EE 610, ML Fundamentals

Linear Models for Regression

Dr. W. David Pan Dept. of ECE UAH

- Linear models for regression
- Polynomial curve fitting as an illustrative example
- Solution to a least-square problem
- Math review
 - Vector Calculus
 - Linear Algebra
 - Vector Space, QR Decomposition, SVD, Condition Numbers, etc.
- Numerical Stability
- Implementations

- The goal of regression is to predict the value of one or more continuous target variables t given the value of a Ddimensional vector x of input variables.
- The polynomial is a specific example of a broad class of functions called linear regression models, which share the property of being linear functions of the adjustable parameters.
- we can also obtain a class of functions by taking linear combinations of a fixed set of nonlinear functions of the input variables, known as *basis functions*.
- Such models are linear functions of the parameters, which gives them simple analytical properties, and yet can be nonlinear with respect to the input variables.

• The simplest linear model for regression is one that involves a linear combination of the input variables. This is known as linear regression.

 $y(\mathbf{x}, \mathbf{w}) = w_0 + w_1 x_1 + \ldots + w_D x_D$

- The key property of this model is that it is a linear function of the parameters w_0, \ldots, w_D
- We can extend the class of models by considering linear combinations of fixed nonlinear functions of the input variables, of the form

$$y(\mathbf{x}, \mathbf{w}) = w_0 + \sum_{j=1}^{M-1} w_j \phi_j(\mathbf{x})$$

Example: Polynomial Curve Fitting

1 1

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^M w_j x^j$$

- The polynomial coefficients w_0, \ldots, w_M are collectively denoted by the vector w.
- Although the polynomial function y(x, w) is a nonlinear function of x, it is a linear function of the coefficients w.
- The values of the coefficients will be determined by fitting the polynomial to the training data.
- This can be done by minimizing an *error function* that measures the misfit between the function y(x, w), for any given value of w, and the training set data points.
- One common choice of error function is the sum of the squares of the errors between the predictions $y(x_n, w)$ for each data point x_n and the corresponding target values t_n , in order to minimize the error function:

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

Example: $y(x, w) = w_0 + w_1 x + w_2 x^2$

- Training data with four samples: (x_1, t_1) , (x_2, t_2) , (x_3, t_3) , (x_4, t_4) .
- Predicted values:

 $y_1 = w_0 + w_1 x_1 + w_2 x_1^2$ $y_2 = w_0 + w_1 x_2 + w_2 x_2^2$ $y_3 = w_0 + w_1 x_3 + w_2 x_3^2$ $y_4 = w_0 + w_1 x_4 + w_2 x_4^2$

• Using row-vector and matrix operations:

$$Y = [y_1 \ y_2 \ y_3 \ y_4], \ W = [w_0 \ w_1 \ w_2], \ Z = [t_1 \ t_2 \ t_3 \ t_4]$$

$$Y = WF_X = \begin{bmatrix} w_0 & w_1 & w_2 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 \\ x_1 & x_2 & x_3 & x_4 \\ x_1^2 & x_2^2 & x_3^2 & x_4^2 \end{bmatrix}$$

- We want the best approximation in the least-square sense: $Z \approx WF_X$
- The system of linear equations are overdetermined since there are more equations than unknowns. In Matlab, $W = Z / F_X$

Matlab: polyfit () function

 p = polyfit (x,y,n) returns the coefficients for a polynomial p(x) of degree n that is a best fit (in a least-squares sense) for the data in y. The coefficients in p are in descending powers, and the length of p is n+1.

$$p(x) = p_1 x^n + p_2 x^{n-1} + \dots + p_n x + p_{n+1}.$$

 polyfit uses x to form a Vandermonde matrix V with m = length(x) rows and (n+1) columns, resulting in the linear system below, which polyfit solves with p = V\y = pinv(V) * y.

$$\begin{pmatrix} x_1^n & x_1^{n-1} & \cdots & 1 \\ x_2^n & x_2^{n-1} & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ x_m^n & x_m^{n-1} & \cdots & 1 \end{pmatrix} \begin{pmatrix} p_1 \\ p_2 \\ \vdots \\ p_{n+1} \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix} ,$$

$$m \ge (n+1) \ge (n+1) \ge 1$$

Example: Fit with a straight line

 $p_1x + p_2$, using notations of Matlab (weights are now p_i in reversed order, and the target values are now y_i).

$$\begin{bmatrix} x_1 & 1 \\ x_2 & 1 \\ x_3 & 1 \end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}, \text{ or } V_{(3 \times 2)} p_{(2 \times 1)} = y_{(3 \times 1)}$$

Given training data samples (x, y): (2, 5), (3, 7), (4, 9), the system of equations (with 2 unknowns and 3 equations):

$$\begin{bmatrix} 2 & 1 \\ 3 & 1 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \end{bmatrix} = \begin{bmatrix} 5 \\ 7 \\ 9 \end{bmatrix}$$

- Goal: Find a solution vector p such that the approximation error (squared) below is minimized: $E^2(p) = ||Vp y||^2$.
- We can use calculus, or geometry and linear algebra to solve the problem.

Gradient of Quadratic Function

$$E^{2}(p) = \|Vp - y\|^{2} = (Vp - y)^{T}(Vp - y) = (p^{T}V^{T} - y^{T})(Vp - y)$$
$$= p^{T}V^{T}Vp - p^{T}V^{T}y - y^{T}Vp + y^{T}y$$
$$\nabla E^{2}(p) = \begin{bmatrix} \frac{\partial E^{2}}{\partial p_{1}} \\ \frac{\partial E^{2}}{\partial p_{2}} \end{bmatrix} = \nabla_{p}(p^{T}V^{T}Vp - p^{T}V^{T}y - y^{T}Vp + y^{T}y) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \text{ in order to}$$

determine the *critical point* that can potentially minimize $E^2(p)$, where

$$\nabla_p(p^T V^T V p) = 2(V^T V)p, \quad \nabla_p(p^T V^T y) = \nabla_p(y^T V p) = V^T y, \quad \nabla_p(y^T y) = 0$$

Thus $(V^T V)p - V^T y = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, or $V^T V p = V^T y$ (Normal Equation in Statistics)

 $V^T V$ is invertible when the columns of V are linearly independent. Best estimate (in least square sense): $\hat{p} = [(V^T V)^{-1} V^T] y = \text{pinv}(V) y$

Hessian Matrix (Derivative of Gradient)

$$\nabla_p^2 E^2(p) = \begin{bmatrix} \frac{\partial^2 E^2}{\partial p_1^2} & \frac{\partial^2 E^2}{\partial p_1 \partial p_2} \\ \frac{\partial^2 E^2}{\partial p_2 \partial p_1} & \frac{\partial^2 E^2}{\partial p_2^2} \end{bmatrix} = \nabla_p \begin{bmatrix} \frac{\partial E^2}{\partial p_1} \\ \frac{\partial E^2}{\partial p_2} \end{bmatrix}^T = \nabla_p (2V^T V p - 2V^T y)^T$$

$$= \nabla_p (2p^T V^T V - 2y^T V) = 2V^T V$$

- $V^T V$ is always symmetric and positive definite (with all eigenvalues being positive, all pivots being positive), thus $\hat{p} = [(V^T V)^{-1} V^T] y$ is not only a critical point, but also a *local* minima.
- In addition, due to the Hessian being a (everywhere in general) positive definite matrix, $E^2(p)$ is a convex function, and \hat{p} is also a **global minima**.

>> V'*V		>> det(V'*V)	>> EIG = eig(V'*V)	>> EIG(1)*EIG(2) ans =	
ans =		ans =	EIG =		
29	9	6.0000	0.1886	6.0000	
9	3		31.8114		

Symbolic Matrix Operations

$$E^{2}(p) = \|Vp - y\|^{2} = (Vp - y)^{T}(Vp - y) = (p^{T}V^{T} - y^{T})(Vp - y)$$

$$= p^T V^T V p - p^T V^T y - y^T V p + y^T y$$

```
>> syms p1 p2 p E2(p1,p2)
p =[p1;p2];
V = [2, 1; 3, 1; 4, 1];
y = [5 7 9]';
E2(p1,p2) = (p.')*(V')*V*p -(p.')*(V')*y -
y'*V*p +y'*y;
```

```
>> simplify(E2)
ans = 29*p1^2 + 18*p1*p2 - 134*p1 +
3*p2^2 - 42*p2 + 155
```

>> fsurf(p1, p2, E2, [-100 100 -100 100]); colorbar;

Least Square

Geometric Interpretation

- The least square solution to a generally inconsistent system Vp = yof m equations in n unknowns satisfies $V^TVp = V^Ty$.
- If the columns of V are linearly independent, then $V^T V$ is invertible, and $\hat{p} = (V^T V)^{-1} V^T y$.
- In this specific example (with zero estimation error), the 3×1 vector y happens to be in the **column space** of the matrix V, with the solution 2×1 vector \hat{p} containing the components (linear combination coefficients).

$$\begin{bmatrix} 2 & 1 \\ 3 & 1 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \end{bmatrix} = \begin{bmatrix} 5 \\ 7 \\ 9 \end{bmatrix} = y, \text{ Solution: } \hat{p} = \begin{bmatrix} p_1 \\ p_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

$$y = \begin{bmatrix} 5\\7\\9 \end{bmatrix} = p_1 \begin{bmatrix} 2\\3\\4 \end{bmatrix} + p_2 \begin{bmatrix} 1\\1\\1 \end{bmatrix}$$

Column Space of a Matrix

Given a $m \times n$ matrix V, its **column space** is the vector space formed by the columns of V. The column space contains all linear combinations of the columns of V. It is a subspace of \mathbf{R}^m .

- The column space consists of all vectors Vp for some $n \times 1$ vector p.
 - For example, $V = \begin{bmatrix} 2 & 1 \\ 3 & 1 \\ 4 & 1 \end{bmatrix}$ has a column space which is a 2D plane (a subspace in \mathbb{R}^3).
- Consider the following (slightly changed) least square problem:

$$\begin{bmatrix} 2 & 1 \\ 3 & 1 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \end{bmatrix} = \begin{bmatrix} 5 \\ 6 \\ 9 \end{bmatrix} = y, \text{ then } V^T V = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 3 & 1 \\ 4 & 1 \end{bmatrix} = \begin{bmatrix} 29 & 9 \\ 9 & 3 \end{bmatrix}$$
$$\hat{p} = (V^T V)^{-1} V^T y = \begin{bmatrix} 29 & 9 \\ 9 & 3 \end{bmatrix}^{-1} \begin{bmatrix} 2 & 3 & 4 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 5 \\ 6 \\ 9 \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} & 0 & \frac{1}{2} \\ \frac{11}{6} & \frac{1}{3} & -\frac{7}{6} \end{bmatrix} \begin{bmatrix} 5 \\ 6 \\ 9 \end{bmatrix} = \begin{bmatrix} 2 \\ \frac{2}{3} \end{bmatrix}$$
$$y = \begin{bmatrix} 5 \\ 7 \\ 9 \end{bmatrix} \approx \begin{bmatrix} 4\frac{2}{3} \\ 6\frac{2}{3} \\ 8\frac{2}{3} \end{bmatrix} = p_1 \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix} + p_2 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = 2 \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix} + \frac{2}{3} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

Left Nullspace of a Matrix

- The **nullspace** of a $m \times n$ matrix V consists of all vectors p such that Vp = 0. The nullspace is a subspace of \mathbb{R}^m , just as the column space.
- The **left nullspace** of a $m \times n$ matrix V is the **nullspace** of V^{T} . The left nullspace contains all vectors p such that $V^{T}p = 0$.
- $V^T V p = V^T y$ (Normal Equation), or $V^T (y V p) = 0$, indicating the error vector (y V p) must be perpendicular to the column space of V. In other words,
- The error vector is in the left nullspace of V.

Error Vector:
$$y - V\hat{p} = \begin{bmatrix} 5 \\ 6 \\ 9 \end{bmatrix} - \begin{bmatrix} 2 & 1 \\ 3 & 1 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} \frac{1}{3} \\ -\frac{2}{3} \\ \frac{1}{3} \end{bmatrix}$$
, which is orthogonal to all the column vectors of *V*, since $V^T(y - V\hat{p}) = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{3} \\ -\frac{2}{3} \\ \frac{1}{3} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

Projection onto the Column Space

Equivalence of Algebraic and Geometric Interpretations

Regarding the least square solution $\hat{p} = [(V^T V)^{-1} V^T] y$, to the problem Vp = y:

- $V\hat{p}$ is the projected point of y on the column space of V, by constructing a perpendicular line from y to the column space.
- $E = ||V\hat{p} y|| = ||y V\hat{p}||$, is the distance from y to the point $V\hat{p}$ in the column space.
- Searching for the least-square solution, which minimizes E, or equivalently, E^2 , is the same as locating the point $V\hat{p}$, that is closer to y than any other points in the column space of V.
- The error vector (y Vp) or (Vp y) must be perpendicular to the column space of V.
- The projected point $V\hat{p} = V[(V^TV)^{-1}V^T] y = Sy$, where the $m \times m$ square matrix $S = V(V^TV)^{-1}V^T$ is called a **Projection Matrix**. It can be shown that in general:

$$- S = S^2 = S^3 = \cdots$$

$$-S^{\mathrm{T}}=S$$

Projection Matrix

Projection Matrix: $S = V(V^T V)^{-1} V^T$

1) Given
$$\begin{bmatrix} 2 & 1 \\ 3 & 1 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \end{bmatrix} = Vp = \begin{bmatrix} 5 \\ 6 \\ 9 \end{bmatrix} = y,$$

then $S = \begin{bmatrix} \frac{5}{6} & \frac{1}{3} & -\frac{1}{6} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ -\frac{1}{6} & \frac{1}{3} & \frac{5}{6} \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 5 & 2 & -1 \\ 2 & 2 & 2 \\ -1 & 2 & 5 \end{bmatrix}, \text{ and } Sy = \frac{1}{6} \begin{bmatrix} 5 & 2 & -1 \\ 2 & 2 & 2 \\ -1 & 2 & 5 \end{bmatrix} \begin{bmatrix} 5 \\ 6 \\ 9 \end{bmatrix} = \begin{bmatrix} 4\frac{2}{3} \\ 6\frac{2}{3} \\ 8\frac{2}{3} \end{bmatrix} \approx y$

(2) Given the same V, but
$$Vp = \begin{bmatrix} 5\\7\\9 \end{bmatrix} = y$$
,
then S is the same as: $\frac{1}{6} \begin{bmatrix} 5 & 2 & -1\\2 & 2 & 2\\-1 & 2 & 5 \end{bmatrix}$, and $Sy = \frac{1}{6} \begin{bmatrix} 5 & 2 & -1\\2 & 2 & 2\\-1 & 2 & 5 \end{bmatrix} \begin{bmatrix} 5\\7\\9 \end{bmatrix} = \begin{bmatrix} 5\\7\\9 \end{bmatrix} = y$

Structure Returned by polyfit ()

[p,S] = polyfit(x,y,n) also returns a structure S that can be used to obtain error estimates.

- S is a structure containing three elements:
- The triangular factor from a QR decomposition of the Vandermonde matrix,
- (2) The degrees of freedom and,
- (3) The norm of the residuals.

```
S.R = R;
S.df = max(0,length(y) - (n+1));
r = y - V*p;
S.normr = norm(r);
```

QR Decomposition

```
% Construct the Vandermonde matrix V = [x.^n ... x.^2 x ones(size(x))]
V(:,n+1) = ones(length(x),1,class(x));
for j = n:-1:1
    V(:,j) = x.*V(:,j+1);
end
```

```
% Solve least squares problem p = V\y to get polynomial coefficients p.
[Q,R] = qr(V, 0); % Economy-size QR Decomposition
% Same as p = V\y
p = matlab.internal.math.nowarn.mldivide(R, Q'*y);
```

 $V \times p = y$, where V is the Vandermonde matrix: m by (n+1), p is the output weight vector: (n+1) by 1, and y is the target vector: m by 1.

QR decomposition (Economy-size instead of full-size): $V = Q \times R$, where Q: m by (n+1) with orthonormal columns, i.e., $Q^{T} \times Q = I$, and R: (n+1) by (n+1) upper triangular matrix.

 $Q \times R \times p = y \rightarrow Q^{T} \times Q \times R \times p = Q^{T} \times y \rightarrow R \times p = (Q^{T} \times y)$, which represents a system of linear equations of unknown *p*. The equations can be solved by using mldivide(R, Q'*y).

Numerical Stability

- The least square solution to a generally inconsistent system Vp = y of m equations in nunknowns satisfies the *normal equation*: $V^T Vp = V^T y$.
- If the columns of V are linearly independent, then $V^T V$ is invertible, we can find $\hat{p} = (V^T V)^{-1} V^T y$, by using the pseudoinverse method.
- How sensitive is the solution î to a small change of V?
 - **Condition Number** of the matrix *V*

Condition Number

- The condition number of matrix $V_{m \times n}$ is given by $\kappa(V) = ||V|| ||V^+||$, where ||V|| is the 2-norm of the matrix V, and V^+ is the pseudo inverse of V.
- The 2-norm of a matrix is V is the largest singular value of V (i.e., the square root of the largest eigenvalue of the matrix $V^T V$), as given by $||V|| = \sqrt{\lambda_{-} \max(V^T V)} = \sigma_{-} \max(V)$.
- The relative sensitivity of the solution p of Vp = y to the perturbation of the input $\|\Delta p\|$ satisfies $\frac{\|\Delta p\|}{\|p\|} \leq \kappa \frac{\|\Delta y\|}{\|y\|}$.
- $\kappa \geq 1$. The larger the condition number, the worse.

Example

>> Eig = eig(V'*V)	>> Svd = svd(V)	>> norm(V)	>> Svd(1)*Svd(2)
ans =	ans =	ans =	ans =
0.1886	5.6402	5.6402	2.4495
31.8114 >> sart(Fig(2))	0.4343		>> sqrt(Eig(1)*Eig(2))
ans =			ans =
5.6402	$\ V\ = \sqrt{\lambda_{-}} \max(V^{T})$	$V) = \sigma_{\rm max}(V)$	2.4495
>> norm(pinv(V))	>> norm(V)*norm	(pinv(V)) >> co i	nd(V)
ans =	ans =	ans =	
2.3026	12.9869	12.9	9869

- Solving the normal equation: $V^T V p = V^T y$ might lead to even worse numerical instability due to the squaring of the conditional number $\kappa(V)$.
- There is a need to use other methods, e.g., QR decomposition, where R is a upper triangular matrix (square matrix with all the entries below the main diagonal being zero), and Q is a norm-preserving orthogonal matrix (whose columns are orthonormal vectors).

>> V = [2, 1; 3, 1; 4, 1];	>> VTV = V'*V
>> V	VTV =
V =	29 9
2 1	93
3 1	
4 1	>> cond(VTV)
	ans =
>> cond(V)	168.6607
ans =	
12.9869	
\sim cond()()(2)	
>> cond(v)^2	
ans =	
168.6607	

QR Decomposition

>> [Q R] =	qr(V,0)					
Q =		F	R =			
-0.3714	0.8339		-5.3852	-1.6713		
-0.5571	0.1516		0	0.4549		
-0.7428	-0.5307					
>> Q'*Q ans = 1.0000 -0.0000	Q ^T -0.0000 1.0000	$\times Q = I$		>> Q*R ans = 2.0000 3.0000 4.0000	1.0000 1.0000 1.0000	
$Q \times R \times p$	$= y \rightarrow$	$Q^{\mathrm{T}} \times Q \times R$	$\times p = Q^{\mathrm{T}}$	$\dot{x} \times y \to R \times$	$p = (Q^{\mathrm{T}} \times y),$	
>> y =[5; 7; y = 5 7 9	; 9] >> m ans =	R = [-5.3852 [0 Idivide(R, Q'* = 2.0000	-1.6713] 0.4549] [•] y) % A		× y), 2.4416] .4549] on of large matrix	>> Q'*y ans = -12.4416 0.4549
		1.0000				

SVD

- Solving the normal equation: $V^T V p = V^T y$ might lead to even worse numerical instability due to the squaring of the conditional number $\kappa(V)$.
- Another method is Singular Value Decomposition (SVD), used by sklearn.
- SVD factorize a matrix V into the product of three matrices: $V = ASB^T$, where the middle matrix S contains the singular values.

>> V = [2, 1; 3, 1; 4, 1];	>> [A,S,B] = svd(V, ' econ ');		
>> V=			
2 1	>> A		
3 1	A =	>> A'*A	
4 1	-0.3913 0.8247	ans =	
	-0.5606 0.1382	1.0000 -0.0000	
>> S	-0.7298 -0.5484	-0.0000 1.0000	
S =			
5.6402 0	>> B	>> B*B'	
0 0.4343	B =	ans =	
>> S^(-1)	-0.9545 -0.2982	1.0000 -0.0000	
ans =	-0.2982 0.9545	-0.0000 1.0000	
0.1773 0			
0 2.3026			

$$V \times p = y$$
, where $V = A \times S \times B^{T}$
 $(A \times S \times B^{T}) \times p = y$, both sides multiplied by $(B \times S^{-1} \times A^{T})$, we have
 $(B \times S^{-1} \times A^{T}) \times (A \times S \times B^{T}) \times p = (B \times S^{-1} \times A^{T}) \times y$, where
 $B \times S^{-1} \times A^{T} \times A \times S \times B^{T} \times p = p$, since
 $A^{T} \times A = I, S^{-1} \times S = I$, and $B \times B^{T} = I$

Thus
$$p = (B \times S^{-1} \times A^T) \times y$$

>> y =[5; 7; 9] >> p = B*S^(-1)*A'*y >> y =[5; 6; 9] >> p = B*S^(-1)*A'*y
y = p = y = p =
$$p = 2.0000$$
 5 2.0000
7 1.0000 6 0.6667
9 9

'curve_fit_demo.m'

N = 4
% Generate 4 data points for training
rng(1);
x = 10*rand(1, N);

 $Z = 1 + 2*x + 3*x.^{2}$; % Target values

% Formulate the input data matrix Fx = zeros(3,N); for i = 1:N Fx(:,i) = [1, x(i), x(i)^2]; end

W = Z / Fx W2 = Z * pinv(Fx)

[p,s] = polyfit(x, Z, 2); % notice the reversed order wrev(p) % Show weights from low to high orders % Now with noise added rng(1); Z = 1 + 2*x + 3*x.^2 + randn(1, N);

% The Vondermonde matrix V = fliplr(Fx');[Q,R] = qr(V,0);0'*0 p2 = mldivide(R, Q'*Z');% Compared wit the structure returned by polyfit() [p,s] = polyfit(x, Z, 2);р s.R s.normr normr2 = norm(W*Fx - Z)normr3 = norm(V*p2 - Z')

Fitting Noisier Data

% With more training data with much worse noise added N = 100; rng(1); x = $10^{rand}(1,N)$; rng(1); noise = $20^{randn}(1, N)$; Z = $1 + 2^{*}x + 3^{*}x.^{2} + noise$; Fx = zeros(3,N);

for i = 1:N Fx(:,i) = [1, x(i), x(i)^2]; end

scatter(x,Z); grid
W = Z / Fx

hold on; xx = min(x):0.01:max(x); plot(xx, W(1) + W(2)*xx + W(3)*xx.^2);

[p,s] = polyfit(x, Z, 2); p s.R s.Normr

W = -5.0299 3.1358 2.9858

% Compared with the added noise norm norm(noise)

Condition Numbers

```
>> V = flipIr(Fx');
>> whos V
 Name Size Bytes Class Attributes
      100x3
                  2400 double
V
>> cond(V)
ans =
133.3990
>> cond(V'*V)
ans =
 1.7795e+04
>> s.R
ans =
-438.8045 -55.0248 -7.3552
       -14.1341 -5.7421
    0
    0
           0
                   -3.5957
```

sklearn

```
ataset = np.loadtxt(infile, delimiter=',')
xdata = dataset[:, 0]
ydata = dataset[:, 1]
```

```
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import PolynomialFeatures
poly = PolynomialFeatures(degree=2)
xdata = xdata[:, np.newaxis]
```

```
xdata_poly = poly.fit_transform(xdata)
reg = LinearRegression(fit_intercept=False).fit(xdata_poly, ydata)
```

reg.coef_

matplotlib

import matplotlib.pyplot as plt
plt.scatter(xdata, ydata, label='data', alpha = 0.8)

```
def func(x, w1, w2, w3):
    return w1 + w2*x + w3*x**2
xdata_clean = np.arange(np.min(xdata),
    np.max(xdata), 0.01)
```

```
plt.plot(xdata_clean, func(xdata_clean,
*reg.coef_),
```

'r', label='fit: w1=%5.3f, w2=%5.3f, w3=%5.3f' % tuple(reg.coef_))

plt.grid() plt.xlabel('x') plt.ylabel('y') plt.legend() plt.show()

SVD

>> S S = 442.3060 0 0 0 15.2064 0 0 0 3.3157

Sklearn
 reg.coef_
 array([-5.02994715, 3.13580213, 2.98578577])

```
reg.singular_
array([442.30603581, 15.20639803, 3.31566156])
```