 𝑦𝑛 = 𝑝 𝐶1 𝜙𝑛 = 𝜎(𝐰T𝜙𝑛)

𝐑 is a weighing matrix, which is not constant but depends on the parameter 

vector 𝐰.



Iterative Reweighted Least Squares

where z is an 𝑁-dimensional vector with elements

• The update formula takes the form of a set of normal 

equations for a weighted least-squares problem. 

• Because the weighing matrix 𝐑 depends on the parameter 

vector 𝐰, we must apply the normal equations iteratively, each 

time using the new weight vector 𝐰 to compute a revised 

weighing matrix 𝐑. 

• For this reason, the algorithm is known as iterative reweighted 

least squares (IRLS).



Extension to Multiclass Problem

• In multiclass classification, the posterior probabilities are given by a 
softmax transformation of linear functions of the feature variables, so that

where the “activations” are given by

• We can use the maximum likelihood to determine the parameters {𝐰𝑘} of 
this model directly.

• Similarly, we can appeal to the Newton-Raphson update to obtain the 
corresponding IRLS algorithm for the multiclass problem.

where

Previously,



‘logistic_regression_demo.m’

m1 = [3, 3]';   % Mean vector

cov1 = [2 1; 1 2]; % Covariance 

matrix

rng default

r1 = mvnrnd(m1,cov1,N);

m2 = [9, 9]';

cov2 = [2,1; 1,2];  % Same as cov1

r2 = mvnrnd(m2,cov2,N);



Mnrfit( ) Function

% logistic regression
B = mnrfit(data, label);

% Maximum likelihood estimates
mu1 = mean(data_C1);
mu2 = mean(data_C2);
Sigma1 = cov(data_C1);
Sigma2 = cov(data_C2);
Sigma = 1/2*(Sigma1 + Sigma2);

% Slopes and intercepts based on theoretical results
inv(Sigma)*(mu1-mu2)'
-0.5*mu1*inv(Sigma)*mu1‘ + 0.5*mu2*inv(Sigma)*mu2'

>> B
B =

19.0582
-1.2745
-1.7747



mnrval ( ) function and Decision Boundary

>> x = mean(data)
x =

6.1741    5.9980

>> prob = mnrval(B, x)
prob =

0.6329    0.3671

>> B(2)*x(1) + B(3)*x(2) + B(1)
ans =

0.5447

>> log(prob(1)/prob(2))
ans =

0.5447

>> B
B =

19.0582
-1.2745
-1.7747

% Boundary: B(2)*x1 + B(3)*x2 + B(1) = 0

% log(P(C1|X)/P(C2|X)) >= 0, if P(C1|X)>=P(C2|X)

x1 = min(data(:,1)): 0.01: max(data(:,1));

x2 =  -(B(2)*x1 + B(1))/B(3);

plot(x1,x2)



Classification Error Performance

[0.5010, 0.4990]

[0.5964, 0.4036]

[0.0086, 0.9914]P = mnrval(B, data);

label_pred = (P(:,1)>=0.5) 

+ 2*(P(:,2)>=0.5); 

find(label ~= label_pred)

length(find(label ~= 

label_pred))/length(label)



sklearn
import numpy as np
infile = r"C:\...\logistic_regress.csv“

dataset = np.loadtxt(infile, delimiter=',')
X = dataset[:, 0:2]
y = dataset[:,2]  # labels

from sklearn.linear_model import LogisticRegression as LG

clf = LG().fit(X, y)
clf.intercept_
clf.coef_

clf.score(X,y)

y_pred = clf.predict(X)
num_errors = np.sum(y != y_pred)
num_errors/np.size(y)



Summary
• Logistic Regression fits a model that can predict the probability of 

multi-class responses belonging to one of the multiple classes. 
• Logistic regression is a classification method, which provides the 

posterior class probabilities. 
• Because of its simplicity, logistic regression is commonly used as a 

starting point for binary classification problems. 
• Logistic regression can be used to fit a generalized linear model, 

which involves fitting the response data onto a linear combination 
of some fixed basis function on the input data, instead of fitting the 
responses directly onto a linear combination of the input data.

• Best used ... 
– When data can be clearly separated by a single, linear boundary.
– As a baseline for evaluating more complex classification methods. 


