
EE 610, ML Fundamentals

Linear Models for Regression

Dr. W. David Pan

Dept. of ECE

UAH



• Linear models for regression

• Polynomial curve fitting as an illustrative example

• Solution to a least-square problem

• Math review
– Vector Calculus

– Linear Algebra
• Vector Space, QR Decomposition, SVD, Condition Numbers, 

etc.

• Numerical Stability

• Implementations



• The goal of regression is to predict the value of one or more 
continuous target variables 𝑡 given the value of a 𝐷-
dimensional vector 𝒙 of input variables.

• The polynomial is a specific example of a broad class of 
functions called linear regression models, which share the 
property of being linear functions of the adjustable 
parameters.

• we can also obtain a class of functions by taking linear 
combinations of a fixed set of nonlinear functions of the 
input variables, known as basis functions.

• Such models are linear functions of the parameters, which 
gives them simple analytical properties, and yet can be 
nonlinear with respect to the input variables.



• The simplest linear model for regression is one that 
involves a linear combination of the input variables. 
This is known as linear regression.

• The key property of this model is that it is a linear 
function of the parameters

• We can extend the class of models by considering 
linear combinations of fixed nonlinear functions of the 
input variables, of the form



Example: Polynomial Curve Fitting

• The polynomial coefficients 𝑤0, . . . , 𝑤𝑀 are collectively denoted by the 
vector 𝒘.

• Although the polynomial function 𝑦(𝑥,𝒘) is a nonlinear function of 𝑥, it is 
a linear function of the coefficients 𝒘.

• The values of the coefficients will be determined by fitting the polynomial 
to the training data. 

• This can be done by minimizing an error function that measures the misfit 
between the function 𝑦(𝑥,𝒘) , for any given value of 𝒘, and the training 
set data points.

• One common choice of error function is the sum of the squares of the 
errors between the predictions 𝑦(𝑥𝑛 , 𝒘) for each data point 𝑥𝑛 and the 
corresponding target values 𝑡𝑛, in order to minimize the error function:



Example: 𝑦 𝑥,𝑤 = 𝑤0 +𝑤1𝑥 + 𝑤2𝑥
2

• Training data with four samples: (𝑥1, 𝑡1), (𝑥2, 𝑡2), (𝑥3, 𝑡3), (𝑥4, 𝑡4). 
• Predicted values:

𝑦1 = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥1
2

𝑦2 = 𝑤0 + 𝑤1𝑥2 + 𝑤2𝑥2
2

𝑦3 = 𝑤0 + 𝑤1𝑥3 + 𝑤2𝑥3
2

𝑦4 = 𝑤0 + 𝑤1𝑥4 + 𝑤2𝑥4
2

• Using row-vector and matrix operations:
𝑌 = 𝑦1 𝑦2 𝑦3 𝑦4 ,  𝑊 = [𝑤0 𝑤1 𝑤2],  𝑍 = 𝑡1 𝑡2 𝑡3 𝑡4

𝑌 = 𝑊𝐹𝑋 = [𝑤0 𝑤1 𝑤2]

1 1 1 1
𝑥1 𝑥2 𝑥3 𝑥4
𝑥1
2 𝑥2

2 𝑥3
2 𝑥4

2

• We want the best approximation in the least-square sense: 𝑍 ≈ 𝑊𝐹𝑋
• The system of linear equations are overdetermined since there are more 

equations than unknowns. In Matlab, 𝑊 = 𝑍 / 𝐹𝑋



Matlab: polyfit ( ) function

• p = polyfit (x,y,n) returns the coefficients for a polynomial p(x) of 
degree n that is a best fit (in a least-squares sense) for the data in y. 
The coefficients in p are in descending powers, and the length of p 
is n+1.

• polyfit uses x to form a Vandermonde matrix V with m = 
length(x) rows and (n+1) columns, resulting in the linear system 
below, which polyfit solves with p = V\y = pinv(V) * y.

m x (n+1) (n+1) x 1 m x 1 



Example: Fit with a straight line

𝑝1𝑥 + 𝑝2, using notations of Matlab (weights are now 𝑝𝑖 in reversed 
order, and the target values are now 𝑦𝑖).

𝑥1 1
𝑥2 1
𝑥3 1

𝑝1
𝑝2

=

𝑦1
𝑦2
𝑦3

, or 𝑉(3×2) 𝑝(2×1) = 𝑦(3×1)

Given training data samples (𝑥, 𝑦): (2, 5), (3, 7), (4, 9), the system of 
equations (with 2 unknowns and 3 equations):

2 1
3 1
4 1

𝑝1
𝑝2

=
5
7
9

• Goal: Find a solution vector 𝑝 such that the approximation error 
(squared) below is minimized: 𝐸2(𝑝) = 𝑉𝑝 − 𝑦 2.

• We can use calculus, or geometry and linear algebra to solve the 
problem.



Gradient of Quadratic Function

𝐸2(𝑝) = 𝑉𝑝 − 𝑦 2 = 𝑉𝑝 − 𝑦 𝑇 𝑉𝑝 − 𝑦 = 𝑝𝑇𝑉𝑇 − 𝑦𝑇 𝑉𝑝 − 𝑦

= 𝑝𝑇𝑉𝑇𝑉𝑝 − 𝑝𝑇𝑉𝑇y − yT𝑉𝑝 + yTy

𝛻𝐸2 𝑝 =

𝜕𝐸2

𝜕𝑝1

𝜕𝐸2

𝜕𝑝2

= 𝛻𝑝 𝑝𝑇𝑉𝑇𝑉p − 𝑝𝑇𝑉𝑇y − yT𝑉𝑝 + yTy =
0
0

, in order to 

determine the critical point that can potentially minimize 𝐸2(𝑝), where

𝛻𝑝 𝑝𝑇𝑉𝑇𝑉𝑝 = 2 𝑉𝑇𝑉 𝑝, 𝛻𝑝(𝑝
𝑇𝑉𝑇y) = 𝛻𝑝(𝑦

𝑇𝑉𝑝) = 𝑉𝑇y, 𝛻𝑝(𝑦
𝑇𝑦) = 0

Thus 𝑉𝑇𝑉 𝑝 − 𝑉𝑇y =
0
0

, or 𝑉𝑇𝑉𝑝 = 𝑉𝑇y (Normal Equation in Statistics)

𝑉𝑇𝑉 is invertible when the columns of V are linearly independent.
Best estimate (in least square sense): Ƹ𝑝 = [ 𝑉𝑇𝑉 −1𝑉𝑇] 𝑦 = pinv 𝑉 𝑦

>> V = [2, 1; 3, 1; 4, 1];
>> y = [5 7 9]‘;

>> inv(V'*V)*V'*y
>> pinv(V)*y

ans =
2.0000
1.0000



Hessian Matrix (Derivative of Gradient)

𝛻𝑝
2𝐸2 𝑝 =

𝜕2𝐸2

𝜕𝑝1
2

𝜕2𝐸2

𝜕𝑝1𝜕𝑝2
𝜕2𝐸2

𝜕𝑝2𝜕𝑝1

𝜕2𝐸2

𝜕𝑝2
2

= 𝛻𝑝

𝜕𝐸2

𝜕𝑝1
𝜕𝐸2

𝜕𝑝2

𝑇

= 𝛻𝑝 2𝑉𝑇𝑉𝑝 − 2𝑉𝑇y 𝑇

= 𝛻𝑝 2𝑝𝑇𝑉𝑇𝑉 − 2𝑦𝑇V = 2𝑉𝑇𝑉

>> V'*V
ans =

29     9
9     3

• 𝑉𝑇𝑉 is always symmetric and positive definite (with all eigenvalues being 
positive, all pivots being positive), thus Ƹ𝑝 = [ 𝑉𝑇𝑉 −1𝑉𝑇] 𝑦 is not only a 
critical point, but also a local minima. 

• In addition, due to the Hessian being a (everywhere in general) positive 
definite matrix, 𝐸2(𝑝) is a convex function, and Ƹ𝑝 is also a global minima. 

>> det(V'*V)
ans =

6.0000

>> EIG = eig(V'*V)
EIG =

0.1886
31.8114

>> EIG(1)*EIG(2)
ans =

6.0000



Symbolic Matrix Operations

𝐸2(𝑝) = 𝑉𝑝 − 𝑦 2 = 𝑉𝑝 − 𝑦 𝑇 𝑉𝑝 − 𝑦 = 𝑝𝑇𝑉𝑇 − 𝑦𝑇 𝑉𝑝 − 𝑦

= 𝑝𝑇𝑉𝑇𝑉𝑝 − 𝑝𝑇𝑉𝑇y − yT𝑉𝑝 + yTy

>> syms p1 p2 p E2(p1,p2)
p =[p1;p2];
V = [2, 1; 3, 1; 4, 1];
y = [5 7 9]';
E2(p1,p2) = (p.')*(V')*V*p -(p.')*(V')*y -
y'*V*p +y'*y;

>> simplify(E2)
ans = 29*p1^2 + 18*p1*p2 - 134*p1 + 
3*p2^2 - 42*p2 + 155

>> fsurf(p1, p2, E2, [-100 100 -100 
100]); colorbar;



Least Square

𝑝1

𝑝2



Geometric Interpretation
• The least square solution to a generally inconsistent system 𝑉𝑝 = 𝑦

of 𝑚 equations in 𝑛 unknowns satisfies 
𝑉𝑇𝑉𝑝 = 𝑉𝑇𝑦.

• If the columns of  𝑉 are linearly independent, then 𝑉𝑇𝑉 is 
invertible, and Ƹ𝑝 = 𝑉𝑇𝑉 −1𝑉𝑇𝑦.

• In this specific example (with zero estimation error), the 3 × 1
vector 𝑦 happens to be in the column space of the matrix 𝑉, with 
the solution 2 × 1 vector Ƹ𝑝 containing the components (linear 
combination coefficients).

2 1
3 1
4 1

𝑝1
𝑝2

=
5
7
9

= 𝑦,  Solution: Ƹ𝑝 =
𝑝1
𝑝2

=
2
1

𝑦 =
5
7
9

= 𝑝1

2
3
4

+ 𝑝2

1
1
1



Column Space of a Matrix
Given a 𝑚 × 𝑛 matrix 𝑉, its column space is the vector space formed by the columns of 
𝑉. The column space contains all linear combinations of the columns of 𝑉. It is a 
subspace of 𝑹𝑚.
• The column space consists of all vectors 𝑉𝑝 for some 𝑛 × 1 vector 𝑝.

– For example, 𝑉 =
2 1
3 1
4 1

has a column space which is a 2D plane (a subspace in 𝑹3).

• Consider the following (slightly changed) least square problem:

2 1
3 1
4 1

𝑝1
𝑝2

=
5
6
9

= 𝑦, then 𝑉T𝑉 =
2 3 4
1 1 1

2 1
3 1
4 1

=
29 9
9 3

Ƹ𝑝 = 𝑉𝑇𝑉 −1𝑉𝑇𝑦 =
29 9
9 3

−1
2 3 4
1 1 1

5
6
9

=
−

1

2
0

1

2
11

6

1

3
−

7

6

5
6
9

=
2
2

3

𝑦 =
5
7
9

≈

4
2

3

6
2

3

8
2

3

= 𝑝1

2
3
4

+ 𝑝2

1
1
1

= 2
2
3
4

+
2

3

1
1
1



Left Nullspace of a Matrix

Error Vector: 𝑦 − 𝑉 Ƹ𝑝 =
5
6
9

−
2 1
3 1
4 1

2
2

3

=

1

3

−
2

3
1

3

, which is orthogonal to all the 

column vectors of 𝑉, since 𝑉𝑇 𝑦 − 𝑉 Ƹ𝑝 =
2 3 4
1 1 1

1

3

−
2

3
1

3

=
0
0

• The nullspace of a 𝑚 × 𝑛 matrix 𝑉 consists of all vectors 𝑝 such that 
𝑉𝑝 = 0. The nullspace is a subspace of 𝑹𝑚, just as the column 
space.

• The left nullspace of a 𝑚 × 𝑛 matrix 𝑉 is the nullspace of 𝑉T. The 
left nullspace contains all vectors 𝑝 such that 𝑉𝑇𝑝 = 0.

• 𝑉𝑇𝑉𝑝 = 𝑉𝑇y (Normal Equation), or 𝑉𝑇(𝑦 − 𝑉𝑝) = 0, indicating 
the error vector (𝑦 − 𝑉𝑝) must be perpendicular to the column 
space of 𝑽. In other words, 

• The error vector is in the left nullspace of 𝑽.



Projection onto the Column Space

𝑉 Ƹ𝑝 =
2 1
3 1
4 1

𝑝1
𝑝2

=

4
2

3

6
2

3

8
2

3

is the projection 

of y =
5
6
9

onto the column space of 𝑉 (a 2D 

plane), such that error vector is perpendicular 
to the column space.

𝑦 =
5
6
9

𝑉 Ƹ𝑝

Error Vector: 𝑦 − 𝑉 Ƹ𝑝 =

1

3

−
2

3
1

3

Column Space

of 𝑉 =
2 1
3 1
4 1

Column 2: 
1
1
1

Column 1: 
2
3
4

𝑝1

𝑝2

Ƹ𝑝 =
𝑝1
𝑝2

𝑉𝑇(𝑦 − 𝑉𝑝) = 0



Equivalence of Algebraic and 
Geometric Interpretations

Regarding the least square solution Ƹ𝑝 = [ 𝑉𝑇𝑉 −1𝑉𝑇] 𝑦, to the problem 
𝑉𝑝 = 𝑦:
• 𝑉 Ƹ𝑝 is the projected point of 𝑦 on the column space of 𝑉, by constructing a 

perpendicular line from 𝑦 to the column space.
• 𝐸 = ||𝑉 Ƹ𝑝— 𝑦 || = ||𝑦 —𝑉 Ƹ𝑝||, is the distance from 𝑦 to the point 𝑉 Ƹ𝑝 in 

the column space.
• Searching for the least-square solution, which minimizes 𝐸, or 

equivalently, 𝐸2, is the same as locating the point 𝑉 Ƹ𝑝, that is closer to 
𝑦 than any other points in the column space of 𝑉. 

• The error vector (𝑦 —𝑉𝑝) or (𝑉𝑝 − 𝑦) must be perpendicular to the 
column space of 𝑉.

• The projected point 𝑉 Ƹ𝑝 = 𝑉[ 𝑉𝑇𝑉 −1𝑉𝑇] 𝑦 = 𝑆𝑦, where the 𝑚 ×𝑚
square matrix 𝑆 = 𝑉 𝑉𝑇𝑉 −1𝑉𝑇 is called a Projection Matrix. It can be 
shown that in general:

– 𝑆 = 𝑆2 = 𝑆3 = ⋯

– 𝑆T = 𝑆



Projection Matrix

(1) Given 
2 1
3 1
4 1

𝑝1
𝑝2

= 𝑉𝑝 =
5
6
9

= 𝑦, 

then 𝑆 =

5

6

1

3
−

1

6
1

3

1

3

1

3

−
1

6

1

3

5

6

=
1

6

5 2 −1
2 2 2
−1 2 5

, and 𝑆𝑦 =
1

6

5 2 −1
2 2 2
−1 2 5

5
6
9

=

4
2

3

6
2

3

8
2

3

≈ 𝑦

Projection Matrix: 𝑆 = 𝑉 𝑉𝑇𝑉 −1𝑉𝑇

(2) Given the same 𝑉, but 𝑉𝑝 =
5
7
9

= 𝑦, 

then 𝑆 is the same as:
1

6

5 2 −1
2 2 2
−1 2 5

, and 𝑆𝑦 =
1

6

5 2 −1
2 2 2
−1 2 5

5
7
9

=
5
7
9

= 𝑦



Structure Returned by polyfit ( )

[p,S] = polyfit(x,y,n) also returns a structure S 

that can be used to obtain error estimates.

S is a structure containing three elements: 

(1) The triangular factor from a QR decomposition 

of the Vandermonde matrix, 

(2) The degrees of freedom and, 

(3) The norm of the residuals.

S.R = R;

S.df = max(0,length(y) - (n+1));

r = y - V*p;

S.normr = norm(r);



QR Decomposition

% Construct the Vandermonde matrix V = [x.^n ... x.^2 x ones(size(x))]
V(:,n+1) = ones(length(x),1,class(x));
for j = n:-1:1

V(:,j) = x.*V(:,j+1);
end

% Solve least squares problem p = V\y to get polynomial coefficients p.
[Q,R] = qr(V, 0);        % Economy-size QR Decomposition
% Same as p = V\y
p = matlab.internal.math.nowarn.mldivide(R, Q'*y); 

𝑉 × 𝑝 = 𝑦, where 𝑉 is the Vandermonde matrix: m by (n+1), 𝑝 is the output weight vector: 

(n+1) by 1, and 𝑦 is the target vector: m by 1. 

QR decomposition (Economy-size instead of full-size): 𝑉 = 𝑄 × 𝑅, where 𝑄: m by (n+1) 

with orthonormal columns, i.e., 𝑄T × 𝑄 = 𝐼, and 𝑅: (n+1) by (n+1) upper triangular matrix. 

𝑄 × 𝑅 × 𝑝 = 𝑦 → 𝑄T × 𝑄 × 𝑅 × 𝑝 = 𝑄T × 𝑦 → 𝑅 × 𝑝 = (𝑄T × 𝑦), which represents a system 
of linear equations of unknown p. The equations can be solved by using mldivide(R, Q'*y).



Numerical Stability

• The least square solution to a generally 
inconsistent system 𝑉𝑝 = 𝑦 of 𝑚 equations in 𝑛
unknowns satisfies the normal equation:
𝑉𝑇𝑉𝑝 = 𝑉𝑇𝑦.

• If the columns of  𝑉 are linearly independent, 
then 𝑉𝑇𝑉 is invertible, we can find Ƹ𝑝 =
𝑉𝑇𝑉 −1𝑉𝑇𝑦, by using the pseudoinverse 

method.
• How sensitive is the solution Ƹ𝑝 to a small change 

of 𝑉?
– Condition Number of the matrix 𝑉



Condition Number 

• The condition number of matrix 𝑉𝑚×𝑛 is given by 
𝜅 𝑉 = 𝑉 𝑉+ , where 𝑉 is the 2-norm of the 
matrix 𝑉, and 𝑉+ is the pseudo inverse of 𝑉. 

• The 2-norm of a matrix is 𝑉 is the largest singular value 
of 𝑉 (i.e., the square root of the largest eigenvalue of 
the matrix 𝑉𝑇𝑉), as given by 𝑉 = 𝜆_max(𝑉𝑇𝑉) =
𝜎_max(𝑉).

• The relative sensitivity of the solution 𝑝 of 𝑉𝑝 = 𝑦 to 
the perturbation of the input Δ𝑝 satisfies 

Δ𝑝

𝑝
≤

𝜅
Δ𝑦

𝑦
.

• 𝜅 ≥ 1. The larger the condition number, the worse.  



Example
>> V = [2, 1; 3, 1; 4, 1];
>> V
V =

2     1
3     1
4     1

>> Eig = eig(V'*V)
ans =

0.1886
31.8114

>> sqrt(Eig(2))
ans =

5.6402

>> norm(pinv(V))
ans =

2.3026

>> cond(V)
ans =

12.9869

>> Svd = svd(V)
ans =

5.6402
0.4343

>> Svd(1)*Svd(2)
ans =

2.4495

>> sqrt(Eig(1)*Eig(2))
ans =

2.4495

>> norm(V)
ans =

5.6402

𝑉 = 𝜆_max(𝑉𝑇𝑉) = 𝜎_max(𝑉)

>> norm(V)*norm(pinv(V))
ans =

12.9869



• Solving the normal equation: 𝑉𝑇𝑉𝑝 = 𝑉𝑇𝑦 might lead to even worse  
numerical instability due to the squaring of the conditional number 𝜅 𝑉 .

• There is a need to use other methods, e.g., QR decomposition, where R is 
a upper triangular matrix (square matrix with all the entries below the 
main diagonal being zero), and Q is a norm-preserving orthogonal matrix 
(whose columns are orthonormal vectors). 

>> V = [2, 1; 3, 1; 4, 1];
>> V
V =

2     1
3     1
4     1

>> cond(V)
ans =

12.9869

>> cond(V)^2
ans =

168.6607

>> VTV = V'*V
VTV =

29     9
9     3

>> cond(VTV)
ans =

168.6607



QR Decomposition
>> [Q R] = qr(V,0)
Q =

-0.3714    0.8339
-0.5571    0.1516
-0.7428   -0.5307

R =
-5.3852   -1.6713

0    0.4549

>> Q'*Q
ans =

1.0000   -0.0000
-0.0000    1.0000

>> Q*R
ans =

2.0000    1.0000
3.0000    1.0000
4.0000    1.0000

𝑄 × 𝑅 × 𝑝 = 𝑦 → 𝑄T × 𝑄 × 𝑅 × 𝑝 = 𝑄T × 𝑦 → 𝑅 × 𝑝 = (𝑄T × 𝑦), 

𝑄T × 𝑄 = 𝐼

>> y =[5; 7; 9]
y =

5
7
9

>> Q'*y
ans =

-12.4416
0.4549

R =
[ -5.3852   -1.6713]
[            0    0.4549 ]

𝑝1
𝑝2

= 
[-12.4416]
[   0.4549 ]

× 𝑝 = (𝑄T × 𝑦), 

>> mldivide(R, Q'*y)       % Avoid inversion of large matrix
ans = 2.0000

1.0000



• Solving the normal equation: 𝑉𝑇𝑉𝑝 = 𝑉𝑇𝑦 might lead to even worse  
numerical instability due to the squaring of the conditional number 𝜅 𝑉 .

• Another method is Singular Value Decomposition (SVD), used by sklearn.
• SVD factorize a matrix 𝑉 into the product of three matrices: 𝑉 = 𝐴𝑆𝐵𝑇 , 

where the middle matrix 𝑆 contains the singular values.

>> V = [2, 1; 3, 1; 4, 1];
>> V=

2     1
3     1
4     1

>> S
S =

5.6402         0
0    0.4343

>> S^(-1)
ans =

0.1773         0
0    2.3026

>> [A,S,B] = svd(V, 'econ');

>> A
A =

-0.3913    0.8247
-0.5606    0.1382
-0.7298   -0.5484

>> A'*A
ans =

1.0000   -0.0000
-0.0000    1.0000

>> B
B =

-0.9545   -0.2982
-0.2982    0.9545

>> B*B' 
ans =

1.0000   -0.0000
-0.0000    1.0000

SVD



𝑝 = (𝐵 × 𝑆−1 × 𝐴𝑇) × 𝑦

>> y =[5; 7; 9]
y =

5
7
9

𝑉 × 𝑝 = 𝑦,  where 𝑉 = 𝐴 × 𝑆 × 𝐵𝑇

𝐴 × 𝑆 × 𝐵𝑇 × 𝑝 = 𝑦, both sides multiplied by (𝐵 × 𝑆−1 × 𝐴𝑇), we have
(𝐵 × 𝑆−1 × 𝐴𝑇) × (𝐴 × 𝑆 × 𝐵𝑇) × 𝑝 = (𝐵 × 𝑆−1 × 𝐴𝑇) × 𝑦, where

𝐵 × 𝑆−1 × 𝐴𝑇 × 𝐴 × 𝑆 × 𝐵𝑇 × 𝑝 = 𝑝, since 
𝐴𝑇 × 𝐴 = 𝐼, 𝑆−1 × 𝑆 = 𝐼, and 𝐵 × 𝐵𝑇 = 𝐼

Thus

>> p = B*S^(-1)*A'*y
p =

2.0000
1.0000

>> y =[5; 6; 9]
y =

5
6
9

>> p = B*S^(-1)*A'*y
p =

2.0000
0.6667



‘curve_fit_demo.m’

N = 4
% Generate 4 data points for training
rng(1);
x = 10*rand(1, N);

Z = 1 + 2*x + 3*x.^2;  % Target values

% Formulate the input data matrix
Fx = zeros(3,N);
for i = 1:N

Fx(:,i) = [1, x(i), x(i)^2];
end

W = Z / Fx
W2 =  Z * pinv(Fx)

[p,s] = polyfit(x, Z, 2);   % notice the reversed order
wrev(p)   % Show weights from low to high orders

% Now with noise added
rng(1);
Z = 1 + 2*x + 3*x.^2 + randn(1, N);

% The Vondermonde matrix 
V = fliplr(Fx'); 
[Q,R] = qr(V,0); 
Q'*Q
p2 = mldivide(R, Q'*Z');
% Compared wit the structure 
returned by polyfit( )
[p,s] = polyfit(x, Z, 2);
p
s.R
s.normr
normr2 = norm(W*Fx - Z)
normr3 = norm(V*p2 - Z')



Fitting Noisier Data
% With more training data with much worse noise 
added
N = 100;
rng(1);
x = 10*rand(1,N);
rng(1);
noise = 20*randn(1, N);
Z = 1 + 2*x + 3*x.^2 + noise;

Fx = zeros(3,N);
for i = 1:N

Fx(:,i) = [1, x(i), x(i)^2];
end

scatter(x,Z); grid
W = Z / Fx

hold on;
xx = min(x):0.01:max(x);
plot(xx, W(1) + W(2)*xx + W(3)*xx.^2);

[p,s] = polyfit(x, Z, 2);
p
s.R
s.Normr % Compared with the added noise norm

norm(noise)

W =
-5.0299    3.1358    2.9858



Condition Numbers

>> V = fliplr(Fx');
>> whos V
Name        Size            Bytes  Class     Attributes
V         100x3              2400  double 

>> cond(V)
ans =
133.3990

>> cond(V'*V)
ans =

1.7795e+04

>> s.R
ans =
-438.8045  -55.0248   -7.3552

0  -14.1341   -5.7421
0       0     -3.5957



sklearn

ataset = np.loadtxt(infile, delimiter=',')

xdata = dataset[:, 0]

ydata = dataset[:, 1]

from sklearn.linear_model import LinearRegression

from sklearn.preprocessing import PolynomialFeatures

poly = PolynomialFeatures(degree=2)

xdata = xdata[:, np.newaxis]

xdata_poly = poly.fit_transform(xdata)

reg = LinearRegression(fit_intercept=False).fit(xdata_poly, ydata)

reg.coef_



import matplotlib.pyplot as plt
plt.scatter(xdata, ydata, label='data', alpha = 0.8)

def func(x, w1, w2, w3): 
return w1 + w2*x + w3*x**2

xdata_clean = np.arange(np.min(xdata), 
np.max(xdata), 0.01)

plt.plot(xdata_clean, func(xdata_clean, 
*reg.coef_),

'r', label='fit: w1=%5.3f, w2=%5.3f, 
w3=%5.3f' % tuple(reg.coef_))

plt.grid()
plt.xlabel('x')
plt.ylabel('y')
plt.legend()
plt.show()

matplotlib



SVD 

• Matlab
[A,S,B]= svd(Fx','econ');
>> p_svd = B*S^(-1)*A'*Z'
P_svd =

-5.0299
3.1358
2.9858

• Sklearn
reg.coef_
array([-5.02994715,  3.13580213,  2.98578577])

reg.singular_
array([442.30603581,  15.20639803,   3.31566156])

>> S
S =

442.3060         0         0
0   15.2064         0
0         0    3.3157


