EE 610, ML Fundamentals

Linear Models for Regression

Dr. W. David Pan

Dept. of ECE
UAH

- Linear models for regression
- Polynomial curve fitting as an illustrative example
- Solution to a least-square problem
- Math review
- Vector Calculus
- Linear Algebra
- Vector Space, QR Decomposition, SVD, Condition Numbers, etc.
- Numerical Stability
- Implementations
- The goal of regression is to predict the value of one or more continuous target variables t given the value of a D dimensional vector \boldsymbol{x} of input variables.
- The polynomial is a specific example of a broad class of functions called linear regression models, which share the property of being linear functions of the adjustable parameters.
- we can also obtain a class of functions by taking linear combinations of a fixed set of nonlinear functions of the input variables, known as basis functions.
- Such models are linear functions of the parameters, which gives them simple analytical properties, and yet can be nonlinear with respect to the input variables.
- The simplest linear model for regression is one that involves a linear combination of the input variables. This is known as linear regression.

$$
y(\mathbf{x}, \mathbf{w})=w_{0}+w_{1} x_{1}+\ldots+w_{D} x_{D}
$$

- The key property of this model is that it is a linear function of the parameters w_{0}, \ldots, w_{D}
- We can extend the class of models by considering linear combinations of fixed nonlinear functions of the input variables, of the form

$$
y(\mathbf{x}, \mathbf{w})=w_{0}+\sum_{j=1}^{M-1} w_{j} \phi_{j}(\mathbf{x})
$$

Example: Polynomial Curve Fitting

$$
y(x, \mathbf{w})=w_{0}+w_{1} x+w_{2} x^{2}+\ldots+w_{M} x^{M}=\sum_{j=0}^{M} w_{j} x^{j}
$$

- The polynomial coefficients w_{0}, \ldots, w_{M} are collectively denoted by the vector \boldsymbol{w}.
- Although the polynomial function $y(x, \boldsymbol{w})$ is a nonlinear function of x, it is a linear function of the coefficients \boldsymbol{w}.
- The values of the coefficients will be determined by fitting the polynomial to the training data.
- This can be done by minimizing an error function that measures the misfit between the function $y(x, \boldsymbol{w})$, for any given value of \boldsymbol{w}, and the training set data points.
- One common choice of error function is the sum of the squares of the errors between the predictions $y\left(x_{n}, \boldsymbol{w}\right)$ for each data point x_{n} and the corresponding target values t_{n}, in order to minimize the error function:

$$
E(\mathbf{w})=\frac{1}{2} \sum_{n=1}^{N}\left\{y\left(x_{n}, \mathbf{w}\right)-t_{n}\right\}^{2}
$$

Example: $y(x, w)=w_{0}+w_{1} x+w_{2} x^{2}$

- Training data with four samples: $\left(x_{1}, t_{1}\right),\left(x_{2}, t_{2}\right),\left(x_{3}, t_{3}\right),\left(x_{4}, t_{4}\right)$.
- Predicted values:

$$
\begin{aligned}
& y_{1}=w_{0}+w_{1} x_{1}+w_{2} x_{1}^{2} \\
& y_{2}=w_{0}+w_{1} x_{2}+w_{2} x_{2}^{2} \\
& y_{3}=w_{0}+w_{1} x_{3}+w_{2} x_{3}^{2} \\
& y_{4}=w_{0}+w_{1} x_{4}+w_{2} x_{4}^{2}
\end{aligned}
$$

- Using row-vector and matrix operations:

$$
\begin{aligned}
& Y=\left[\begin{array}{lll}
y_{1} & y_{2} & y_{3}
\end{array} y_{4}\right], W=\left[\begin{array}{lll}
w_{0} & w_{1} & w_{2}
\end{array}\right], Z=\left[t_{1} t_{2} t_{3} t_{4}\right] \\
& Y=W F_{X}=\left[\begin{array}{lll}
w_{0} & w_{1} & w_{2}
\end{array}\right]\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
x_{1} & x_{2} & x_{3} & x_{4} \\
x_{1}^{2} & x_{2}^{2} & x_{3}^{2} & x_{4}^{2}
\end{array}\right]
\end{aligned}
$$

- We want the best approximation in the least-square sense: $Z \approx W F_{X}$
- The system of linear equations are overdetermined since there are more equations than unknowns. In Matlab, $W=Z / F_{X}$

Matlab: polyfit () function

- $p=$ polyfit (x, y, n) returns the coefficients for a polynomial $p(x)$ of degree n that is a best fit (in a least-squares sense) for the data in y. The coefficients in p are in descending powers, and the length of p is $\mathrm{n}+1$.

$$
p(x)=p_{1} x^{n}+p_{2} x^{n-1}+\ldots+p_{n} x+p_{n+1} .
$$

- polyfit uses x to form a Vandermonde matrix V with $m=$ length (x) rows and ($n+1$) columns, resulting in the linear system below, which polyfit solves with $p=V \backslash y=\operatorname{pinv}(V)^{*} y$.

$$
\begin{gathered}
\left(\begin{array}{cccc}
x_{1}^{n} & x_{1}^{n-1} & \cdots & 1 \\
x_{2}^{n} & x_{2}^{n-1} & \cdots & 1 \\
\vdots & \vdots & \ddots & \vdots \\
x_{m}^{n} & x_{m}^{n-1} & \cdots & 1
\end{array}\right)\left(\begin{array}{c}
p_{1} \\
p_{2} \\
\vdots \\
p_{n+1}
\end{array}\right)=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right) \\
\underset{(\mathrm{n}+1) \times 1}{(\mathrm{n}+1)}
\end{gathered}
$$

Example: Fit with a straight line

$p_{1} x+p_{2}$, using notations of Matlab (weights are now p_{i} in reversed order, and the target values are now y_{i}).
$\left[\begin{array}{ll}x_{1} & 1 \\ x_{2} & 1 \\ x_{3} & 1\end{array}\right]\left[\begin{array}{l}p_{1} \\ p_{2}\end{array}\right]=\left[\begin{array}{l}y_{1} \\ y_{2} \\ y_{3}\end{array}\right]$, or $V_{(3 \times 2)} p_{(2 \times 1)}=y_{(3 \times 1)}$
Given training data samples $(x, y):(2,5),(3,7),(4,9)$, the system of equations (with 2 unknowns and 3 equations):

$$
\left[\begin{array}{ll}
2 & 1 \\
3 & 1 \\
4 & 1
\end{array}\right]\left[\begin{array}{l}
p_{1} \\
p_{2}
\end{array}\right]=\left[\begin{array}{l}
5 \\
7 \\
9
\end{array}\right]
$$

- Goal: Find a solution vector p such that the approximation error (squared) below is minimized: $E^{2}(p)=\|V p-y\|^{2}$.
- We can use calculus, or geometry and linear algebra to solve the problem.

Gradient of Quadratic Function

$$
\begin{aligned}
& E^{2}(p)=\|V p-y\|^{2}=(V p-y)^{T}(V p-y)=\left(p^{T} V^{T}-y^{T}\right)(V p-y) \\
& =p^{T} V^{T} V p-p^{T} V^{T} \mathrm{y}-\mathrm{y}^{\mathrm{T}} V p+\mathrm{y}^{\mathrm{T}} \mathrm{y} \\
& \nabla E^{2}(p)=\left[\begin{array}{l}
\frac{\partial E^{2}}{\partial p_{1}} \\
\frac{\partial E^{2}}{\partial p_{2}}
\end{array}\right]=\nabla_{p}\left(p^{T} V^{T} V \mathrm{p}-p^{T} V^{T} \mathrm{y}-\mathrm{y}^{\mathrm{T}} V p+\mathrm{y}^{\mathrm{T}} \mathrm{y}\right)=\left[\begin{array}{l}
0 \\
0
\end{array}\right], \text { in order to }
\end{aligned}
$$

determine the critical point that can potentially minimize $E^{2}(p)$, where
$\nabla_{p}\left(p^{T} V^{T} V p\right)=2\left(V^{T} V\right) p, \quad \nabla_{p}\left(p^{T} V^{T} \mathrm{y}\right)=\nabla_{p}\left(y^{T} V p\right)=V^{T} \mathrm{y}, \quad \nabla_{p}\left(y^{T} y\right)=0$
Thus

$$
\left(V^{T} V\right) p-V^{T} \mathrm{y}=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \text {, or } V^{T} V p=V^{T} \mathrm{y} \text { (Normal Equation in Statistics) }
$$

$V^{T} V$ is invertible when the columns of V are linearly independent.
Best estimate (in least square sense): $\hat{p}=\left[\left(V^{T} V\right)^{-1} V^{T}\right] y=\operatorname{pinv}(V) y$

$$
\begin{array}{llr}
\gg V=[2,1 ; 3,1 ; 4,1] ; & \gg \operatorname{inv}\left(V^{\prime} * V\right)^{*} V^{\prime} * y & \text { ans }= \\
\gg y=[579]^{\prime} ; & \gg \operatorname{pinv}(V)^{*} y & 2.0000 \\
\gg & 1.0000
\end{array}
$$

Hessian Matrix (Derivative of Gradient)

$$
\begin{aligned}
\nabla_{p}^{2} E^{2}(p) & =\left[\begin{array}{cc}
\frac{\partial^{2} E^{2}}{\partial p_{1}^{2}} & \frac{\partial^{2} E^{2}}{\partial p_{1} \partial p_{2}} \\
\frac{\partial^{2} E^{2}}{\partial p_{2} \partial p_{1}} & \frac{\partial^{2} E^{2}}{\partial p_{2}^{2}}
\end{array}\right]=\nabla_{p}\left[\begin{array}{c}
\frac{\partial E^{2}}{\partial p_{1}} \\
{\left[\frac{\partial E^{2}}{\partial p_{2}}\right.}
\end{array}\right]^{T}=\nabla_{p}\left(2 V^{T} V p-2 V^{T} y\right)^{T} \\
& =\nabla_{p}\left(2 p^{T} V^{T} V-2 y^{T} V\right)=2 V^{T} V
\end{aligned}
$$

- $V^{T} V$ is always symmetric and positive definite (with all eigenvalues being positive, all pivots being positive), thus $\hat{p}=\left[\left(V^{T} V\right)^{-1} V^{T}\right] y$ is not only a critical point, but also a local minima.
- In addition, due to the Hessian being a (everywhere in general) positive definite matrix, $E^{2}(p)$ is a convex function, and \hat{p} is also a global minima.

$\gg \mathrm{V}^{\prime} * V$	$\gg \operatorname{det}\left(\mathrm{~V}^{\prime} * \mathrm{~V}\right)$	$\gg \mathrm{EIG}=\operatorname{eig}\left(\mathrm{V}^{\prime} * \mathrm{~V}\right)$	>> EIG(1)*EIG(2)
ans $=$	ans $=$	$\mathrm{EIG}=$	ans $=$
$29 \quad 9$	6.0000	0.1886	6.0000
$9 \quad 3$		31.8114	

Symbolic Matrix Operations

$$
\begin{aligned}
& E^{2}(p)=\|V p-y\|^{2}=(V p-y)^{T}(V p-y)=\left(p^{T} V^{T}-y^{T}\right)(V p-y) \\
& \quad=p^{T} V^{T} V p-p^{T} V^{T} \mathrm{y}-\mathrm{y}^{\mathrm{T}} V p+\mathrm{y}^{\mathrm{T}} \mathrm{y}
\end{aligned}
$$

>> syms p1 p2 p E2(p1,p2)
$\mathrm{p}=[\mathrm{p} 1 ; \mathrm{p} 2]$;
$\mathrm{V}=[2,1 ; 3,1 ; 4,1]$;
$y=\left[\begin{array}{ll}5 & 7\end{array}\right]$ ';
E2(p1,p2) = (p.')*(V')* ${ }^{*} p-(p .)^{*}\left(V^{\prime}\right)^{*} y-$ $y^{\prime *} V^{*} p+y^{\prime *} y$;
>> simplify(E2)
ans $=29^{*}$ p1^2 $+18^{*}$ p1*p2-134*p1 + 3*p2^2-42*p2 +155
>> fsurf(p1, p2, E2, [-100 100-100 100]); colorbar;

Least Square

Geometric Interpretation

- The least square solution to a generally inconsistent system $V p=y$ of m equations in n unknowns satisfies $V^{T} V p=V^{T} y$.
- If the columns of V are linearly independent, then $V^{T} V$ is invertible, and $\hat{p}=\left(V^{T} V\right)^{-1} V^{T} y$.
- In this specific example (with zero estimation error), the 3×1 vector y happens to be in the column space of the matrix V, with the solution 2×1 vector \hat{p} containing the components (linear combination coefficients).

$$
\begin{aligned}
{\left[\begin{array}{ll}
2 & 1 \\
3 & 1 \\
4 & 1
\end{array}\right]\left[\begin{array}{l}
p_{1} \\
p_{2}
\end{array}\right] } & =\left[\begin{array}{l}
5 \\
7 \\
9
\end{array}\right]=y, \text { solution: } \hat{p}=\left[\begin{array}{l}
p_{1} \\
p_{2}
\end{array}\right]=\left[\begin{array}{l}
2 \\
1
\end{array}\right] \\
y & =\left[\begin{array}{l}
5 \\
7 \\
9
\end{array}\right]=p_{1}\left[\begin{array}{l}
2 \\
3 \\
4
\end{array}\right]+p_{2}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
\end{aligned}
$$

Column Space of a Matrix

Given a $m \times n$ matrix V, its column space is the vector space formed by the columns of V. The column space contains all linear combinations of the columns of V. It is a subspace of \boldsymbol{R}^{m}.

- The column space consists of all vectors $V p$ for some $n \times 1$ vector p.
- For example, $V=\left[\begin{array}{ll}2 & 1 \\ 3 & 1 \\ 4 & 1\end{array}\right]$ has a column space which is a 2D plane (a subspace in \boldsymbol{R}^{3}).
- Consider the following (slightly changed) least square problem:

$$
\begin{gathered}
{\left[\begin{array}{ll}
2 & 1 \\
3 & 1 \\
4 & 1
\end{array}\right]\left[\begin{array}{l}
p_{1} \\
p_{2}
\end{array}\right]=\left[\begin{array}{l}
5 \\
6 \\
9
\end{array}\right]=y \text {, then } V^{\mathrm{T}} V=\left[\begin{array}{lll}
2 & 3 & 4 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 1 \\
3 & 1 \\
4 & 1
\end{array}\right]=\left[\begin{array}{cc}
29 & 9 \\
9 & 3
\end{array}\right]} \\
\hat{p}=\left(V^{T} V\right)^{-1} V^{T} y=\left[\begin{array}{cc}
29 & 9 \\
9 & 3
\end{array}\right]^{-1}\left[\begin{array}{lll}
2 & 3 & 4 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
5 \\
6 \\
9
\end{array}\right]=\left[\begin{array}{ccc}
-\frac{1}{2} & 0 & \frac{1}{2} \\
\frac{11}{6} & \frac{1}{3} & -\frac{7}{6}
\end{array}\right]\left[\begin{array}{l}
5 \\
6 \\
9
\end{array}\right]=\left[\begin{array}{l}
2 \\
\frac{2}{3}
\end{array}\right] \\
y=\left[\begin{array}{l}
5 \\
7 \\
9
\end{array}\right] \approx\left[\begin{array}{l}
4 \frac{2}{3} \\
6 \frac{2}{3} \\
8 \frac{2}{3}
\end{array}\right]=p_{1}\left[\begin{array}{l}
2 \\
3 \\
4
\end{array}\right]+p_{2}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=2\left[\begin{array}{l}
2 \\
3 \\
4
\end{array}\right]+\frac{2}{3}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
\end{gathered}
$$

Left Nullspace of a Matrix

- The nullspace of a $m \times n$ matrix V consists of all vectors p such that $V p=0$. The nullspace is a subspace of \boldsymbol{R}^{m}, just as the column space.
- The left nullspace of a $m \times n$ matrix V is the nullspace of V^{T}. The left nullspace contains all vectors p such that $V^{T} p=0$.
- $V^{T} V p=V^{T}$ y (Normal Equation), or $V^{T}(y-V p)=0$, indicating the error vector $(y-V p)$ must be perpendicular to the column space of V. In other words,
- The error vector is in the left nullspace of V.

Error Vector: $y-V \hat{p}=\left[\begin{array}{l}5 \\ 6 \\ 9\end{array}\right]-\left[\begin{array}{ll}2 & 1 \\ 3 & 1 \\ 4 & 1\end{array}\right]\left[\begin{array}{l}2 \\ \frac{2}{3}\end{array}\right]=\left[\begin{array}{c}\frac{1}{3} \\ -\frac{2}{3} \\ \frac{1}{3}\end{array}\right]$, which is orthogonal to all the
column vectors of V, since $V^{T}(y-V \hat{p})=\left[\begin{array}{lll}2 & 3 & 4 \\ 1 & 1 & 1\end{array}\right]\left[\begin{array}{c}\frac{1}{3} \\ -\frac{2}{3} \\ \frac{1}{3}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$

Projection onto the Column Space

$V \hat{p}=\left[\begin{array}{ll}2 & 1 \\ 3 & 1 \\ 4 & 1\end{array}\right]\left[\begin{array}{l}p_{1} \\ p_{2}\end{array}\right]=\left[\begin{array}{c}4 \frac{2}{3} \\ 6 \frac{2}{3} \\ 8 \frac{2}{3}\end{array}\right]$ is the projection
of $y=\left[\begin{array}{l}5 \\ 6 \\ 9\end{array}\right]$ onto the column space of V (a 2D plane), such that error vector is perpendicular to the column space.

$$
V^{T}(y-V p)=0
$$

Equivalence of Algebraic and Geometric Interpretations

Regarding the least square solution $\hat{p}=\left[\left(V^{T} V\right)^{-1} V^{T}\right] y$, to the problem $V p=y$:

- $V \hat{p}$ is the projected point of y on the column space of V, by constructing a perpendicular line from y to the column space.
- $E=\|V \hat{p}-y\|=\|y-V \hat{p}\|$, is the distance from y to the point $V \hat{p}$ in the column space.
- Searching for the least-square solution, which minimizes E, or equivalently, E^{2}, is the same as locating the point $V \hat{p}$, that is closer to y than any other points in the column space of V.
- The error vector $(y-V p)$ or $(V p-y)$ must be perpendicular to the column space of V.
- The projected point $V \hat{p}=V\left[\left(V^{T} V\right)^{-1} V^{T}\right] y=S y$, where the $m \times m$ square matrix $S=V\left(V^{T} V\right)^{-1} V^{T}$ is called a Projection Matrix. It can be shown that in general:
- $S=S^{2}=S^{3}=\cdots$
$-S^{\mathrm{T}}=S$

Projection Matrix

Projection Matrix: $S=V\left(V^{T} V\right)^{-1} V^{T}$
(1) Given $\left[\begin{array}{ll}2 & 1 \\ 3 & 1 \\ 4 & 1\end{array}\right]\left[\begin{array}{l}p_{1} \\ p_{2}\end{array}\right]=V p=\left[\begin{array}{l}5 \\ 6 \\ 9\end{array}\right]=y$,

$$
\text { then } S=\left[\begin{array}{ccc}
\frac{5}{6} & \frac{1}{3} & -\frac{1}{6} \\
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
-\frac{1}{6} & \frac{1}{3} & \frac{5}{6}
\end{array}\right]=\frac{1}{6}\left[\begin{array}{ccc}
5 & 2 & -1 \\
2 & 2 & 2 \\
-1 & 2 & 5
\end{array}\right] \text {, and } S y=\frac{1}{6}\left[\begin{array}{ccc}
5 & 2 & -1 \\
2 & 2 & 2 \\
-1 & 2 & 5
\end{array}\right]\left[\begin{array}{l}
5 \\
6 \\
9
\end{array}\right]=\left[\begin{array}{c}
4 \frac{2}{3} \\
6 \frac{2}{3} \\
8 \frac{2}{3}
\end{array}\right] \approx y
$$

(2) Given the same V, but $V p=\left[\begin{array}{l}5 \\ 7 \\ 9\end{array}\right]=y$, then S is the same as: $\frac{1}{6}\left[\begin{array}{ccc}5 & 2 & -1 \\ 2 & 2 & 2 \\ -1 & 2 & 5\end{array}\right]$, and $S y=\frac{1}{6}\left[\begin{array}{ccc}5 & 2 & -1 \\ 2 & 2 & 2 \\ -1 & 2 & 5\end{array}\right]\left[\begin{array}{l}5 \\ 7 \\ 9\end{array}\right]=\left[\begin{array}{l}5 \\ 7 \\ 9\end{array}\right]=y$

Structure Returned by polyfit ()

$[p, S]=p o l y f i t(x, y, n)$ also returns a structure S that can be used to obtain error estimates.
S is a structure containing three elements:
(1) The triangular factor from a $Q R$ decomposition of the Vandermonde matrix,
(2) The degrees of freedom and,
(3) The norm of the residuals.

$$
\begin{aligned}
& S . R=R ; \\
& S . d f=\max (0, \text { length }(y)-(n+1)) ; \\
& r=y-V^{*} p ; \\
& S . \operatorname{normr}=\operatorname{norm}(r) ;
\end{aligned}
$$

QR Decomposition

```
% Construct the Vandermonde matrix V = [x.^n ... x.^2 x ones(size(x))]
V(:,n+1) = ones(length(x),1,class(x));
for j = n:-1:1
    V(:,j) = x.*V(:,j+1);
end
\% Solve least squares problem \(p=\mathrm{V} \backslash \mathrm{y}\) to get polynomial coefficients p . \([Q, R]=\operatorname{qr}(\mathrm{V}, 0)\); \(\quad \%\) Economy-size QR Decomposition
\% Same as \(p=V \backslash y\)
\(p=\) matlab.internal.math.nowarn.mldivide(R, \(\left.Q^{\prime *} y\right)\);
```

$V \times p=y$, where V is the Vandermonde matrix: m by $(\mathrm{n}+1), p$ is the output weight vector: $(\mathrm{n}+1)$ by 1 , and y is the target vector: m by 1 .
QR decomposition (Economy-size instead of full-size): $V=Q \times R$, where $Q: \mathrm{m}$ by $(\mathrm{n}+1)$ with orthonormal columns, i.e., $Q^{\mathrm{T}} \times Q=I$, and $R:(\mathrm{n}+1)$ by $(\mathrm{n}+1)$ upper triangular matrix.
$Q \times R \times p=y \rightarrow Q^{\mathrm{T}} \times Q \times R \times p=Q^{\mathrm{T}} \times y \rightarrow R \times p=\left(Q^{\mathrm{T}} \times y\right)$, which represents a system of linear equations of unknown p. The equations can be solved by using mldivide ($\mathrm{R}, \mathrm{Q}^{\prime *} \mathrm{y}$).

Numerical Stability

- The least square solution to a generally inconsistent system $V p=y$ of m equations in n unknowns satisfies the normal equation: $V^{T} V p=V^{T} y$.
- If the columns of V are linearly independent, then $V^{T} V$ is invertible, we can find $\hat{p}=$ $\left(V^{T} V\right)^{-1} V^{T} y$, by using the pseudoinverse method.
- How sensitive is the solution \hat{p} to a small change of V ?
- Condition Number of the matrix V

Condition Number

- The condition number of matrix $V_{m \times n}$ is given by $\kappa(V)=\|V\|\left\|V^{+}\right\|$, where $\|V\|$ is the 2-norm of the matrix V, and V^{+}is the pseudo inverse of V.
- The 2 -norm of a matrix is V is the largest singular value of V (i.e., the square root of the largest eigenvalue of the matrix $\left.V^{T} V\right)$, as given by $\|V\|=\sqrt{\lambda_{-} \max \left(V^{T} V\right)}=$ $\sigma_{-} \max (V)$.
- The relative sensitivity of the solution p of $V p=y$ to the perturbation of the input $\|\Delta p\|$ satisfies $\frac{\|\Delta p\|}{\|p\|} \leq$ $\kappa \frac{\|\Delta y\|}{\|y\|}$.
- $\kappa \geq 1$. The larger the condition number, the worse.

Example

```
>> V = [2, 1; 3, 1; 4, 1];
>>V
V =
    2 1
    3 1
    4
l> Eig= eig(V'*V)
>> norm(pinv(V))
ans=
    2.3026
    >> norm(V)*norm(pinv(V))
    ans =
        12.9869
```

```
>> cond(V)
ans =
    12.9869
```

- Solving the normal equation: $V^{T} V p=V^{T} y$ might lead to even worse numerical instability due to the squaring of the conditional number $\kappa(V)$.
- There is a need to use other methods, e.g., QR decomposition, where R is a upper triangular matrix (square matrix with all the entries below the main diagonal being zero), and Q is a norm-preserving orthogonal matrix (whose columns are orthonormal vectors).

```
>> V = [2, 1; 3, 1; 4, 1];
>> V
V =
    2 1
    3 1
    4 1
>> cond(V)
ans =
    12.9869
>> cond(V)^2
ans=
    168.6607
```


QR Decomposition

```
\(\gg[Q R]=\operatorname{qr}(\mathrm{V}, \mathrm{O})\)
Q \(=\)
    -0.3714 0.8339
    -0.5571 0.1516
    \(-0.7428-0.5307\)
\[
\begin{array}{rl}
R= \\
-5.3852 & -1.6713 \\
0 & 0.4549
\end{array}
\]
\[
\begin{array}{rlrl}
\gg Q^{\prime *} \mathrm{Q} & Q^{\mathrm{T}} \times Q=I & \begin{array}{l}
\gg \mathrm{Q}^{* R} \\
\text { ans }=
\end{array} & \begin{array}{l}
\text { ans }=
\end{array} \\
1.0000 & -0.0000 & 2.0000 & 1.0000 \\
-0.0000 & 1.0000 & 3.0000 & 1.0000 \\
& & 4.0000 & 1.0000
\end{array}
\]
\[
Q \times R \times p=y \rightarrow Q^{\mathrm{T}} \times Q \times R \times p=Q^{\mathrm{T}} \times y \rightarrow R \times p=\left(Q^{\mathrm{T}} \times y\right)
\]
\[
\gg y=[5 ; 7 ; 9]
\]
\[
y=
\]
\[
5
\]
\[
7
\]
9
\[
\begin{array}{ll}
\mathrm{R}= & \times p=\left(Q^{\mathrm{T}} \times y\right), \\
{\left[\begin{array}{rrr}
-5.3852 & -1.6713]
\end{array}\right]\left[\begin{array}{l}
p_{1} \\
p_{2}
\end{array}\right]=[-12.4416]} \\
{[0.4549]}
\end{array}
\]
```

>> $Q^{\prime *} y$
ans =
-12.4416
0.4549

```
\[
\begin{aligned}
& \text { >> mldivide(R, } \left.Q^{\prime *} y\right) \quad \text { \% Avoid inversion of large matrix } \\
& \text { ans }=2.0000 \\
& 1.0000
\end{aligned}
\]
```


SVD

- Solving the normal equation: $V^{T} V p=V^{T} y$ might lead to even worse numerical instability due to the squaring of the conditional number $\kappa(V)$.
- Another method is Singular Value Decomposition (SVD), used by sklearn.
- SVD factorize a matrix V into the product of three matrices: $V=A S B^{T}$, where the middle matrix S contains the singular values.

>>V $=[2,1 ; 3,1 ; 4,1] ;$	>> [$\mathrm{A}, \mathrm{S}, \mathrm{B}]=\operatorname{svd}(\mathrm{V}$, 'econ');			
$\gg \mathrm{V}=$				
21	>> A			
31	A $=$		>> $A^{\prime *}$ A	
41	-0.3913	0.8247	ans =	
	-0.5606	0.1382	1.0000	-0.0000
>> S	-0.7298	-0.5484	-0.0000	1.0000
$\mathrm{S}=$				
5.64020	>> B		>> $B^{*} B^{\prime}$	
00.4343	$B=$		ans $=$	
>> $S^{\wedge}(-1)$	-0.9545	-0.2982	1.0000	-0.0000
ans $=$	-0.2982	0.9545	-0.0000	1.0000

 0.17730
 $0 \quad 2.3026$
$V \times p=y$, where $V=A \times S \times B^{T}$
$\left(A \times S \times B^{T}\right) \times p=y$, both sides multiplied by $\left(B \times S^{-1} \times A^{T}\right)$, we have $\left(B \times S^{-1} \times A^{T}\right) \times\left(A \times S \times B^{T}\right) \times p=\left(B \times S^{-1} \times A^{T}\right) \times y$, where
$B \times S^{-1} \times A^{T} \times A \times S \times B^{T} \times p=p$, since $A^{T} \times A=I, S^{-1} \times S=I$, and $B \times B^{T}=I$

Thus

$$
p=\left(B \times S^{-1} \times A^{T}\right) \times y
$$

$\begin{array}{clll}\gg y=[5 ; 7 ; 9] & \gg p=B^{*} S^{\wedge}(-1)^{*} A^{\prime *} y & \gg y=[5 ; 6 ; 9] & \gg p=B^{*} S^{\wedge}(-1)^{*} A^{\prime *} y \\ y= & p= & y= & p= \\ 5 & 2.0000 & 5 & 2.0000 \\ 7 & 1.0000 & 6 & 0.6667 \\ 9 & & 9 & \end{array}$

'curve fit demonn

```
\(\mathrm{N}=4\)
\% Generate 4 data points for training
rng(1);
x = 10*rand(1, N);
\(Z=1+2^{*} x+3^{*} x .^{\wedge} 2 ; \%\) Target values
\% Formulate the input data matrix
\(\mathrm{Fx}=\) zeros( \(3, \mathrm{~N}\) );
for \(\mathrm{i}=1\) : N
    \(F x(:, i)=\left[1, x(i), x(i)^{\wedge} 2\right] ;\)
end
W = Z / Fx
W2 = \(Z^{*} \operatorname{pinv(Fx)}\)
```

[p,s] = polyfit(x, Z, 2); \% notice the reversed order wrev(p) \% Show weights from low to high orders
\% Now with noise added rng(1);
$Z=1+2^{*} x+3^{*} x .^{\wedge} 2+\operatorname{randn}(1, N)$;
\% The Vondermonde matrix
V = fliplr(Fx');
$[\mathrm{Q}, \mathrm{R}]=\operatorname{qr}(\mathrm{V}, \mathrm{O})$;
$Q^{\prime *}$ Q
p2 = mldivide (R, $\left.Q^{\prime}{ }^{*} Z^{\prime}\right)$;
\% Compared wit the structure returned by polyfit()
[p,s] = polyfit(x, Z, 2);
p
s.R
s.normr
normr2 $=$ norm $\left(W^{*} \mathrm{Fx}-\mathrm{Z}\right)$
normr3 $=$ norm(V^{*} p2 $-\mathrm{Z}^{\prime}$)

Fitting Noisier Data

\% With more training data with much worse noise added
N = 100;
rng(1);
$\mathrm{x}=10$ * rand $(1, \mathrm{~N})$;
rng(1);
noise $=20^{*}$ randn $(1, \mathrm{~N})$;
$Z=1+2^{*} x+3^{*} x . \wedge^{\wedge}+$ noise;

Fx = zeros(3,N);
for $i=1: N$
$\mathrm{Fx}(\mathrm{i}, \mathrm{i})=\left[1, \mathrm{x}(\mathrm{i}), \mathrm{x}(\mathrm{i})^{\wedge} 2\right] ;$
end
scatter(x,Z); grid
W = Z / Fx
hold on;
$x x=\min (x): 0.01: \max (x)$;
$\operatorname{plot}\left(x x, W(1)+W(2)^{*} x x+W(3)^{*} x .^{\wedge} 2\right)$;
[p,s] = polyfit(x, Z, 2);
p
s.R
s.Normr

W =

$$
\text { -5.0299 } 3.1358 \quad 2.9858
$$

\% Compared with the added noise norm norm(noise)

Condition Numbers

```
>> V = fliplr(Fx');
>> whos V
    Name Size Bytes Class Attributes
    V 100x3 2400 double
>> cond(V)
ans =
    133.3990
>> cond(V'*V)
ans =
    1.7795e+04
>> S.R
ans =
-438.8045 -55.0248 -7.3552
    0 -14.1341 -5.7421
    0 0 -3.5957
```


sklearn

```
ataset = np.loadtxt(infile, delimiter=',')
xdata = dataset[:, 0]
ydata = dataset[:, 1]
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import PolynomialFeatures
poly = PolynomialFeatures(degree=2)
xdata = xdata[:, np.newaxis]
xdata_poly = poly.fit_transform(xdata)
reg = LinearRegression(fit_intercept=False).fit(xdata_poly, ydata)
reg.coef_
```


matplotlib

import matplotlib.pyplot as plt
plt.scatter(xdata, ydata, label='data', alpha $=0.8$)
def func(x, w1, w2, w3):
return $w 1+w 2^{*} x+w 3^{*} x^{* *} 2$
xdata_clean = np.arange(np.min(xdata),
np.max(xdata), 0.01)
plt.plot(xdata_clean, func(xdata_clean, *reg.coef_),
'r', label='fit: w1=\%5.3f, w2=\%5.3f, w3=\%5.3f' \% tuple(reg.coef_))
plt.grid()
plt.xlabel('x')
plt.ylabel('y')
plt.legend()
plt.show()

SVD

- Matlab

```
[A,S,B]= svd(Fx','econ');
    >> p_svd = B* \({ }^{\wedge}(-1)^{*} A^{\prime *} Z^{\prime} \quad \gg S\)
    P_svd \(=\quad \mathrm{S}=\)
    -5.0299
    3.1358
    2.9858
\begin{tabular}{cccc}
442.3060 & 0 & 0 \\
0 & 15.2064 & 0 \\
0 & 0 & 3.3157
\end{tabular}
```

- Sklearn
reg.coef
$\operatorname{array}([-5.02994715,3.13580213,2.98578577])$
reg.singular array([442.30603581, 15.20639803, 3.31566156])

