
EE 610, Selected Topics:
Machine Learning Fundamentals

Neural Networks

Dr. W. D. Pan

Dept. of ECE
Univ. of Alabama in Huntsville



Topics

• Background and History

• Perceptron

• Fully Connected Neural Network

• Backpropagation Methods

• Convolutional Neural Network

• Deep Learning



Background

• Neural networks are models that use a multitude of 
elemental nonlinear computing elements (called artificial 
neurons), organized as networks whose interconnections 
are similar in some respects to the way in which neurons 
are interconnected in the visual cortex of mammals. 

• These models are referred to by various names, including 
neural networks, neurocomputers, parallel distributed 
processing models, neuromorphic systems, layered self-
adaptive networks, and connectionist models. 

• Here, we use the name neural networks, or neural nets for 
short.

• We use these networks as vehicles for adaptively learning 
the parameters of decision functions via successive 
presentations of training patterns.



Brief History

• Interest in neural networks dates back to the early 1940s, as exemplified 
by the work of McCulloch and Pitts, who proposed neuron models in the 
form of binary thresholding devices, and stochastic algorithms involving 
sudden 0–1 and 1–0 changes of states, as the basis for modeling neural 
systems.

• Subsequent work by Hebb in 1949 was based on mathematical models 
that attempted to capture the concept of learning by reinforcement or 
association.

• During the mid-1950s and early 1960s, a class of so-called learning 
machines originated by Frank Rosenblatt caused a great deal of 
excitement among researchers and practitioners of pattern recognition.

• The reason for the interest in these machines, called perceptrons, was the 
development of mathematical proofs showing that perceptrons, when 
trained with linearly separable training sets (i.e., training sets separable by 
a hyperplane), would converge to a solution in a finite number of iterative 
steps.

• The solution took the form of parameters (coefficients) of hyperplanes 
that were capable of correctly separating the classes represented by 
patterns of the training set.



Rise of Deep Learning

• Unfortunately, the basic perceptron, and some of its 
generalizations, were found to be inadequate for most pattern 
recognition tasks of practical significance.

• Subsequent attempts to consider multiple layers of perceptrons
lacked effective training algorithms.

• In 1986, Rumelhart, Hinton, and Williams proposed an effective 
training method via backpropagation for multilayer networks. 
Although this training algorithm cannot be shown to converge to a 
solution in the sense of the proof for the single-layer perceptron, 
backpropagation is capable of generating results that have 
revolutionized the field of pattern recognition.

• Neural networks can now use backpropagation to automatically 
learn representations suitable for recognition, starting with raw 
data. Each layer in the network “refines” the representation into 
more abstract levels. This type of multilayered learning is 
commonly referred to as deep learning.



Limitations of Deep Learning
• Deep learning has been shown to be highly successful in many practical 

applications generally associated with large data sets, due to its capability 
to learn features automatically.

• However, deep learning models are not “magical” systems that assemble 
themselves. Human intervention is still required for specifying parameters, 
e.g., the number of layers, the number of artificial neurons per layer, and 
various coefficients that are problem dependent.

• Teaching proper recognition to a complex multilayer “deep” neural 
network is less a science than an art, which requires considerable 
knowledge, experience and experimentation on the part of the designer.

• A great many applications of pattern recognition, especially in constrained 
environments, are best handled by more “traditional” methods.

• Deep learning, as a huge black-box model, remains difficult to diagnose as 
to explain what aspects of the model drive the decisions. In many real-
world domains, from legislation and law enforcement to healthcare, such 
diagnosis is essential to ensure that AI system decisions are driven by 
aspects appropriate in the context of its use. 



Learning Machines

• The vast body of work for neural network is rapidly 
evolving.
– For example, the development of methods and studies enabling 

the explanation of an deep learning based AI system is an active, 
broad area of research.

• The focus of this course is on fundamentals of theory 
(mathematical underpinning) and algorithms.  

• We will illustrate the foundation of how neural nets are 
trained, and how they operate after training. 

• We will begin by discussing perceptrons, which are simple 
learning machines.

• Although perceptrons are not used per se in state-of-the-
art neural network architectures, the operations they 
perform are almost identical to artificial neurons, which are 
the basic computing units of neural nets. 



Schematic of a perceptron, showing the operations it performs.



Preliminaries

• Inputs
– An input vector is the data given as one input to the algorithm. 

Written as 𝒙, with elements 𝑥𝑖, where 𝑖 runs from 1 to the 
number of input dimensions, 𝑚.

• Weights
– 𝑤𝑖𝑗 , are the weighted connections between nodes 𝑖 and 𝑗. For 

neural networks, these weights are analogous to the synapses in 
the brain. They are arranged into a matrix 𝑾.

• Outputs
– The output vector is 𝑦, with elements 𝑦𝑗 , where 𝑗 runs from 1 

to the number of output dimensions, 𝑛. We can write 𝑦(𝑥,𝑊)
to show that the output depends on the inputs to the algorithm 
and the current set of weights of the network.



• Activation Function

– For neural networks, h(·) is a mathematical 
function that describes the firing of the neuron as 
a response to the weighted inputs, such as the 
threshold function.

• Error

– 𝐸, a function that computes the inaccuracies of 
the network as a function of the outputs 𝑦 and 
targets 𝑡.



Linear Decision Boundary
• A single perceptron unit learns a linear boundary between 

two linearly separable pattern classes.
• A linear boundary in 2-D is a straight line with equation 
𝑦 = 𝑎𝑥 + 𝑏, where the y-intercept parameter 𝑏 is to 
displace the line from the origin without affecting its slope. 
For this reason, this “floating” coefficient that is not 
multiplied by a coordinate is often referred to as the bias, 
the bias coefficient, or the bias weight.

• Generally, we work with patterns in much higher 
dimensions than two. For a point in 𝑛 dimensions, the test 
would be against a hyperplane, whose equation is

or in the vector form: 



Perceptron

• A single perceptron learns a linear boundary between two linearly 
separable pattern classes.

(a) The simplest two-class example in 2-D, showing one possible decision boundary out of an 
infinite number of such boundaries. (b) Same as (a), but with the decision boundary expressed 
using more general notation.



Test for Decision
• Given any pattern vector 𝐱 from a vector population, we want 

to find a set of weights with the property

We can simplify the equation if we add a 1 at the end of every 
pattern vector and include the bias in the weight vector.

where



Perceptron Training Algorithm

• Let 𝛼 > 0 denote a correction increment (also called the learning 
increment or the learning rate)

• Let the initial weight vector 𝒘(1) take arbitrary values. Then, repeat the 
following steps for 𝑘 = 2, 3, … ,: 

For an augmented pattern vector, 𝐱(𝑘), at step 𝑘,



Schematic of a Perceptron
• The perceptron performs a sum of products of an input pattern using 

the weights and bias found during training.
• The output of this operation is a scalar value that is then passed 

through an activation function (called a hard-limit transfer function 
in Matlab) to produce the unit’s output. 

• For the perceptron, the activation function is a thresholding
function. 

• Values 1 and 0 
sometimes are used to 
denote the two 
possible states of the 
output
(e.g., in Matlab
perceptron() function)

Class 𝑐1

Class 𝑐2



Convergence
• the perceptron convergence theorem states that if the 

training data set is linearly separable, then the perceptron 
learning algorithm is guaranteed to find an exact solution in 
a finite number of steps.

• However, the number of steps required to achieve 
convergence could still be substantial, and in practice, until 
convergence is achieved, we will not be able to distinguish 
between a non-separable problem and one that is simply 
too slow to converge.

• Even when the data set is linearly separable, there may be 
many solutions, and the solutions eventually found will 
depend on the initialization of the parameters and on the 
order of presentation of the data points.

• For data sets that are not linearly separable, the perceptron 
learning algorithm will never converge.



perceptron_demo.m

% Class 1: [3 3 1]

% Class 2: [1 1 1]

% learning rate

a = 1;  

x1 = [3 3 1];

x2 = [1 1 1];

% initial weight vector

w = [0 0 0];    

for iter = 1: 20

w_prev = w; 

x = x1; 

y = dot(w, x);

if (y <= 0)

w = w + a*x;

end

x = x2; 

y = dot(w, x);

if (y >= 0)

w = w - a*x;

end

if (w == w_prev)

break; 

end

end

iter

w

dot(w, x1)

dot(w, x2)

iter =
6

w =
1     1    -3

ans =
3

ans =
-1



(a) Segment of the decision boundary learned by the perceptron algorithm. 
(b) Section of the decision surface. The decision boundary is the intersection 
of the decision surface with the with the 𝑥1𝑥2-plane.



perceptron() 
% Do not use the augmented input vector

x1 = [3 3];  

x2 = [1 1];

% The input matrix: 

%(vert: features, horz: samples)

x = [x1' x2'];   

% Target has to be 0/1 values for binary 

classification

target = [0 1];

method = perceptron;

net = train(method, x, target);

% View the weights for the connection from 

the first input to the first layer

net.iw{1,1}

% View the bias values for the first layer 

net.b{1}

y = net(x);

error = y - target



plotpv and plotpc functions

figure; 

hold on;

plotpv(x,target);

plotpc(net.iw{1},net.b{1});

axis equal

grid



sklearn
import numpy as np
from sklearn.linear_model import Perceptron

x1 = np.array([3, 3])
x2 = np.array([1, 1])

X = np.vstack((x1, x2)) # Features are along the row
y = np.array([1,2])

clf = Perceptron()
clf.fit(X, y)
clf.coef_
clf.intercept_
clf.score(X, y)



Need for Multilayer Neural Network

• one perceptron in the first layer maps any input 
from one class into a 1, and the other perceptron 
maps a pattern from the other class into a 0. 

• This reduces the four possible inputs into two 
outputs -- a two-point problem that can be solved 
by a single perceptron. 

• Therefore, we need three perceptrons to 
implement the XOR table.



The output of each neuron 
goes to the input of all 
neurons in the following layer, 
hence the name:
“fully connected” for this type 
of architecture.

Model of a Feedforward, Fully Connected Neural Network 

An example activation function



Shallow and Deep Neural Network
• The input layer is special -- its nodes are the components of an 

input pattern vector.  Therefore, the outputs (activation values) of 
the first layer are the values of the elements of x. 

• The outputs of all other nodes are the activation values of neurons 
in a particular layer. 

• Each layer in the network can have a different number of nodes, but 
each node has a single output.

• We also require that there be no loops in the network. Such 
networks are called feedforward networks. 

• We know the values of the nodes in the first layer, and we can 
observe the values of the output neurons. However, all others are 
hidden neurons, and the layers that contain them are called hidden 
layers. 

• Generally, we call a neural net with a single hidden layer a shallow 
neural network, and refer to network with two or more hidden 
layers as a deep neural network. However, this terminology is not 
universal, and can be used subjectively. 



Activation (Transfer) Function h( )

Simplest linear identity function: 𝑎𝑖 𝑙 = ℎ 𝑧𝑖 𝑙 = 𝑧𝑖 𝑙

• Unable to model non-linear systems, however;
• Useful to explain the backpropagation method, instrumental to

training multilayer neural network. 



Error/Loss Function
• Neural network is trained in order to minimize the 

error (loss) between the actual and desired response.
• The mean squared error is a commonly measured, 

where we want to find the augmented weight vector 
that minimizes the mean squared error (MSE) between 
the desired and actual responses.

• In a single-layer neural network, we use the loss 
function

• The function is differentiable and have a unique 
minimum due to its quadratic form.



Iterative Gradient Descent Algorithm
• We find the minimum of the loses function using an 

iterative gradient descent algorithm, whose form is

• The value of 𝛼 determines the relative magnitude of the 
correction in weight value. 
– If 𝛼 is too small, the step changes will be correspondingly small 

and the weight would move slowly toward convergence. 
– On the other hand, choosing a too large 𝛼 could cause large 

oscillations on either side of the minimum, or even become 
unstable.

• There is no general rule for choosing 𝛼. We can start with a 
small value and experiment by increasing 𝛼 to determine 
its influence on the training data.



Convergence

• We do not need to compute the gradient explicitly at every 
step, since the error function is given analytically and it is 
differentiable.

• In theory, this least-mean-squared-error (LMSE) algorithm 
will converge to a solution that minimizes the mean 
squared error over the patterns of the training set.

• In practice, we declare the algorithm has converged when 
the error decreases below a specified threshold.



Training Neural Network

• To illustrate the principle of neural network training, we start with a 
single layer network, without any hidden layer.

• To provide an insight into the backpropagation method, we then 
investigate a neural network with only one hidden layer, where the 
activation function for the hidden layer and the output layers is the 
identity linear function. 

• We then look at the same three-layer network, where the 
activation functions are now changed to sigmoid function, and see 
how the derivatives of the activation function are integrated into 
the backpropagation processing flow.

• Next, we use the Softmax activation function for the final output 
layer, and compare the sigmoid function and softmax function in 
terms of the weights and biases learned. 

• We then discuss implementations of training multilayer neural 
network in Matlab and sklearn. 



Single Layer Network without Hidden Layer

𝑥1

𝑥2

𝑟1

𝑟2

𝑤11

𝑤12

𝑤22

𝑤21

Neuron 1

Neuron 2

𝑏1

𝑏2





Input
Desired 
Response

Actual Output: 𝑾𝐱+ 𝐛 =
𝑤11 𝑤12
𝑤21 𝑤22

𝑥1
𝑥2

+
𝑏1
𝑏2

=
𝑤11𝑥1 + 𝑤12𝑥2 + 𝑏1
𝑤21𝑥1 + 𝑤22𝑥2 + 𝑏2

𝐫 =
𝑟1
𝑟2

𝐱 =
𝑥1
𝑥2

Output

𝐸 𝑾, 𝒃 =
1

2
𝐫 − 𝑾𝐱 + 𝒃 2

=
1

2
{[𝑟1 − 𝑤11𝑥1 +𝑤12𝑥2 + 𝑏1)

2 + [𝑟2 − 𝑤21𝑥1 + 𝑤22𝑥2 + 𝑏2)
2}

𝑤11𝑥1 + 𝑤12𝑥2 + 𝑏1

𝑤21𝑥1 + 𝑤22𝑥2 + 𝑏2

𝑤𝑖𝑗: from input 𝑗 to neural 𝑖



𝜕𝐸 𝑾,𝒃

𝜕𝑾
and 

𝜕𝐸 𝑾,𝒃

𝜕𝒃

𝐸 𝑾, 𝒃 =
1

2
{[𝑟1 − 𝑤11𝑥1 + 𝑤12𝑥2 + 𝑏1)

2 + [𝑟2 − 𝑤21𝑥1 + 𝑤22𝑥2 + 𝑏2)
2}

𝜕𝐸 𝑾, 𝒃

𝜕𝑾
=

𝜕𝐸 𝑾, 𝒃

𝜕𝑤11

𝜕𝐸 𝑾, 𝒃

𝜕𝑤12
𝜕𝐸 𝑾, 𝒃

𝜕𝑤21

𝜕𝐸 𝑾, 𝒃

𝜕𝑤22

=
−[𝑟1 − 𝑤11𝑥1 + 𝑤12𝑥2 + 𝑏1) 𝑥1 −[𝑟1 − 𝑤11𝑥1 + 𝑤12𝑥2 + 𝑏1) 𝑥2
−[𝑟2 − 𝑤21𝑥1 + 𝑤22𝑥2 + 𝑏2) 𝑥1 −[𝑟2 − 𝑤21𝑥1 + 𝑤22𝑥2 + 𝑏2) 𝑥2

= −
𝑟1 − (𝑤11𝑥1 + 𝑤12𝑥2 + 𝑏1)

𝑟2 − 𝑤21𝑥1 + 𝑤22𝑥2 + 𝑏2
𝑥1 𝑥2

= − 𝐫 − 𝑾𝐱 + 𝒃 𝐱T

𝜕𝐸 𝑾, 𝒃

𝜕𝒃
=

𝜕𝐸 𝑾, 𝒃

𝜕𝑏1
𝜕𝐸 𝑾, 𝒃

𝜕𝑏2

= −
𝑟1 − (𝑤11𝑥1 + 𝑤12𝑥2 + 𝑏1)

𝑟2 − 𝑤21𝑥1 + 𝑤22𝑥2 + 𝑏2
= − 𝐫 − 𝑾𝐱 + 𝒃



Updating the Weights and Biases

𝐸 𝑾,𝒃 =
1

2
𝐫 − 𝑾𝐱 + 𝒃 2

𝜕𝐸 𝑾,𝒃

𝜕𝑾
= − 𝐫 − 𝑾𝐱 + 𝒃 𝐱T

𝑾 𝑘 + 1 = 𝑾 𝑘 − 𝛼
𝜕𝐸 𝑾,𝒃

𝜕𝑾
𝑾 𝑘 + 1 = 𝑾 𝑘 − 𝛼 𝑾𝐱 + 𝒃 − 𝐫 𝐱T

𝜕𝐸 𝒘, 𝒃

𝜕𝒃
= − 𝐫 − 𝑾𝐱 + 𝒃

𝒃 𝑘 + 1 = 𝒃 𝑘 − 𝛼
𝜕𝐸 𝑾, 𝒃

𝜕𝒃
= 𝒃 𝑘 − 𝛼 𝑾𝐱+ 𝒃 − 𝐫



single_layer.m

alpha = 0.1;  % learning rate

X = [1 -1 -1 1; 1 -1 1 -1];

% Response

R = [1  0  1 0; 0  1 0  1];

rng('default');

Std = 0.02;

% Initial weights and biases

W2 = Std*randn(2,2);

b2 = Std*randn(2,1);

max_iter = 100;

mse = zeros(1, max_iter);

epoch = 0;

while (epoch <= max_iter)

for i = 1: 4

epoch = epoch + 1;

A1 = X(:,i);

A2 = W2*A1 + b2;

D2 = A2 - R(:,i);

mse(epoch) = 0.5*norm(D2)^2;

% Update the weights and biases

W2 = W2 - alpha*D2*A1';

b2 = b2 - alpha*D2;

end

end

𝒃 𝑘 + 1 = 𝒃 𝑘 − 𝛼 𝑾𝐱 + 𝒃 − 𝐫

𝑾 𝑘 + 1 = 𝑾 𝑘 − 𝛼 𝑾𝐱 + 𝒃 − 𝐫 𝐱T



Convergence

>> W2
W2 =

-0.0000    0.5000
-0.0000   -0.5000

>> b2
b2 =

0.5000
0.5000

Stochastic Gradient Descent



A Network with one Hidden Layer

𝑥1 = 𝑎1(1)
𝑤11 2

𝑏1(2)

𝑏2(2)

Input

𝑤21 2
𝑤21 3

𝑤22 2

𝑎1(2)

𝑎2(2)

𝑏1(3)

𝑏2(3)

𝑎1(3)

𝑎2(3)

𝑤11 3

𝑤12 2 𝑤12 3

𝑤22 3

Σ

Σ

Σ

Σ

Output

𝑥2 = 𝑎2(1)

𝑨 2 =
𝑎1(2)
𝑎2(2)

= 𝑾 2 𝑨 1 + 𝒃 2 =
𝑤11 2 𝑤12 2

𝑤21 2 𝑤22 2

𝑎1 1

𝑎2 1
+

𝑏1(2)
𝑏2(2)

𝑨 1 =
𝑎1(1)
𝑎2(1)

=
𝑥1
𝑥2

𝑨 3 =
𝑎1(3)
𝑎2(3)

= 𝑾 3 𝑨 2 + 𝒃 3 =
𝑤11 3 𝑤12 3

𝑤21 3 𝑤22 3

𝑎1 2

𝑎2 2
+

𝑏1(3)
𝑏2(3)

All activation functions are 
identity linear function.

=

=

=

=

Forward Pass:



Loss Function for a Multilayer Neural Network

• Given a set of training patterns and a multilayer feedforward neural 
network architecture, we want to find the network parameters. that 
minimize an error (also called cost or objective) function. 

• Our interest is in classification performance, so we define the error 
function for a neural network as the average of the differences between 
desired and actual responses.

• The activation values of neuron 𝑗 in the output layer is 𝑎𝑗(𝐿). We define 
the error of that neuron as

𝐸𝑗 =
1

2
𝑟𝑗 − 𝑎𝑗(𝐿)

2
, for 𝑗 = 1,2, … , 𝑛𝐿.

• The output error with respect to a single 𝐱 is the sum of the errors of all 
output neurons with respect to that vector (using the Euclidean vector 
norm):

• The total network output error over all training patterns is defined as the 
sum of the errors of the individual patterns. 



Difficulty with Training a Multilayer Network

• We want to find the weights that minimize this total error. As we did for 
the LMSE method on a single-layer network, we find the solution using the 
iterative gradient descent.

• Thus we need a scheme to adjust all weights in a network using training 
patterns. In order to do this, we need to know how the total error changes 
with respect to all the weights in the network.

• However, the challenge arises as to how we can compute the gradients of 
the weights in the hidden nodes.

• The solution is the backpropagation method based on the chain rule in 
calculus, which allows the following quantity 𝛿𝑗 𝐿 =

𝜕𝐸

𝜕𝑧𝑗 𝐿
to propagate 

from output back into each of the hidden layers in the network, where 
𝑧𝑗 𝐿 is the output of the last layer, before we apply the activation 

function ℎ() on 𝑧𝑗 𝐿 to obtain 𝑎𝑗 𝐿 = ℎ 𝑧𝑗 𝐿 . 

• We will use a three-layer (𝐿 = 3) network to illustrate the principle of 
backpropagation, where the activation function output is simply the same 
as its input: 𝑎𝑗 𝐿 = ℎ 𝑧𝑗 𝐿 = 𝑧𝑗(𝐿). 

• Next, we will extend the result and consider the general case where the 
activation function is a non-linear function such as the sigmoid function. 



The output error with respect to a single 𝐱

Error: 𝐸 =
1

2
𝐫 − 𝑨(3) 2 =

1

2
{ 𝑟1 − 𝑎1 3 2 + 𝑟2 − 𝑎2 3 2}

Desired response: 𝐫 =
𝑟1
𝑟2

𝑨 3 =
𝑎1(3)
𝑎2(3)

= 𝑾 3 𝑨 2 + 𝒃 3

Let the derivatives of the output error with respect to the final output be:

𝑫 3 =
𝜕𝐸

𝜕𝑨 3
=

𝜕𝐸

𝜕𝑎1 3

𝜕𝐸

𝜕𝑎2 3

= −
𝑟1 − 𝑎1 3

𝑟2 − 𝑎2 3
= 𝑨 3 − 𝐫

𝑎1(3)

𝑎2 3



Gradient of the Error with respect to Weights

where 𝑨 3 =
𝑎1(3)
𝑎2(3)

= 𝑾 3 𝑨 2 + 𝒃 3

𝑤21 3

𝑎1(2)

𝑎2(2)

𝑏1(3)

𝑏2(3)

𝑎1(3)

𝑎2(3)

𝑤11 3

𝑤12 3

𝑤22 3

Σ

Σ

=

=

𝜕𝐸

𝜕𝑤11 3
=

𝜕𝐸

𝜕𝑎1 3

𝜕𝑎1 3

𝜕𝑤11 3
=

𝜕𝐸

𝜕𝑎1 3
𝑎1(2)

𝜕𝐸

𝜕𝑤12 3
=

𝜕𝐸

𝜕𝑎1 3

𝜕𝑎1 3

𝜕𝑤12 3
=

𝜕𝐸

𝜕𝑎1 3
𝑎2(2)

𝜕𝐸

𝜕𝑤21 3
=

𝜕𝐸

𝜕𝑎2 3

𝜕𝑎2 3

𝜕𝑤21 3
=

𝜕𝐸

𝜕𝑎2 3
𝑎1(2)

𝜕𝐸

𝜕𝑤22 3
=

𝜕𝐸

𝜕𝑎2 3

𝜕𝑎2 3

𝜕𝑤22 3
=

𝜕𝐸

𝜕𝑎2 3
𝑎2(2)

𝜕𝐸

𝜕𝑾(3)
=

𝜕𝐸

𝜕𝑤11(3)

𝜕𝐸

𝜕𝑤12(3)
𝜕𝐸

𝜕𝑤21(3)

𝜕𝐸

𝜕𝑤22(3)

=

𝜕𝐸

𝜕𝑎1 3
𝜕𝐸

𝜕𝑎2 3

𝑎1(2) 𝑎2(2) =
𝜕𝐸

𝜕𝑨 3
𝑨 2 T = 𝑫 3 𝑨 2 T



Gradient of the Error with respect to Biases

𝑤21 3

𝑎1(2)

𝑎2(2)

𝑏1(3)

𝑏2(3)

𝑎1(3)

𝑎2(3)

𝑤11 3

𝑤12 3

𝑤22 3

Σ

Σ

=

=

𝜕𝐸

𝜕𝑏1 3
=

𝜕𝐸

𝜕𝑎1 3

𝜕𝑎1 3

𝜕𝑏1 3
=

𝜕𝐸

𝜕𝑎1 3

𝜕𝐸

𝜕𝒃(3)
=

𝜕𝐸

𝜕𝑏1 3
𝜕𝐸

𝜕𝑏2 3

=

𝜕𝐸

𝜕𝑎1 3
𝜕𝐸

𝜕𝑎2 3

=
𝜕𝐸

𝜕𝑨 3
= 𝑫 3

𝜕𝐸

𝜕𝑏2 3
=

𝜕𝐸

𝜕𝑎2 3

𝜕𝑎2 3

𝜕𝑏2 3
=

𝜕𝐸

𝜕𝑎2 3



Relation between 𝑫(2) and 𝑫(3)

𝑤21 3

𝑎1(2)

𝑎2(2)

𝑏1(3)

𝑏2(3)

𝑎1(3)

𝑎2(3)

𝑤11 3

𝑤12 3

𝑤22 3

Σ

Σ

=

=

𝑫 2 =
𝜕𝐸

𝜕𝑨 2
=

𝜕𝐸

𝜕𝑎1 2
𝜕𝐸

𝜕𝑎2 2

𝜕𝐸

𝜕𝑎1(2)
=

𝜕𝐸

𝜕𝑎1 3

𝜕𝑎1 3

𝜕𝑎1 2
+

𝜕𝐸

𝜕𝑎2 3

𝜕𝑎2 3

𝜕𝑎1 2

=
𝜕𝐸

𝜕𝑎1 3
𝑤11 3 +

𝜕𝐸

𝜕𝑎2 3
𝑤21 3

𝜕𝐸

𝜕𝑎2(2)
=

𝜕𝐸

𝜕𝑎1 3

𝜕𝑎1 3

𝜕𝑎2 2
+

𝜕𝐸

𝜕𝑎2 3

𝜕𝑎2 3

𝜕𝑎2 2

=
𝜕𝐸

𝜕𝑎1 3
𝑤12 3 +

𝜕𝐸

𝜕𝑎2 3
𝑤22 3

Thus 𝑫 2 =

𝜕𝐸

𝜕𝑎1 2

𝜕𝐸

𝜕𝑎2 2

=
𝑤11 3 𝑤12 3

𝑤21 3 𝑤22 3

T 𝜕𝐸

𝜕𝑎1 3

𝜕𝐸

𝜕𝑎2 3

= 𝑾 3 T𝑫 3



Backpropagation of 𝑫(3)

𝑤21 3

𝑎1(2)

𝑎2(2)

𝑏1(3)

𝑏2(3)

𝑎1(3)

𝑎2(3)

𝑤11 3

𝑤12 3

𝑤22 3

Σ

Σ

=

=

To calculate 𝑫 2 , we back propagate 𝑫 3 as:

𝑫 2 =
𝑑1(3)
𝑑2(2)

=
𝑤11 2 𝑤21 2

𝑤12 2 𝑤22 2

𝑑1(3)
𝑑2(3)

𝑤21 3

𝑑1(2)

𝑑2(2)

𝑑1(3)

𝑑2(3)

𝑤11 3

𝑤12 3

𝑤22 3

𝑫 3 =
𝑑1(3)
𝑑2(3)

=

𝜕𝐸

𝜕𝑎1 3
𝜕𝐸

𝜕𝑎2 3

= 𝑾 3 T𝑫 3

Note the reversed directions of the arrows, thus 
the transpose of the weight matrix 𝑾 3 T.

𝑫 2 =
𝑑1(2)
𝑑2(2)

=

𝜕𝐸

𝜕𝑎1 2
𝜕𝐸

𝜕𝑎2 2



Gradient of the Error with respect to Weights (Level Two)

Where 𝑫 2 is obtained by back propagating 𝑫 3 , and 𝑨 1 =
𝑥1
𝑥2

is the input vector.

𝑤21 2

𝑎1(1)

𝑎2(1)

𝑏1(2)

𝑏2(2)

𝑎1(2)

𝑎2(2)

𝑤11 2

𝑤12 2

𝑤22 2

Σ

Σ

=

=

𝜕𝐸

𝜕𝑤11 2
=

𝜕𝐸

𝜕𝑎1 2

𝜕𝑎1 2

𝜕𝑤11 2
=

𝜕𝐸

𝜕𝑎1 2
𝑎1(1)

𝜕𝐸

𝜕𝑤12 2
=

𝜕𝐸

𝜕𝑎1 2

𝜕𝑎1 2

𝜕𝑤12 2
=

𝜕𝐸

𝜕𝑎1 2
𝑎2(1)

𝜕𝐸

𝜕𝑤21 2
=

𝜕𝐸

𝜕𝑎2 2

𝜕𝑎2 2

𝜕𝑤21 2
=

𝜕𝐸

𝜕𝑎2 2
𝑎1(1)

𝜕𝐸

𝜕𝑤22 2
=

𝜕𝐸

𝜕𝑎2 2

𝜕𝑎2 2

𝜕𝑤22 2
=

𝜕𝐸

𝜕𝑎2 2
𝑎2(1)

𝜕𝐸

𝜕𝑾(2)
=

𝜕𝐸

𝜕𝑤11(2)

𝜕𝐸

𝜕𝑤12(2)
𝜕𝐸

𝜕𝑤21(2)

𝜕𝐸

𝜕𝑤22(2)

=

𝜕𝐸

𝜕𝑎1 2
𝜕𝐸

𝜕𝑎2 2

𝑎1(1) 𝑎2(1) =
𝜕𝐸

𝜕𝑨 2
𝑨 1 T = 𝑫 2 𝑨 1 T

Similar to the previous derivations, for the 2nd layer:



Gradient with respect to Biases (2nd Layer)

𝑤21 2

𝑎1(1)

𝑎2(1)

𝑏1(2)

𝑏2(2)

𝑎1(2)

𝑎2(2)

𝑤11 2

𝑤12 2

𝑤22 2

Σ

Σ

=

=

𝜕𝐸

𝜕𝑏1 2
=

𝜕𝐸

𝜕𝑎1 2

𝜕𝑎1 2

𝜕𝑏1 2
=

𝜕𝐸

𝜕𝑎1 2

𝜕𝐸

𝜕𝒃(2)
=

𝜕𝐸

𝜕𝑏1 2
𝜕𝐸

𝜕𝑏2 2

=

𝜕𝐸

𝜕𝑎1 2
𝜕𝐸

𝜕𝑎2 2

=
𝜕𝐸

𝜕𝑨 2
= 𝑫 2

𝜕𝐸

𝜕𝑏2 2
=

𝜕𝐸

𝜕𝑎2 2

𝜕𝑎2 2

𝜕𝑏2 2
=

𝜕𝐸

𝜕𝑎2 2



Summary of the Results

𝑨 2 =
𝑎1(2)
𝑎2(2)

= 𝑾 2 𝑨 1 + 𝒃 2

𝑨 1 =
𝑎1(1)
𝑎2(1)

=
𝑥1
𝑥2

𝑨 3 =
𝑎1(3)
𝑎2(3)

= 𝑾 3 𝑨 2 + 𝒃 3

𝑎1(3)

𝑎2(3)

Forward Pass

Error: 𝐸 =
1

2
𝐫 − 𝑨(3) 2

𝑤21 3

𝑑1(2)

𝑑2(2)

𝑑1(3)

𝑑2(3)

𝑤11 3

𝑤12 3

𝑤22 3

Backpropagation of error gradient
from output to hidden layer:

𝑫 𝟐 = 𝑾 3 T𝑫 3

𝑫 3 =

𝜕𝐸

𝜕𝑎1 3
𝜕𝐸

𝜕𝑎2 3

Backpropagation:

𝜕𝐸

𝜕𝑾 3
= 𝑫 3 𝑨 2 T,

𝜕𝐸

𝜕𝑾 2
= 𝑫 2 𝑨 1 T,

𝜕𝐸

𝜕𝒃(3)
= 𝑫 3

𝜕𝐸

𝜕𝒃(2)
= 𝑫 2

𝑫 2 =

𝜕𝐸

𝜕𝑎1 2
𝜕𝐸

𝜕𝑎2 2

Hidden Layer Output Layer

𝑫 3 = 𝑨 3 − 𝐫, where 𝐫 is the desired response. 



Training Procedure using Iterative Gradient Descent 

Initialize the weights and biases, and repeat the following until 
a convergence criterion is met (𝛼 is the learning rate):
• Forward pass
𝑨 𝑙 = 𝑾 𝑙 𝑨 𝑙 − 1 + 𝒃 𝑙 , where the layer index 𝑙 =
2,… , 𝐿. In the illustrative example, 𝐿 = 3.

• Error: 𝐸 =
1

2
𝐫 − 𝑨(𝐿) 2, and its gradient at the final 

output layer: 𝑫 𝐿 = 𝑨 𝐿 − 𝐫.
• Backpropagation: 𝑫 𝑙 = 𝑾 𝑙 + 1 T𝑫 𝑙 + 1 , for 𝑙 = 𝐿 −
1,… , 2.

• Update weights and biases for 𝑙 = 2, … , 𝐿:

𝑾 𝑙 = 𝑾 𝑙 − 𝛼
𝜕𝐸

𝜕𝑾 𝑙
= 𝑾 𝑙 − 𝛼𝑫 𝑙 𝑨T(𝑙 − 1);

𝒃 𝑙 = 𝒃 𝑙 − 𝛼
𝜕𝐸

𝜕𝒃 𝑙
= 𝒃 𝑙 − 𝛼𝑫 𝑙 .



Linearly Separable Case
% backprop.m

% Explain the backpropagation algorithm using a fully connected neural

% network with one hidden layer. 

% However, the activation of each neuron is a linear function, thus the

% network output is a linear combination of the input. Therefore, this

% network cannot handle linearly non-separable cases.

% The weights and biases are updated for each input sample

alpha = 0.1;  % learning rate

% Linearly separable example

% Input data pattern

X = [1 -1 -1 1; 1 -1 1 -1];

% Response

R = [1  0  1 0; 0  1 0  1];

rng('default');

Std = 0.02;

% Initial weights and biases

W2 = Std*randn(2,2);

b2 = Std*randn(2,1);

W3 = Std*randn(2,2);

b3 = Std*randn(2,1);

max_iter = 100;

mse = zeros(1, max_iter);

X =
1    -1    -1     1
1    -1     1    -1

R =
1     0     1     0
0     1     0     1



epoch = 0;

while (epoch <= max_iter)

epoch = epoch + 1;

for i = 1: 4

A1 = X(:,i);

A2 = W2*A1 + b2;

A3 = W3*A2 + b3;

D3 = A3 - R(:,i);

mse(epoch) = 0.5*norm(D3)^2;

% backpropagation

D2 = W3'*D3;

% Update the weights and biases

W3 = W3 - alpha*D3*A2';

W2 = W2 - alpha*D2*A1';

b3 = b3 - alpha*D3;

b2 = b2 - alpha*D2;    

end

end

mse(epoch)

plot(mse); grid



figure;

hold on;

for x1 = -1.5:0.05:1.5

for x2 = -1.5:0.05:1.5

X_test = [x1; x2];

A1 = X_test;

Z2 = W2*A1 + b2;

A2 = 1./(1+exp(-Z2));

Z3 = W3*A2 + b3;

A3 = 1./(1+exp(-Z3));

if (A3(1)>=0.5)

plot(x1, x2, 'r.');

else

plot(x1, x2, 'b.');

end

end

end

plot(X(1,1),X(2,1),'ro','MarkerSize',12, 'MarkerFaceColor','r');

plot(X(1,2),X(2,2),'ro','MarkerSize',12, 'MarkerFaceColor','r');

plot(X(1,3),X(2,3),'bo','MarkerSize',12, 'MarkerFaceColor','b');

plot(X(1,4),X(2,4),'bo','MarkerSize',12, 'MarkerFaceColor','b');



Weights and Biases Learned

W2 =
0.0134   -0.7274
0.0220    0.4375

b2 =
0.0079
0.0296

W3 =
-0.4763    0.3512
0.5303   -0.2608

b3 =
0.4934
0.5035

𝑋 =
𝑥1
𝑥2

𝐴3 = 𝑊3 𝑊2𝑋 + 𝑏2 + 𝑏3

= 𝑊3𝑊2 𝑋 + (𝑊3𝑏2 + 𝑏3)

>> W3*W2
ans =

0.0014    0.5001
0.0014   -0.4999

>> W3*b2 + b3
ans =

0.5000
0.5000

= 𝑊𝑋 + 𝐵

X =
1    -1    -1     1
1    -1     1    -1

R =
1     0     1     0
0     1     0     1

The output of the entire network is a linear combination of the input.



Model of An 
Artificial Neuron

(a) Sigmoid. (b) Hyperbolic tangent (also has a sigmoid shape, but it is 
centered about 0 in both dimensions). (c) Rectifier linear unit (ReLU).

Various Activation Functions



Softmax in the Final Output Layer

• Instead of a sigmoid or similar function in the final 
output layer, sometimes a softmax function used 
instead in multilayer neural network for multiclass 
classification problems. 

• The activation values in a softmax implementation are 
given by

𝑎𝑖 𝐿 =
𝑒𝑧𝑖 𝐿

σ
𝑘=1
𝑁𝐿 𝑒𝑧𝑘 𝐿

, 

where the summation is over all 𝑁𝐿 outputs. 

• In this formulation, the sum of all activations is 1, thus 
giving the outputs a probabilistic interpretation.



Linearly Non-separable Case

• Multilayer neural networks are needed to solve the linearly non-separable 
problems.

• Due to their use of “hard” thresholding functions, perceptrons’ sensitivity to 
the sign of small signals can cause serious stability problems in a multilayer 
interconnected system, making perceptrons unsuitable for layered 
architectures.

• The solution is to change the characteristic of the activation function from a 
hardlimiter to a smooth function for activation.



XOR Data Pattern Classification 

Pattern matrix X and class membership matrix R are:

Train a three-layer fully connected neural network

to classify the input data X, with the desired 

membership response R:
• One input layer (with two components/features)
• One hidden layer (with two neurons)
• One output layer (with two neurons)
• Activation function for the hidden layer and 

output layer is the sigmoid function



Backpropagation of Error Gradient

• Previously, the activation function is a linear (identify) function, where 
𝜕𝐸

𝜕𝑎𝑖(𝑙)
=

𝜕𝐸

𝜕𝑧𝑖(𝑙)
, since 𝑎𝑖(𝑙)=ℎ(𝑧𝑖(𝑙)) = 𝑧𝑖(𝑙).

• In general, 
𝜕𝐸

𝜕𝑧𝑖(𝑙)
=

𝜕𝐸

𝜕𝑎𝑖(𝑙)

𝜕𝑎𝑖(𝑙)

𝜕𝑧𝑖(𝑙)
=

𝜕𝐸

𝜕𝑎𝑖

𝑑(𝑧𝑖(𝑙))

𝑑𝑧𝑖(𝑙)
=

𝜕𝐸

𝜕𝑎𝑖
ℎ′(𝑧𝑖(𝑙)).

• Therefore, we need to integrate ℎ′ 𝑧𝑖 𝑙 in the backpropagation 

formulation derived earlier. 



The output error with respect to a single 𝐱

Error: 𝐸 =
1

2
𝐫 − 𝑨(3) 2 =

1

2
{ 𝑟1 − 𝑎1 3 2 + 𝑟2 − 𝑎2 3 2}

Desired response: 𝐫 =
𝑟1
𝑟2

𝑨 3 =
𝑎1(3)
𝑎2(3)

=
ℎ[𝑧1(3)]

ℎ[𝑧2(3)]
, where 𝒁 3 = 𝑾 3 𝑨 2 + 𝒃 3

The gradient of the output error with respect to the final output 𝑨 3 is:

𝜕𝐸

𝜕𝑨 3
=

𝜕𝐸

𝜕𝑎1 3
𝜕𝐸

𝜕𝑎2 3

= −
𝑟1 − 𝑎1 3

𝑟2 − 𝑎2 3
= 𝑨 3 − 𝐫

𝑎1(3)

𝑎2 3

The activation function is ℎ( ) for both the hidden layer and output layer



The newly defined 𝑫 3
The gradient of the output error with respect to the 
input of the final layer 𝒁 3 is:

𝑫 3 =
𝜕𝐸

𝜕𝒁 3
=

𝜕𝐸

𝜕𝑧1 3
𝜕𝐸

𝜕𝑧2 3

=

𝜕𝐸

𝜕𝑎1 3

𝜕𝑎1 3

𝜕𝑧1 3

𝜕𝐸

𝜕𝑎1 3

𝜕𝑎1 3

𝜕𝑧1 3

ℎ( )
𝑎1 3𝑧1 3

Σ

ℎ( )
𝑧2 3

Σ
𝑎2 3

=

𝜕𝐸

𝜕𝑎1 3
ℎ′(𝑧1 3 )

𝜕𝐸

𝜕𝑎1 3
ℎ′(𝑧2 3 )

=

𝜕𝐸

𝜕𝑎1 3
𝜕𝐸

𝜕𝑎2 3

⊙
ℎ′(𝑧1 3 )

ℎ′(𝑧2 3 )

Elementwise
Multiplication

𝑫 3 = [𝑨 3 − 𝐫] ⊙
ℎ′(𝑧1 3 )

ℎ′(𝑧2 3 )

Since 
𝜕𝐸

𝜕𝑨 3
=

𝜕𝐸

𝜕𝑎1 3

𝜕𝐸

𝜕𝑎2 3

= 𝑨 3 − 𝐫



Modified Gradient of the Error wrt. Weights

where 𝒁 3 =
𝑧1(3)
𝑧2(3)

= 𝑾 3 𝑨 2 + 𝒃 3

𝑤21 3

𝑎1(2)

𝑎2(2)

𝑏1(3)

𝑏2(3)

𝑎1(3)

𝑎2(3)

𝑤11 3

𝑤12 3

𝑤22 3

𝜕𝐸

𝜕𝑤11 3
=

𝜕𝐸

𝜕𝑧1 3

𝜕𝑧1 3

𝜕𝑤11 3
=

𝜕𝐸

𝜕𝑧1 3
𝑎1(2)

𝜕𝐸

𝜕𝑤12 3
=

𝜕𝐸

𝜕𝑧1 3

𝜕𝑧1 3

𝜕𝑤12 3
=

𝜕𝐸

𝜕𝑧1 3
𝑎2(2)

𝜕𝐸

𝜕𝑤21 3
=

𝜕𝐸

𝜕𝑧2 3

𝜕𝑧2 3

𝜕𝑤21 3
=

𝜕𝐸

𝜕𝑧2 3
𝑎1(2)

𝜕𝐸

𝜕𝑤22 3
=

𝜕𝐸

𝜕𝑧2 3

𝜕𝑧2 3

𝜕𝑤22 3
=

𝜕𝐸

𝜕𝑧2 3
𝑎2(2)

𝜕𝐸

𝜕𝑾(3)
=

𝜕𝐸

𝜕𝑤11(3)

𝜕𝐸

𝜕𝑤12(3)
𝜕𝐸

𝜕𝑤21(3)

𝜕𝐸

𝜕𝑤22(3)

=

𝜕𝐸

𝜕𝑧1 3
𝜕𝐸

𝜕𝑧2 3

𝑎1(2) 𝑎2(2) =
𝜕𝐸

𝜕𝒁 3
𝑨 2 T = 𝑫 3 𝑨 2 T

𝑧1(3)

𝑧2(3)

ℎ()

ℎ()



Modified Gradient of the Error wrt. Biases

𝜕𝐸

𝜕𝑏1 3
=

𝜕𝐸

𝜕𝑧1 3

𝜕𝑧1 3

𝜕𝑏1 3
=

𝜕𝐸

𝜕𝑧1 3

𝜕𝐸

𝜕𝒃(3)
=

𝜕𝐸

𝜕𝑏1 3
𝜕𝐸

𝜕𝑏2 3

=

𝜕𝐸

𝜕𝑧1 3
𝜕𝐸

𝜕𝑧2 3

=
𝜕𝐸

𝜕𝒁 3
= 𝑫 3

𝜕𝐸

𝜕𝑏2 3
=

𝜕𝐸

𝜕𝑧2 3

𝜕𝑧2 3

𝜕𝑏2 3
=

𝜕𝐸

𝜕𝑧2 3
𝑤21 3

𝑎1(2)

𝑎2(2)

𝑏1(3)

𝑏2(3)

𝑎1(3)

𝑎2(3)

𝑤11 3

𝑤12 3

𝑤22 3

𝑧1(3)

𝑧2(3)

ℎ()

ℎ()



Modified Relation between 𝑫(2) and 𝑫(3)

𝑤21 3

𝑎1 2 = ℎ(𝑧1 2 )

𝑎2 2 = ℎ(𝑧2 2 )

𝑏1(3)

𝑏2(3)

𝑎1(3)

𝑎2(3)

𝑤11 3

𝑤12 3

𝑤22 3

𝑫 2 =
𝜕𝐸

𝜕𝒁 2
=

𝜕𝐸

𝜕𝑧1 2
𝜕𝐸

𝜕𝑧2 2

𝜕𝐸

𝜕𝑧1(2)
=

𝜕𝐸

𝜕𝑧1 3

𝜕𝑧1 3

𝜕𝑧1 2
+

𝜕𝐸

𝜕𝑧2 3

𝜕𝑧2 3

𝜕𝑧1 2

ℎ()

ℎ()

𝑧1(3)

𝑧2(3)

𝑎1 2 = ℎ(𝑧1 2 )

where

𝜕𝑧1 3

𝜕𝑧1 2
=
𝜕𝑧1 3

𝜕𝑎1 2

𝜕𝑎1 2

𝜕𝑧1 2
= 𝑤11 3 ℎ′(𝑧1 2 )

𝜕𝑧2 3

𝜕𝑧1 2
=
𝜕𝑧2 3

𝜕𝑎1 2

𝜕𝑎1 2

𝜕𝑧1 2
= 𝑤21 3 ℎ′(𝑧1 2 )

Thus
𝜕𝐸

𝜕𝑧1(2)
=

𝜕𝐸

𝜕𝑧1 3
𝑤11 3 ℎ′(𝑧1 2 ) +

𝜕𝐸

𝜕𝑧2 3
𝑤21 3 ℎ′(𝑧1 2 )



Modified Backpropagation Rule

𝜕𝐸

𝜕𝑧2(2)
=

𝜕𝐸

𝜕𝑧1 3
𝑤12 3 ℎ′(𝑧2 2 ) +

𝜕𝐸

𝜕𝑧2 3
𝑤22 3 ℎ′(𝑧2 2 )

Thus 𝑫 2 =

𝜕𝐸

𝜕𝑧1 2

𝜕𝐸

𝜕𝑧2 2

=
𝑤11 3 𝑤12 3

𝑤21 3 𝑤22 3

T 𝜕𝐸

𝜕𝑧1 3

𝜕𝐸

𝜕𝑧1 3

⊙
ℎ′(𝑧1 2 )

ℎ′(𝑧2 2 )

𝜕𝐸

𝜕𝑧1(2)
=

𝜕𝐸

𝜕𝑧1 3
𝑤11 3 ℎ′(𝑧1 2 ) +

𝜕𝐸

𝜕𝑧2 3
𝑤21 3 ℎ′(𝑧1 2 )

Similarly,

𝑫 2 = 𝑾 3 T𝑫 3 ⊙ ℎ′(𝒁 2 )



Backpropagation of 𝑫(3)

To calculate 𝑫 2 , we back propagate 𝑫 3 as:

𝑫 2 =
𝑑1(3)
𝑑2(2)

= 𝑾 3 T𝑫 3 ⊙ ℎ′(𝒁 2 )

𝑤21 3

𝑑1(2)

𝑑2(2)

𝑑1(3)

𝑑2(3)

𝑤11 3

𝑤12 3

𝑤22 3

𝑫 3 =
𝑑1(3)
𝑑2(3)

=

𝜕𝐸

𝜕𝑧1 3
𝜕𝐸

𝜕𝑧2 3

Note the reversed directions of the arrows, thus 
the transpose of the weight matrix 𝑾 3 T.

𝑫 2 =
𝑑1(2)
𝑑2(2)

=

𝜕𝐸

𝜕𝑧1 2
𝜕𝐸

𝜕𝑧2 2

ℎ′(𝑧1 2 )

ℎ′(𝑧2 2 )



Modified Gradient of the Error wrt. Weights (Level Two)

Where 𝑫 2 is obtained by back propagating 𝑫 3 , and 𝑨 1 =
𝑥1
𝑥2

is the input vector.

𝑤21 2

𝑎1(1)

𝑎2(1)

𝑏1(2)

𝑏2(2)

𝑎1(2)

𝑎2(2)

𝑤11 2

𝑤12 2

𝑤22 2

𝜕𝐸

𝜕𝑤11 2
=

𝜕𝐸

𝜕𝑧1 2

𝜕𝑧1 2

𝜕𝑤11 2
=

𝜕𝐸

𝜕𝑧1 2
𝑎1(1)

𝜕𝐸

𝜕𝑤12 2
=

𝜕𝐸

𝜕𝑧1 2

𝜕𝑧1 2

𝜕𝑤12 2
=

𝜕𝐸

𝜕𝑧1 2
𝑎2(1)

𝜕𝐸

𝜕𝑤21 2
=

𝜕𝐸

𝜕𝑧2 2

𝜕𝑧2 2

𝜕𝑤21 2
=

𝜕𝐸

𝜕𝑧2 2
𝑎1(1)

𝜕𝐸

𝜕𝑤22 2
=

𝜕𝐸

𝜕𝑧2 2

𝜕𝑧2 2

𝜕𝑤22 2
=

𝜕𝐸

𝜕𝑧2 2
𝑎2(1)

𝜕𝐸

𝜕𝑾(2)
=

𝜕𝐸

𝜕𝑤11(2)

𝜕𝐸

𝜕𝑤12(2)
𝜕𝐸

𝜕𝑤21(2)

𝜕𝐸

𝜕𝑤22(2)

=

𝜕𝐸

𝜕𝑧1 2
𝜕𝐸

𝜕𝑧2 2

𝑎1(1) 𝑎2(1) =
𝜕𝐸

𝜕𝒁 2
𝑨 1 T = 𝑫 2 𝑨 1 T

Similar to the previous derivations, for the 2nd layer:

𝑧1(2)

𝑧2(2)

ℎ()

ℎ()



Modified Gradient wrt. Biases (2nd Layer)

𝜕𝐸

𝜕𝑏1 2
=

𝜕𝐸

𝜕𝑧1 2

𝜕𝑧1 2

𝜕𝑏1 2
=

𝜕𝐸

𝜕𝑧1 2

𝜕𝐸

𝜕𝒃(2)
=

𝜕𝐸

𝜕𝑏1 2
𝜕𝐸

𝜕𝑏2 2

=

𝜕𝐸

𝜕𝑧1 2
𝜕𝐸

𝜕𝑧2 2

=
𝜕𝐸

𝜕𝒁 2
= 𝑫 2

𝜕𝐸

𝜕𝑏2 2
=

𝜕𝐸

𝜕𝑧2 2

𝜕𝑧2 2

𝜕𝑏2 2
=

𝜕𝐸

𝜕𝑧2 2
𝑤21 2

𝑎1(1)

𝑎2(1)

𝑏1(2)

𝑏2(2)

𝑎1(2)

𝑎2(2)

𝑤11 2

𝑤12 2

𝑤22 2

𝑧1(2)

𝑧2(2)

ℎ()

ℎ()



Summary of the Results

𝒁 2 =
𝑧1(2)
𝑧2(2)

= 𝑾 2 𝑨 1 + 𝒃 2

𝑨 1 =
𝑎1(1)
𝑎2(1)

=
𝑥1
𝑥2

𝒁 3 =
𝑧1(3)
𝑧2(3)

= 𝑾 3 𝑨 2 + 𝒃 3

𝑎1(3)

𝑎2(3)

Forward Pass

Error: 𝐸 =
1

2
𝐫 − 𝑨(3) 2

𝑤21 3

𝑑1(2) 

𝑑2(2)

𝑑1(3)

𝑑2(3)

𝑤11 3

𝑤12 3

𝑤22 3

Backpropagation of error gradient
from output to hidden layer:

𝑫 𝟐 = 𝑾 3 T𝑫 3

𝑫 3 =

𝜕𝐸

𝜕𝑧1 3
𝜕𝐸

𝜕𝑧2 3

Backpropagation:

𝜕𝐸

𝜕𝑾 3
= 𝑫 3 𝑨 2 T,

𝜕𝐸

𝜕𝑾 2
= 𝑫 2 𝑨 1 T,

𝜕𝐸

𝜕𝒃(3)
= 𝑫 3

𝜕𝐸

𝜕𝒃(2)
= 𝑫 2

𝑫 2 =

𝜕𝐸

𝜕𝑧1 2
𝜕𝐸

𝜕𝑧2 2

Hidden Layer Output Layer

𝑨 2 = ℎ 𝒁 2 =
ℎ(𝑧1 2 )

ℎ(𝑧2 2 )

𝑨 3 = ℎ 𝒁 3 =
ℎ(𝑧1 3 )

ℎ(𝑧2 3 )

𝑫 3 = [𝑨 3 − 𝐫] ⊙
ℎ′(𝑧1 3 )

ℎ′(𝑧2 3 )

ℎ( )

ℎ( )

ℎ( )

ℎ( )

ℎ′( )

ℎ′( )

𝑫 2 =
𝑑1(3)
𝑑2(2)

= 𝑾 3 T𝑫 3 ⊙ ℎ′(𝒁 2 )



Training Procedure using Batch Gradient Descent 

Initialize the weights and biases, and repeat the following until a convergence 
criterion is met (𝛼 is the learning rate):
• Forward pass

𝒁 𝑙 = 𝑾 𝑙 𝑨 𝑙 − 1 + 𝒃 𝑙 , and 𝑨 𝑙 = ℎ(𝒁 𝑙 ) , where the layer index 
𝑙 = 2,… , 𝐿. In the illustrative example, 𝐿 = 3.

• Error: 𝐸 =
1

2
𝐫 − 𝑨(𝐿) 2, and its gradient at the final output layer: 

𝑫 𝐿 = [𝑨 𝐿 − 𝐫]⊙ ℎ′(𝒁(𝑙)).
• Backpropagation: 𝑫 𝑙 = [𝑾 𝑙 + 1 T𝑫 𝑙 + 1 ] ⊙ ℎ′(𝒁(𝑙)), for 𝑙 = 𝐿 −

1,… , 2.
• Update weights and biases for 𝑙 = 2,… , 𝐿:

𝑾 𝑙 = 𝑾 𝑙 − 𝛼
𝜕𝐸

𝜕𝑾 𝑙
= 𝑾 𝑙 − 𝛼𝑫 𝑙 𝑨T(𝑙 − 1);

𝒃 𝑙 = 𝒃 𝑙 − 𝛼
𝜕𝐸

𝜕𝒃 𝑙
= 𝒃 𝑙 − 𝛼𝑫 𝑙 .

• We can train the network by using the batch mode, where the weights 
and biases are updated only once after we process all the input patterns. 

• The total network output error over all training patterns is defined as the 
sum of the errors of the individual patterns.



‘backprop_sigmoid_xor.m’

% Linearly non-separable example (with 

XOR pattern)

% Input data pattern

X = [1 -1 -1 1; 1 -1 1 -1];

% Response

R = [1  1  0 0; 0 0  1  1];

rng('default');

Std = 0.2;

% Initial weights and biases

W2 = Std*randn(2,2);

b2 = Std*randn(2,1);

W3 = Std*randn(2,2);

b3 = Std*randn(2,1);

mse = zeros(1, max_iter);

alpha = 1;  % learning rate

max_iter = 1000;

% Linearly separable example (1,000 

epochs are enough)

% Input data pattern

%X = [1 -1 -1 1; 1 -1 1 -1];

% Response

%R = [1  0  1 0; 0  1 0  1];



for epoch = 1: max_iter

E = 0;

W3_update = zeros(2,2);

W2_update = zeros(2,2);

b3_update = zeros(2,1);

b2_update = zeros(2,1);

for i = 1: 4

A1 = X(:,i);

% Z2 to replace A2 in 'backprop.m'

Z2 = W2*A1 + b2;   % Z2 is the net input to the neuron

% A2 is the output of the activation function on the input

A2 = 1./(1+exp(-Z2));  

Z3 = W3*A2 + b3;

A3 = 1./(1+exp(-Z3));

Deriv_A3 = A3 - R(:,i);

E = E + 0.5*norm(Deriv_A3)^2;

% Derivative of the activation function

hd_Z3 = A3.*(1-A3);

D3 = Deriv_A3 .* hd_Z3;

% Backpropagation (now with sigmoid activation functions)

hd_Z2 = A2.*(1-A2);

D2 = W3'*D3.*hd_Z2;

% Update the weights and biases

W3_update = W3_update + alpha*D3*A2';

W2_update = W2_update + alpha*D2*A1';

b3_update  = b3_update + alpha*D3;

b2_update  = b2_update + alpha*D2;    

end

% Update once after the whole 

batch of 4 pattern are processed

W3 = W3 - W3_update;

W2 = W2 - W2_update;

b3 = b3 - b3_update;

b2 = b2 - b2_update;

mse(epoch) = E/4; 

end



>> W2
W2 =

-3.8633   -3.8637
4.2082    4.2095

>> b2
b2 =

-3.9536
-4.3593

>> W3
W3 =

6.6118    6.5891
-6.6073   -6.5845

>> b3
b3 =

-3.2829
3.2806

>> X
X =

1    -1    -1     1
1    -1     1    -1

>> R
R =

1     1     0     0
0     0     1     1

final_output =
0.9606    0.9601    0.0441    0.0441
0.0395    0.0400    0.9558    0.9558



figure;

hold on;

for x1 = -1.5:0.05:1.5

for x2 = -1.5:0.05:1.5

X_test = [x1; x2];

A1 = X_test;

Z2 = W2*A1 + b2;

A2 = 1./(1+exp(-Z2));

Z3 = W3*A2 + b3;

A3 = 1./(1+exp(-Z3));

if (A3(1)>=0.5)

plot(x1, x2, 'r.');

else

plot(x1, x2, 'b.');

end

end

end

plot(X(1,1),X(2,1),'ro','MarkerSize',12, 'MarkerFaceColor','r');

plot(X(1,2),X(2,2),'ro','MarkerSize',12, 'MarkerFaceColor','r');

plot(X(1,3),X(2,3),'bo','MarkerSize',12, 'MarkerFaceColor','b');

plot(X(1,4),X(2,4),'bo','MarkerSize',12, 'MarkerFaceColor','b');

Test the Trained Network



‘patternnet_demo.m’
% Input data pattern

X = [1 -1 -1 1; 1 -1 1 -1];

% Repeat X for training, validation and 

testing

X_repeat = repmat(X, 1, 3);

% Response

R = [1  1  0 0; 0 0  1  1];

R_repeat = repmat(R, 1, 3);

rng('default');

net = patternnet(2);

% Gradient descent backpropagation

net.trainFcn = 'traingd';

net.performFcn = 'mse';

net.layers{1}.transferFcn = 'logsig';

% Maximum number of epochs to train

net.trainParam.epochs = 1000000;

% Learning rate (default = 0.01)

net.trainParam.lr  = 0.5;

% Separates targets into three sets: 

% training, validation, and testing, 

% according to indices provided

net.divideFcn = 'divideind';

net.divideParam.trainInd = 1:4;

net.divideParam.valInd = 5:8;

net.divideParam.testInd= 9:12;

% Train the network

net = train(net, X_repeat, R_repeat);



Training



Confusion Matrix



% Verify the output using the weights 

% and biases learned by net

final_output = zeros(2, 4);

for i = 1: 4

A1 = X(:,i);

W2 = cell2mat(net.IW);

b2 = net.b{1};

Z2 = W2*A1 + b2;

% Hidden layer uses sigmoid transfer 

function

%A2 = 1./(1+exp(-Z2));

A2 = logsig(Z2);

W3 = cell2mat(net.LW(2));

b3 = net.b{2};

Z3 = W3*A2 + b3;

% The output layer uses Softmax transfer 

A3 = softmax(Z3);

final_output(:,i) = A3;

end

final_output =

0.9679    0.9629    0.0421    0.0345

0.0321    0.0371    0.9579    0.9655

logsig softmax

Weights and Biases Learned

W2 =
3.6689   -3.6128
4.0819   -3.4690

b2 =
-3.8523
3.9549

W3 =

-3.5056    3.9379

3.6894   -3.0098

b3 =
-1.6999
1.6113



Test the Trained Network using sim

figure;

hold on;

for x1 = -1.5:0.05:1.5

for x2 = -1.5:0.05:1.5

X_test = [x1; x2];

y = sim(net, X_test);

if (y(1)>=0.5)

plot(x1, x2, 'r.');

else

plot(x1, x2, 'b.');

end

end

end



Sigmoid Output Range: (0,1)

W3 =
6.6118    6.5891
-6.6073   -6.5845

b3 =
-3.2829
3.2806

𝑍3(1)

𝑍3(2)

𝑍3 1 ≈ −𝑍3 2 = 𝑢

Z3 = W3*A2 + b3

𝐴3 1 =
1

1 + 𝑒−𝑍3(1)
=

1

1 + 𝑒−𝑢

𝐴3 2 =
1

1 + 𝑒−𝑍3(2)
≈

1

1 + 𝑒−(−𝑢)

𝐴3 1 + 𝐴3 2 ≈
1

1 + 𝑒−𝑢
+

1

1 + 𝑒𝑢
=

1 + 𝑒−𝑢 + 1 + 𝑒𝑢

1 + 𝑒−𝑢 1 + 𝑒𝑢
= 1



Softmax Output Range: [0,1]
Compared to:
W3 (sigmoid) = 

6.6118    6.5891
-6.6073   -6.5845

Compared to:
b3 (sigmoid)=

-3.2829
3.2806

𝑍3(1)

𝑍3(2)

If 𝑍3 1 ≈ −𝑍3 2 = 𝑣 =
𝑢

2
, then Softmax is equivalent to Sigmoid for two-class case:

𝐴3 1 =
𝑒𝑣

𝑒𝑣+𝑒−𝑣
=

1

1+𝑒−2𝑣
=

1

1+𝑒−𝑢
: sigmoid function on 𝑢;

𝐴3 2 =
𝑒−𝑣

𝑒𝑣+𝑒−𝑣
=

1

1+𝑒2𝑣
=

1

1+𝑒−(−𝑢)
: sigmoid function on (−𝑢).

𝐴3 1 =
𝑒𝑍3(1)

𝑒𝑍3(1) + 𝑒𝑍3(2)

𝐴3 2 =
𝑒𝑍3(2)

𝑒𝑍3(1) + 𝑒𝑍3(2)

W3 =
-3.5056    3.9379
3.6894   -3.0098

b3 =
-1.6999
1.6113 𝐴3 1 + 𝐴3 2 = 1



'mlp_demo.py'

import numpy as np

x1 = np.array([1, 1])
x2 = np.array([-1, -1])
x3 = np.array([-1, 1])
x4 = np.array([1, -1])
X = np.vstack([x1, x2, x3, x4]) 
# Features are along the row

y1 = np.array([1, 0])
y2 = np.array([1, 0])
y3 = np.array([0, 1])
y4 = np.array([0, 1])
y = np.vstack([y1, y2, y3, y4])

from sklearn.neural_network import 
MLPClassifier
clf = MLPClassifier(

# number of neurons in the hidden layer
hidden_layer_sizes = (2), 

activation='logistic', 
random_state= 100, 
alpha = 0.001, 
solver='lbfgs', 
max_iter=10000000
)

clf.fit(X, y)



# Verification of the final output 

Z2 = np.matmul(X,clf.coefs_[0]) + 
clf.intercepts_[0]
A2 = 1/(1 + np.exp(-Z2))

Z3 = np.matmul(A2,clf.coefs_[1]) + 
clf.intercepts_[1]
A3 = 1/(1 + np.exp(-Z3))

Weights and Biases Learned
clf.n_layers_
clf.loss_
clf.predict(X)

# Weight matrix for the hidden layer
clf.coefs_[0]
# Bias vector for the hidden layer
clf.intercepts_[0]

# Output layer weights and biases
clf.coefs_[1]
clf.intercepts_[1]

A3
Out[ ]: 
array([[0.99004116, 0.00990482],

[0.99006107, 0.00988508],
[0.00984579, 0.99001524],
[0.01009781, 0.99004976]])

clf.predict_proba(X)
Out[]: 
array([[0.99004116, 0.00990482],

[0.99006107, 0.00988508],
[0.00984579, 0.99001524],
[0.01009781, 0.99004976]])

clf.predict(X)
Out[95]: 
array([[1, 0],

[1, 0],
[0, 1],
[0, 1]])



MNIST Image Dataset



Convolutional Neural Network (CNN)

CNN used to recognize the ten digits in the MNIST database. The 
system was trained with 60,000 numerical character images of 
the same size as the image shown on the left. 



Feature Maps

The output high value (in white) indicates that the CNN recognized the input properly. 


