EE 610, ML Fundamentals

Linear Models for Regression

Dr. W. David Pan
Dept. of ECE
UAH

Linear models for regression
Polynomial curve fitting as an illustrative example
Solution to a least-square problem

Math review
— Vector Calculus

— Linear Algebra

* Vector Space, QR Decomposition, SVD, Condition Numbers,
etc.

Numerical Stability
Implementations

The goal of regression is to predict the value of one or more
continuous target variables t given the value of a D-
dimensional vector x of input variables.

The polynomial is a specific example of a broad class of
functions called linear regression models, which share the
property of being linear functions of the adjustable
parameters.

we can also obtain a class of functions by taking linear
combinations of a fixed set of nonlinear functions of the
input variables, known as basis functions.

Such models are linear functions of the parameters, which
gives them simple analytical properties, and yet can be
nonlinear with respect to the input variables.

 The simplest linear model for regression is one that
involves a linear combination of the input variables.
This is known as linear regression.
y(xX, W) = wo + wrx1 +... +wpxp

* The key property of this model is that it is a linear
function of the parameters wo,...,wp

* We can extend the class of models by considering
linear combinations of fixed nonlinear functions of the
input variables, of the form

M—1

y(x, w) = wo + Z w;¢;(X)
j=1

Example: Polynomial Curve Fitting

M

2 M i

Yz, w) = wo + w1 T +wez” + ... fFwyr = E w,
j=0

* The polynomial coefficients wy, ..., wy, are collectively denoted by the
vector w.

* Although the polynomial function y(x, w) is a nonlinear function of x, it is
a linear function of the coefficients w.

 The values of the coefficients will be determined by fitting the polynomial
to the training data.

* This can be done by minimizing an error function that measures the misfit
between the function y(x, w) , for any given value of w, and the training
set data points.

* One common choice of error function is the sum of the squares of the
errors between the predictions y(x,, w) for each data point x,, and the
corresponding target values t,,, in order to minimize the error function:

N
1 o

E(“r) — 52 {:y(ifnamr) — tﬂ}“

n=1

Example: y(x,w) = wy + wix + w,x?

* Training data with four samples: (x1, t1), (x5, t3), (x3, t3), (X4, t4).
* Predicted values:

V1 = Wo + wixg + woxf
Yo = Wy + WX, + Wyx5
Y3 = Wy + Wyx3 + woxs
V4 = Wy + Wix, + Wyx s
e Using row-vector and matrix operations:

Y =1[y1y2y354l, W =[wowywy], Z = [t t;t5t,]

1 1 1 1
Y=WFy =[Wo W1 W2][X1 X2 X3 X4

2 2 2 2
X1 X2 X3 X

* We want the best approximation in the least-square sense: Z =~ WFy

* The system of linear equations are overdetermined since there are more
equations than unknowns. In Matlab, W = Z / Fy

Matlab: polyfit () function

* p = polyfit (x,y,n) returns the coefficients for a polynomial p(x) of
degree n that is a best fit (in a least-squares sense) for the data in y.

The coefficients in p are in descending powers, and the length of p
is n+1.

p(x) = pix"+ pox" '+ 4 ppX + Pyt

* polyfit uses x to form a Vandermonde matrix V with m =
length(x) rows and (n+1) columns, resulting in the linear system
below, which polyfit solves with p = V\y = pinv(V) *v.

[xn xn-lo. 1\ [P \ [y

.IH IS_I ol l 1’_]3 12

\'I:;r 'I::;r_l l/ \p”+1/ \}!m/

m x (n+1) (n+1) x 1 mx 1

Example: Fit with a straight line

p1X + p5, using notations of Matlab (weights are now p; in reversed
order, and the target values are now y;).

-x1 1] D, V1
X9 1 p2] = |V
Y3

x3 1

, Or Vizx2) Pax1) = Y@Ex1)

Given training data samples (x,y): (2, 5), (3, 7) (4, 9), the system of
equations (with 2 unknowns and 3 equations):

H (o

* Goal: Find a solution vector p such that the approximation error
(squared) below is minimized: E%(p) = ||[Vp — y||°.

* We can use calculus, or geometry and linear algebra to solve the
problem.

Gradient of Quadratic Function

E2p)=Vp—yl?=Wp—-)TWp—y) =@V —y")(Vp —y)

=p"VTVp—pViy—y'Vp+y'y
057

dp1

dE?

| 0P |

determine the critical point that can potentially minimize E?(p), where

VE?(p) = = U,(pTVTVp —pTVTy —yTVp + yTy) = [8], in order to

n@'VIVp) =20V"V)p, W@'V'y)=%0'Vp)=V'y, BG'y)=0
Thus VTV)p —VTy = [8], or VTVp = VTy (Normal Equation in Statistics)
VTV is invertible when the columns of V are linearly independent.

Best estimate (in least square sense): p = [(VTV)"1VT]y = pinv(V) y

>V=[2,1;3,1;4,1]; >> inv(V'*V)*V'*y ans =
>>y=[5709] >> pinv(V)*y 2.0000
1.0000

Hessian Matrix (Derivative of Gradient)

[92E? 0%E?

apf dp10p;

szEz(p) | 52g2 92E?2
|0p,0p, 0p§ |

0E2]

ap,
p aEZ

9p;.

=V,VTVp - 2vTy)’

=V,2p"VTV = 2y"V) = 2VTV

« VTV is always symmetric and positive definite (with all eigenvalues being
positive, all pivots being positive), thus p = [(VTV) V1] yis notonly a
critical point, but also a local minima.

* In addition, due to the Hessian being a (everywhere in general) positive
definite matrix, E?(p) is a convex function, and P is also a global minima.

>> \/'*V >> det(V'*V)
ans = ans =
29 9 6.0000

9 3

>> EIG = eig(V'*V) >> EIG(1)*EIG(2)
EIG = ans =
0.1886 6.0000
31.8114

Symbolic Matrix Operations

E2p)=Vp—yl?=Wp—-)TWp—y) =@V —y")(Vp —y)

=pTVTVp —p"VTy —yTVp +yly

4 Figure 1 = &
>> syms p1 p2 p E2(p1,p2) T s i ol IO i i
p =[pl;p2]; Nade | @08 E
V=[2,1;3,1;4,1]; _ x10°
y=[579]; i
E2(p1,p2) = (p.)*(V)*V*p -(p.)*(V)*y - " [
Yy *V*p +y'*y; . .
>> simplify(E2) 2
ans = 29*p172 + 18*pl1*p2 - 134*pl +
3*%p2A2 - 42*p2 + 155 0,

100

>> fsurf(pl, p2, E2, [-100 100 -100
100]); colorbar;

-100 _100

P2

Least Square

4\ Figure 1 L
File Edit View Insert Tools Desktop Window Help
Dade @08 kE
2 - — 50
@
1.8 145
1.6 an 140
U2 =
1.4 V1 B 35
X2
1.2 Y3 30
Z0
1 25
0.8 20
0.6 = 15
0.4 [10
0.2 5
0 0

1.5

P1

2:5

Geometric Interpretation

* The least square solution to a generally inconsistent system Vp =y
of m equations in n unknowns satisfies
Vivp =vly.

* If the columnsof V are I|nearl¥ mdependent then VTV is
invertible, and p = (VTV)"1rTy

* In this specific example (with zero estimation error), the 3 X 1
vector y happens to be in the column space of the matrix I/, with
the solution 2 X 1 vector p containing the components (linear
combination coefficients).

2 1 5]
l3 1] [51 = |7| =y, Solution: p = 51] =[ﬂ
4 1Y% o] ?
(5] 2 1
y=171=p1|3|tp2]|1
19 4 1

Column Space of a Matrix

Given a m X n matrix V, its column space is the vector space formed by the columns of
V. The column space contains all linear combinations of the columns of /. It is a

subspace of R™.

* The column space consists of all vectors Vp for some n X 1 vector p.

2 1
— Forexample, IV =

4 1

3 1] has a column space which is a 2D plane (a subspace in R3).

* Consider the following (slightly changed) least square problem:

1 1 1

; ifl-

A N | N
9

1 1 1 4=
42 _
5 g 2 1 2 ,
9 2 4 1 4
8]

5 2 1
6]=Y,thenVTV=[2 3 4][3 1]=
9 4 1
_1
2

[29 9]
9 3

O

= |[5
-0
1 7 —
5 ellol L
1
1
1

Left Nullspace of a Matrix

The nullspace of a m X n matrix V consists of all vectors p such that
Vp = 0. The nullspace is a subspace of R™, just as the column
space.

The left nullspace of a m X n matrix V is the nullspace of VT. The
left nullspace contains all vectors p such that Vp = 0.

VIVp = VTy (Normal Equation), or VI (y — Vp) = 0, indicating
the error vector (y — Vp) must be perpendicular to the column
space of V. In other words,

The error vector is in the left nullspace of V.

51 12 121 |3,
Error Vector: y —Vp =[6|—|3 1 [g] =[=3| which is orthogonal to all the
9 4 1113

| 3

W=

column vectors of V, since V' (y — Vp) = [i i ;L —% = [8]

1
W=
L

Projection onto the Column Space

Vp =

2 1 P
3 1 | =
4 1

5

ofy = l6] onto the column space of V (a 2D

9

plane), such that error vector is perpendicular

to the column space.

Vily—-Vp)=0

is the projection :
9

Error Vector: y — Vp =

; 2
i Column 1: |3
: 4

A _ [P1]
p P2

Column Space
2 1

3 1
4 1

of V =

Equivalence of Algebraic and
Geometric Interpretations

Regarding the least square solution p = [(VTV)~1VT] y, to the problem

Vp =y:

* Vpisthe projected point of y on the column space of V/, by constructing a
perpendicular line from y to the column space.

 E =||lVp— y || = ||y —VpP]|, is the distance from y to the point Vp in
the column space.

e Searching for the least-square solution, which minimizes E, or

equivalently, EZ, is the same as Iocatlng the point Vp, that is closer to
y than any other points in the column space of I/.

* The error vector (y — Vp) or (Vp — y) must be perpendicular to the
column space of V.

 The projected point Vp [1 (VIV)='V'] y = Sy, where the m x m
square matrix § = V(VTV) VTis caIIed a Prolectlon Matrix. It can be
shown that in general:

— §=62=¢3—...
- ST=5

Projection Matrix

Projection Matrix: S = V(VTy)-1pyT

2 1 p 5
(1) Given |3 1 [p1]=Vp= 6=V,
4 11" 9
> 1 1
? i 16 . 5 2 -1) 5 2 -—-1][5
then S = 3 3 3153 2 2 2 ,andSy=g 2 2 21]|6|=
11 5 -1 2 5 -1 2 5119
6 3 6
5
(2) Given the same V, but Vp = |7| =y,
9

) 5 2 -1) 5 2 -—1][5 5
thenSisthesameas:g 2 2 2 ,andSyzg 2 2 21l71=17l=y
-1 2 5 -1 2 5119 9

Structure Returned by polyfit ()

[p,S] = polyfit(x,y,n) also returns a structure S
that can be used to obtaln error estimates.

S 1s a structure containing three elements:

(1) The triangular factor from a QR decomposition
of the Vandermonde matrix,

(2) The degrees of freedom and,

(3) The norm of the residuals.

S.R = R;

S.df = max (0, length(y) - (n+l1));
r =y - V*p;

S.normr = norm(r);

QR Decomposition

% Construct the Vandermonde matrix V = [x.*n ... X.*2 x ones(size(x))]
V(:,n+1) = ones(length(x),1,class(x));

forj=n:-1:1
V(:,j) = x.*V(;,j+1);
end

% Solve least squares problem p = V\y to get polynomial coefficients p.
[Q,R] =qr(V, 0); % Economy-size QR Decomposition

% Same as p = V\y

p = matlab.internal.math.nowarn.mldivide(R, Q'*y);

IV X P = Y, where V is the Vandermonde matrix: m by (n+1), p is the output weight vector:
(n+1) by 1, and y is the target vector: m by 1.

QR decomposition (Economy-size instead of full-size): V' = Q X R, where Q: m by (n+1)
with orthonormal columns, i.e., QT X Q = I, and R: (n+1) by (n+1) upper triangular matrix.

OQXRXp=y »Q0TxQxRxp=0QTxy—>Rxp=(QT xy), which represents a system
of linear equations of unknown p. The equations can be solved by using mldivide(R, Q'*y).

Numerical Stability

* The least square solution to a generally
inconsistent system Vp = y of m equationsinn
unknowns satisfies the normal equation:

Vivp =Vvly.

* |f the columns of V are linearly independent,
then VTV is invertible, we can find p =
(VIV)~1v Ty, by using the pseudoinverse
method.

* How sensitive is the solution p to a small change
of I/'?

— Condition Number of the matrix I/

Condition Number

The condition number of matrix V,,,«., is given by
kK(V) = ||V||||V+|| where ||V || is the "-norm of the
matrix V, and V1 is the pseudo inverse of V.

The 2-norm of a matrix is V' is the largest singular value
of V (i.e., the square root of the largest eigenvalue of

the matrix VI'V), as given by ||V|| = \//1_ max(VTV) =
o_max(V).
The relative sensitivity of the solution p of VF i y to

the perturbation of the input ||Ap|| satisfies —— <

Iyl
k = 1. The larger the condition number, the worse.

Example

>>V=1[2,1;3,1; 4, 1];

>>\
V =
2 1
3 1
4 1
>> Eig = eig(V'*V) >> Svd = svd(V) >>norm(V) >> Svd(1)*Svd(2)
ans = ans = ans = ans =
0.1886 5.6402 5.6402 5 4495
31.8114 0.4343
>> sqrt(Eig(2)) >> sqrt(Eig(1)*Eig(2))
ans = ans =
5.6402 VIl = VA_max(VTV) = o_max(V) 2.4495
>> norm(pinv(V)) >> norm(V)*norm(pinv(V)) >> cond(V)
ans = ans = ans =

2.3026 12.9869 12.9869

Solving the normal equation: VT Vp = VTy might lead to even worse
numerical instability due to the squaring of the conditional number k (V).

There is a need to use other methods, e.g., QR decomposition, where R is
a upper triangular matrix (square matrix with all the entries below the
main diagonal being zero), and Q is a norm-preserving orthogonal matrix
(whose columns are orthonormal vectors).

>>V=[2,1;3,1;4,1]; >> VTV = V'*V
>> \/ VTV =
= 29 9
2 1 9 3
3 1
4 1 >> cond(VTV)
ans =
>> cond(V) 168.6607
ans =
12.9869
>> cond(V)"2
ans =

168.6607

QR Decomposition

>> [Q R] = qgr(V,0)

Q: R =
-0.3714 0.8339 -5.3852 -1.6713
-0.5571 0.1516 0 0.4549
-0.7428 -0.5307
>> Q*R
>>Q'*Q Q' xQ=1I ans =
ans = 2.0000 1.0000
1.0000 -0.0000 3.0000 1.0000
-0.0000 1.0000 4.0000 1.0000

QXRxp=y > Q"xQxRxp=Q"xy->Rxp=(Q"xy),

>>Y =[5, 7; 9] R = X p = (QT X y)’ S>> Ql*y
y= =)
5 [-5.3852 -1.6713] [pll _ [-12.4416] ans =
7 [0 0.4549]|P2] ~ [0.4549] -12.4416
9 0.4549

>> mldivide(R, Q'*y) % Avoid inversion of large matrix
ans = 2.0000
1.0000

SVD

Solving the normal equation: VI'Vp = VTy might lead to even worse
numerical instability due to the squaring of the conditional number k (V).

Another method is Singular Value Decomposition (SVD), used by sklearn.

SVD factorize a matrix V into the product of three matrices: V = ASBT,
where the middle matrix S contains the singular values.

>V =1[2,1;3,1;4,1]; >> [A,S,B] = svd(V, 'econ');
>>\/=
2 1 >> A
3 1 = >> A'*A
4 1 -0.3913 0.8247 ans =
-0.5606 0.1382 1.0000 -0.0000
>>S -0.7298 -0.5484 -0.0000 1.0000
S =
56402 O >>B >> B*B'
0 0.4343 B = ans =
>> SA(-1) -0.9545 -0.2982 1.0000 -0.0000
ans = -0.2982 0.9545 -0.0000 1.0000
0.1773 0

0 2.3026

Vxp=1vy, whereV =4x%xS x BT

(A xS xBT) x p = y, both sides multiplied by (B x S~ x AT), we have
(BXS XA X (AXxSXBT)xp=(BxS1xA") Xy, where

BxS1xAT x Ax S x BT xp =p, since
ATxA=1,S1xS=1andBx BT =]

Thus p=(BxStxA) xy

>>y=[5;7;9] >>p=B*SA(-1)*A*y >>y=[5,6;9] >>p = B*SA(-1)*A™y
y= p= y= p=

5 2.0000 5 2.0000

7 1.0000 6 0.6667

9 9

‘curve fit demo.m’

N=4

% Generate 4 data points for training
rng(1);

x=10*rand(1, N);

Z=1+2*x+3*x."2; % Target values

% Formulate the input data matrix
Fx = zeros(3,N);
fori=1:N
Fx(:,i) = [1, x(i), x(i)"2];
end

W=27/Fx
W2 = Z* pinv(Fx)

[p,s] = polyfit(x, Z, 2); % notice the reversed order
wrev(p) % Show weights from low to high orders

% Now with noise added

rng(1);
Z=1+2*+3*x."2 +randn(1, N);

% The Vondermonde matrix

V = fliplr(Fx');
[Q,R] = ar(V,0);
Q'*Q

p2 = mldivide(R, Q'*Z");

% Compared wit the structure
returned by polyfit()

[p,s] = polyfit(x, Z, 2);

p

s.R

s.normr

normr2 = norm(W*Fx - Z)
normr3 = norm(V*p2 - Z')

Fitting Noisier Data

% With more training data with much worse noise
added

N =100;

rng(1);
x = 10*rand(1,N);

rng(1);
noise = 20*randn(1, N);
Z=1+2*x+3*x."2 + noise;

Fx = zeros(3,N);

fori=1:N
Fx(:,i) = [1, x(i), x(i)*2];
end

scatter(x,Z); grid
W=27/Fx

hold on;
XX = min(x):0.01:max(x);

plot(xx, W(1) + W(2)*xx + W(3)*xx.A2);

[p,s] = polyfit(x, Z, 2);

p
s.R

o
s.Normr S

4 Figure 1 - O

File Edit View Insert Tools Desktop Window Help

Qdde @ 08| k[E

350

300 r

250

200 -

150 -

100 -

50 -

0 £

-50

-5.0299 3.1358 2.9858

Compared with the added noise norm
norm(noise)

Condition

>>V = fliplr(Fx");
>> whos V
Name Size
Vv 100x3
>> cond(V)
ans =
133.3990
>> cond(V'*V)
ans =
1.7795e+04

Bytes Class Attributes

2400 double

>>s.R

ans =

-438.8045 -55.0248 -7.3552
0 -14.1341 -5.7421
0 0 -3.5957

Numbers

sklearn

ataset = np.loadtxt(infile, delimiter='",")
xdata = dataset][:, 0]
ydata = dataset[:, 1]

from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import PolynomialFeatures
poly = PolynomialFeatures(degree=2)

xdata = xdatal[:, np.newaxis]

xdata_poly = poly.fit_transform(xdata)
reg = LinearRegression(fit_intercept=False).fit(xdata_poly, ydata)

reg.coef

matplotlib

import matplotlib.pyplot as plt

plt.scatter(xdata, ydata, label='data’, alpha = 0.8)

def func(x, w1, w2, w3):

return wl + w2*x + w3*x**2
xdata_clean = np.arange(np.min(xdata),
np.max(xdata), 0.01)

plt.plot(xdata_clean, func(xdata_clean,
*reg.coef),

'r', label="fit: w1=%5.3f, w2=%5.3f,
w3=%5.3f' % tuple(reg.coef))

plt.grid()
plt.xlabel('x')
plt.ylabel('y')
plt.legend()
plt.show()

300 1

250

200 1

= 150 -

100 A

@ data
— it wl=-5.030, w2=3.136, wi=2 98&

10

SVD

Matlab
[A,S,B]= svd(Fx','econ');
>>p_svd = B*S/(-1)*A'*Z' >> S
P_svd = S=
-5.0299 442.3060 0 0
3.1358 0 15.2064 0
2.9858 0 0 3.3157

Sklearn

reg.coef
array([-5.02994715, 3.13580213, 2.98578577])

reg.singular_
array([442.30603581, 15.20639803, 3.31566156])

