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• Training
– Given the dataset, algorithm, and parameters, training 

is the use of computational resources in order to build 
a model of the data in order to predict the outputs on 
new data.

• Evaluation (testing)
– Before a system can be deployed it needs to be tested 

and evaluated for accuracy on data that it was not 
trained on. 

– This can often include a comparison with human 
experts in the field, and the selection of appropriate 
metrics for this comparison.



Training, Testing, and Validation Sets

• For large datasets, sometimes only training and testing partition;
• For small datasets, cross-validation during the training phase:

training (training/validation) and testing partition



Dataset Partitioning Methods
• Training and Testing Partition

– Partitions data randomly into exactly two subsets of 
specified ratio for training, and testing (holdout). 

– This method performs training and testing only once, which 
cuts computation time on large datasets.

– We should interpret the reported prediction errors with 
caution on small data sets.

• Training/Validation and Testing Partition
– The dataset is split into different groups, some for training, 

some for validation, and the rest for testing.

– The validation set is the holdout during the training phase, 
and is used to optimize the model parameters.

– The testing set is used to provide an unbiased estimate of 
the final model after cross-validation.





Need for Cross Validation

• Cross-validation is a model assessment 
technique, based on a resampling procedure.

• Cross-validation is used to evaluate a machine 
learning algorithm’s performance in making 
predictions on new datasets that it has not been 
trained on. 

• When training a model with a small dataset, 
there is the risk of either overfitting or 
underfitting a model. 

• The choice of training set and testing set are 
critical in reducing the above risk. 

• This is why cross-validation comes into practice.



K-Fold Cross Validation

• The procedure has a single parameter called K, which is 
the number of subsets (groups) that a given data point 
(or sample) is to be split into. 

• This approach involves randomly dividing the set of 
observations into K groups, or folds, of approximately 
equal size. 

• As such, the procedure is often called K-fold cross-
validation. For example, K =10  => 10-fold cross-
validation.

• Cross validation generally results in a less biased or less 
optimistic estimate of the model skill (predictive 
performance) than other methods, such as a simple 
train/test split.



The Procedure

• Shuffle the dataset randomly
• Split the dataset into K groups

• For each unique group:
– Take the group as a holdout or validation dataset
– Use the remaining groups as a training data set
– Fit a model on the training set and evaluate it on the 

validation set (holdout)
– Retain the evaluation score
– Summarize the skill of the model based on the 

resulting K evaluation scores



Leave-some-out, K-fold Cross-Validation

Note: “Testing set” here actually means “validation set”, to distinguish it from
the “testing set” (hold out) set aside to test the final model obtained 
after cross-validation.
In the literature, “testing” is often used loosely in place of validation.



Model Skill Scores

• Cross-validation is primarily used in applied machine 
learning to estimate the skill of a machine learning 
model on unseen data. 

• We can use a small dataset to estimate how the trained 
model is expected to perform in general, when the 
model is used to make predictions on data not used 
during the training of the model.

• The results of a K-fold cross-validation runs are often 
summarized with the mean of the model skill scores. 

• It is also good practice to include a measure of the 
variance of the skill scores, such as the standard 
deviation.



Summary
• Cross-validation can be a computationally intensive 

operation, since training and validation is done multiple 
times.

• Because each partition group is independent, we can 
perform this analysis in parallel to speed up the process.

• For larger datasets, techniques like holdout or 
resubstitution are recommended

• For small datasets, we can use K-fold cross validation, or 
repeated random sub-sampling methods, etc. 
– Repeated random sub-sampling: Creating multiple random 

partitions of data to use as training set and testing set using the 
Monte Carlo methodology and aggregates results over all the 
runs. 

– This technique has a similar idea to the K-fold method, but each 
test set is chosen independently, which means some data points 
might be used for testing more than once.



Special Cases

• Resubstitution validation
– Does not partition the data and all data is used for training the model. 
– Resubstitution error

• The error rate is evaluated based on the prediction outcome using the trained 
model, versus the actual value from the same training data set. 

• This approach often produces overly optimistic estimates for 
performance and should be avoided if there is sufficient data.

Example:
Classification loss for naive Bayes classifiers by resubstitution

>> L = resubLoss(Mdl) 
• returns the in-sample minimum misclassification cost loss (L), which is a scalar 

representing how well the trained naive Bayes classifier Mdl classifies the 
predictor data stored in Mdl.X as compared to the true class labels stored in 
Mdl.Y.



Dataset Content

https://en.wikipedia.org/wiki/Iris_flower_data_set#Data_set

>> load fisheriris
meas 150x4 double

species 150x1 cell

>> meas(1,:)
ans =

5.1000    3.5000    1.4000    0.2000

>> 
species(51)
ans =
1×1 cell 

array
{'versicolor'}

>> species(1)
ans =
1×1 cell 

array
{'setosa'}

>> 
species(101)
ans =
1×1 cell 

array
{'virginica'}

https://en.wikipedia.org/wiki/Iris_flower_data_set#Data_set


>> load fisheriris
>> X = meas;
>> Y = species;
>> Mdl = fitcnb(X,Y)        % Train a naïve Bayes classifier
Mdl = 

ClassificationNaiveBayes
ResponseName: ‘Y‘
…

ClassNames: {'setosa'  'versicolor'  'virginica'}
NumObservations: 150
DistributionNames: {'normal'  'normal'  'normal'  'normal'}

>> L = resubLoss(Mdl)
L =

0.0400

The naive Bayes classifier misclassifies 4% of the training observations.

Matlab (Statistical and 
Machine Learning Toolbox)



Prediction (Resubstitution)

>> X = meas;
>> Y = species;
>> Mdl = fitcnb (X, Y);              % Train the classifier with (X, Y)

>> label = predict (Mdl, X);     % Predict using the same training data X

>> diff = strcmp (label, Y);
>> length(find(diff ==0))           % Number of prediction errors   

ans =
6

>> 6/150
ans =

0.0400



Fisher Iris Dataset

>>> from sklearn.datasets import load_iris
>>> samples = load_iris()
>>> samples.target_names

array(['setosa', 'versicolor', 'virginica'], dtype='<U10')



Naïve Bayes Classifier in sklearn
from sklearn.naive_bayes import GaussianNB
clf = GaussianNB()

from sklearn.datasets import load_iris
train_samples = load_iris()

X = train_samples.data
Y = train_samples.target

clf.fit (X, Y)
label = clf.predict (X)

import numpy as np
np.sum (label != Y)                    # Out: 6
Y.size # Out: 150
np.sum (label != Y)/Y.size #  Out: 0.04



Stratification Sampling

• Stratified sampling is a sampling technique where the 
samples are selected in the same proportion as they 
appear in the population, by dividing the population 
into groups called ‘strata’ based on a characteristic.

• Implementing stratified sampling ensures the training 
and testing sets, or training and validation sets have 
the same proportion of the feature of interest as in the 
original dataset.

• Thus the final trained model has a error performance 
that is a close approximation to the generalization 
error.



Example of Stratification

>> c = cvpartition (group,'KFold',k) 
• creates a random partition for stratified k-fold cross-validation. 
• Each subsample, or fold, has approximately the same number of 

observations and contains approximately the same class proportions as 
in group.



LOOCV

“test” here actually means 
validation.

Leave-one-out cross-validation
• Cross validation is performed by partitioning the dataset, and 

leaving out only one data point to validate the trained model, and 
using the remaining data points for training the model.

c = cvpartition(n,'Leaveout') 
• creates a random partition for leave-one-out cross-validation on n observations. 
• Leave-one-out is a special case of 'KFold' in which the number of folds equals the 

number of observations.



‘cvpartition_demo.m’
N = 15;
X1 = -3+randn(1,N);
C1 = ones(1,N);  % labels

X2 = 3+randn(1,N);
C2 = 2*ones(1,N);

X = [X1 X2];
C = [C1 C2];

cv = cvpartition(C, 'KFold', 5)
C(cv.test(1))
C(cv.test(2))
…
cv = cvpartition(C, 'KFold', 5, 'Stratify', false)
cv = cvpartition(C, 'HoldOut', 0.2)
cv = cvpartition(C, 'HoldOut', 0.2, 'Stratify', false)

%  Generate smaller dataset
cv = cvpartition(C, 'LeaveOut')

cv = cvpartition(C,'resubstitution')

cv = 
K-fold cross validation partition

NumObservations: 30
NumTestSets: 5

TrainSize: 24  24  24  24  24
TestSize: 6  6  6  6  6

C(cv.test(1))
ans =

1     1     1     2     2     2

C(cv.test(2))
ans =

1     1     1     2     2     2



‘cross_validate_demo.py’

from sklearn.model_selection import StratifiedKFold

cv = StratifiedKFold(n_splits = 5, shuffle = True, random_state = 1)

from sklearn.model_selection import KFold

cv = KFold(n_splits = 5, shuffle = True, random_state = 1)

from sklearn.model_selection import train_test_split

X_train, X_test, C_train, C_test = train_test_split \

(X, C, test_size = 0.2, random_state=1)

from sklearn.model_selection import LeaveOneOut

cv = LeaveOneOut ()



Cross Validation Score Report

• The results of a K-fold cross-validation runs are 
often summarized with the mean of the model 
skill scores. 

• It is also good practice to include a measure of 
the variance of the skill scores, such as the 
standard deviation.

• Matlab
– kfoldloss function

• Sklearn
– cross_val_score



‘kfoldloss_demo.m’

K = 10      % K-fold cross validation

load fisheriris

rng(1);     % For reproducibility

Model_cv = fitcnb(meas, … 

species,'CrossVal','on','KFold',K);

Model_cv;

Model_cv.Partition;

error_rate_1 = 

kfoldLoss(Model_cv,'LossFun','ClassifErr')



% Alternatively, use cvpartition function
rng(1);     % For reproducibility
cv_part = cvpartition (species, 'KFold', K);

Errors = zeros(1, K);

for i = 1: K
training_index = cv_part.training(i);
testing_index = cv_part.test(i);

Model = fitcnb(meas(training_index,:), species(training_index,:));

% Then predict using the testing data
label = predict(Model, meas(testing_index,:));
diff = strcmp (label, species(testing_index,:));
Errors(i) = length(find(diff==0))/length(label);

end

error_rate_2 = mean(Errors)



sklearn

“”” ‘cross_val_score.py’ “””
from sklearn.naive_bayes import GaussianNB
clf = GaussianNB()

from sklearn.datasets import load_iris
train_samples = load_iris()
X = train_samples.data
Y = train_samples.target

from sklearn.model_selection import StratifiedKFold
KFold1 = StratifiedKFold(n_splits=10, random_state=1, shuffle=True)

from sklearn.model_selection import cross_val_score

scores1 = cross_val_score(clf, X, Y, cv = KFold1, scoring = 'accuracy')
import numpy as np
print(np.mean(scores1))
print(np.std(scores1)



Metrics to Evaluate the 
Quality of Prediction

• TP, TN, FP, FN 

• Sensitivity (Recall)

• Specificity

• Precision

• Accuracy

• F1 score

• Confusion Matrix

• Receiver Operator Characteristic (ROC) curve



Binary Classification



Terminology

• True Positive (TP)
– A test result that correctly indicates the presence of a 

condition or characteristic

• True Negative (TN)
– A test result that correctly indicates the absence of a 

condition or characteristic

• False Positive (FP)
– A test result which wrongly indicates that a particular 

condition or attribute is present

• False Negative (FN)
– A test result which wrongly indicates that a particular 

condition or attribute is absent



• Accuracy (ACC) 

• Sensitivity (Recall, True Positive Rate, TPR, or Hit Rate)

• Specificity (Selectivity, or True Negative Rate, TNR)

• Precision (Positive Predictive Value, PPV)



Confusion Matrix (Chart)

• A confusion matrix contains information about known class 
labels and predicted class labels.

• The (i,j) element in the confusion matrix is the number of 
samples whose known class label is class i and whose 
predicted class is j. 

• The diagonal elements represent correctly classified 
observations.

>> label = predict (Mdl, X); 
>> Pred_Class = resubPredict (Mdl);
>> isequal (label, Pred_Class)
ans =

logical
1

>> confusionchart (Y, Pred_Class)              % Y has the true class labels





>> confusionchart(Y, Pred_Class, ...
'ColumnSummary','column-normalized', 'RowSummary','row-normalized');



The ROC (Receiver Operating 
Characteristic) Curve

• The metrics discussed previously not only be used to 
evaluate a particular classifier, but also compare classifiers, 
– either the same classifier with different learning parameters,
– or completely different classifiers. 

• For comparison of different classifiers, the Receiver 
Operating Characteristic (ROC) curve is useful.

• The ROC curve is a graphical plot that illustrates the 
diagnostic ability of a binary classifier system as its 
discrimination threshold is varied.

• The ROC curve is created by plotting the True Positive Rate 
(TPR, Sensitivity, Recall) against the False Positive Rate 
(FPR, or False Alarm Rate) at various threshold settings. 

• The method of ROC analysis was originally developed for 
operators of military radar receivers to detect objects in 
battlefields.



𝑇𝑃𝑅 =
𝑇𝑃

𝑃
=

𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝐹𝑃𝑅 =
𝐹𝑃

𝑁
=

𝐹𝑃

𝐹𝑃 + 𝑇𝑁

In general, Sensitivity increases with
False Alarm Rate.



Binary Classification



roc_pdf.m

>> TPR
TPR =

0.8413

>> FPR
FPR =

0.1587

Decision Boundary at x = 0 >> % TPR for Class 1
TPR = qfunc((B - m1)/sigma);
% FPR
FPR = qfunc((B - m0)/sigma);

m0 = -1  m1 = 1

Using trapz ( ) to 
estimate the area 
under the ROC curve

AUC = 0.9213



Better Separation

m0 = -2  m1 = 2

AUC = 0.9977



Hard to Separate

m0 = -0.1  m1 = 0.1

AUC = 0.5562



Classifier A

X = T (Decision Boundary)

X

Y



Classifier B

X = Y + T



Comparison of ROC’s

>> roc_compare
AUC_A =

0.9911
AUC_B =

0.9720



scikit-learn (sklearn): ML in Python

• Python IDE Installation
– Anaconda Data Science Platform:

https://www.anaconda.com

– Installation includes Python, NumPy, and many other 
commonly used packages for scientific computing and data 
science.

– Includes the Spyder (with IPython, or interactive Python) 
development environment that supports advanced editing, 
analysis, debugging, etc. 

• scikit-learn is an open source machine learning library 
that supports supervised and unsupervised learning.
– https://scikit-learn.org/stable/index.html

https://www.anaconda.com/
https://scikit-learn.org/stable/index.html


Fisher Iris Dataset

>>> from sklearn.datasets import load_iris
>>> samples = load_iris()
>>> samples.target_names

array(['setosa', 'versicolor', 'virginica'], dtype='<U10')



Naïve Bayes Classifier in sklearn
from sklearn.naive_bayes import GaussianNB
clf = GaussianNB()

from sklearn.datasets import load_iris
train_samples = load_iris()

X = train_samples.data
Y = train_samples.target

clf.fit (X, Y)
label = clf.predict (X)

import numpy as np
np.sum (label != Y)                    # Out: 6
Y.size # Out: 150
np.sum (label != Y)/Y.size #  Out: 0.04



Confusion Matrix in sklearn

>>> from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay

>>> confusion_matrix(Y, label)

array([[50,  0,  0],

[ 0, 47,  3],

[ 0,  3, 47]], dtype=int64)

>>> cm = confusion_matrix(Y, label)

>>> disp = ConfusionMatrixDisplay
…               (confusion_matrix = cm, 

…               display_labels = train_samples.target_names)



Visualization in Python

- matplotlib is a comprehensive library for visualization 
in Python

https://matplotlib.org/

- Install matplotlib first on the OS command prompt 
(if not already installed)
> pip install matplotlib

On Python:

>>> import matplotlib.pyplot as plt

>>> disp.plot()

>>> plt.show()

https://matplotlib.org/


Overall Accuracy = (50 + 47 + 47) / 150 = 144/150 = 0.96



Reported Metrics

• Precision is the proportion of correct predictions among 
all predictions of a certain class. 

• Recall is the proportion of examples of a certain class 
that have been predicted by the model as belonging to 
that class. That is, Recall is the proportion of true 
positives among all true examples.

• macro average
– The unweighted mean per class. This does not take class 

imbalance into account.

• weighted average
– The support-weighted mean per class

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁



Quality vs Quantity based on 
Relevance for Multiple Classes

• Precision is the fraction of relevant 
instances among the retrieved instances.

• Recall is the fraction of relevant instances 
that were retrieved.

• Precision can be seen as a measure of 
quality, and recall as a measure of 
quantity. 

• Higher precision means that an algorithm 
returns more relevant results than 
irrelevant ones.

• higher recall means that an algorithm 
returns more of the relevant results 
(whether or not irrelevant ones are also 
returned).



F1 Score

• Sensitivity (Recall) and Precision are to some extent inversely 
related

Sensitivity =                                       Precision = 

– If the number of false positives (FP) increases (meaning that the algorithm is using a 
broader definition of that class), then the number of false negatives (FN) often 
decreases, and vice versa.

• F1 score (combing Sensitivity and Precision via 
a harmonic mean)

𝐹1 = 2
Sensitivity × Precision

Sensitivity + Precision
=

2TP

2TP + FP + FN
=

TP

TP +
FP + FN

2

Mean of false samples 



Classification Report

>>> from sklearn.metrics import classification_report

>>> print(classification_report(Y, label, target_names = 
train_samples.target_names))

precision recall f1-score support

setosa 1.00      1.00      1.00        50

versicolor       0.94      0.94      0.94        50        

virginica 0.94      0.94      0.94        50

accuracy 0.96       150               

macro avg 0.96      0.96      0.96       150

weighted avg 0.96      0.96      0.96       150

Note: 0.96 = (1+0.94+0.94)/3 



Conversion to Two Classes

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=

47

47 + 3
= 0.94

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
=

47

47 + 3
= 0.94

𝐹1 =
𝑇𝑃

𝑇𝑃 +
𝐹𝑃 + 𝐹𝑁

2

= 0.94

Versicolor Others

Versicolor 47 (TP) 3 (FN)

Others 3 (FP) 97 (TN)

Predicted label

True label

Confusion Matrix for the relevant class: 
versicolor; other classes are irrelevant.


