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Topics

• Cluster analysis

• K-means algorithm

• K-medoids method

• Singular Value Decomposition

• Principal Component Analysis

• Implementations



Clustering and Dimensionality Reduction

• Unsupervised learning is a conceptually different problem to supervised 
learning. Unsupervised learning is useful when you want to explore your 
data but don’t yet have a specific goal or are not sure what information 
the data contains. 
– we cannot hope to perform regression -- we do not know the outputs for any 

data points, so we cannot guess what the function is. 
– The aim of classification is to identify similarities between inputs that belong 

to the same class. However, there is not any information about the correct 
classes.

• What if an algorithm can exploit similarities between inputs in order to 
cluster inputs that are similar together? This might perform classification 
automatically.

• So unsupervised learning can be used to find clusters of similar inputs in 
the data, by discovering the similarities automatically.

• It’s also a good way to reduce the dimensions of the data using 
unsupervised learning.



Cluster Analysis

• In cluster analysis, data is partitioned into groups based 
on some measure of similarity or shared characteristic. 

• Clusters are formed so that objects in the same cluster 
are very similar and objects in different clusters are 
very distinct.

• The k-Means algorithm is a well-known method for 
cluster analysis. 
– We partition data into k number of mutually exclusive 

clusters.

– How well a point fits into a cluster is determined by the 
distance from that point to the cluster’s center.



k-Means Clustering Method

• A distance measure
– In order to measure distances between points, we need to 

define distances. While the Euclidean distance is often 
used, there are other alternatives (e.g., city block, cosine, 
etc.)

• The center of each cluster
– Once we have a distance measure, we can compute the 

central point of a set of data points.
– The mean average (centroid) is used as the central point 

when Euclidean distance is used, since doing so is 
equivalent to minimizing the Euclidean distance (which is 
the sum-of-squares error) from each data point in each 
cluster to its center. 



Algorithm
• Initialization

– Choose a value for 𝑘.
– Choose 𝑘 random positions in the input space.

– Assign the cluster centers 𝝁𝑗 to those positions.

• Learning
– For each data point 𝐱𝑖:

• Compute the distance to each cluster center
• Assign the data point to the nearest cluster center with distance

𝑑𝑖 = min
𝑗

𝑑(𝐱𝑖 , 𝝁𝑗).

– For each cluster center:
• Move the position of the center to the mean of the data points in that cluster: 𝝁𝑗 =

1

𝑁𝑗
σ
𝑖=1

𝑁𝑗
𝐱𝑖, where 𝑁𝑗 is the number of points in cluster 𝑗. 

– Repeat the above steps until the cluster centers stop moving. 

• Usage
– For each test data point:

• Compute the distance to each cluster center.
• Assign the data point to the nearest cluster center with distance

𝑑𝑖 = min
𝑗

𝑑(𝐱𝑖 , 𝝁𝑗).



while 1

n_iter = n_iter + 1;

N1 = 0;

N2 = 0;

for i = 1: 2*N

d1 = pdist2(X(i,:),mu1);

d2 = pdist2(X(i,:),mu2);

if (d1 <= d2)

N1 = N1 + 1;

G1(N1,:) = X(i,:);

else

N2 = N2 + 1;

G2(N2,:) = X(i,:);

end

end

mu1_prev = mu1;

mu2_prev = mu2;

G1_new = G1(1:N1,:);

G2_new = G2(1:N2,:);

mu1 = mean(G1_new)

mu2 = mean(G2_new)

if (mu1 == mu1_prev & mu2 == mu2_prev)

break;

end

end

% ‘two_means.m’

N = 100;

m1 = [3, 3]';   % Mean vector

cov1 = [2 1; 1 2]; % Cov matrix

rng default

r1 = mvnrnd(m1,cov1,N);

data_C1 = zeros(N, 2);

data_C1 = r1;

m2 = [9, 9]';

cov2 = [2,1; 1,2];

rng default  

r2 = mvnrnd(m2,cov2,N);

data_C2 = zeros(N, 2);

data_C2 = r2;

X = vertcat (data_C1, data_C2);

G1 = zeros(2*N, 2);

G2 = zeros(2*N, 2);

n_iter = 1;



Initial Centroids 

% Initial centroids
mu1 = X(1,:)
mu2 = X(2,:)



After 1st Iteration



After 2nd Iteration



Convergence after 3rd Iteration

mu1 =
3.1418    2.9944

mu2 =
9.2063    9.0017



‘kmeans_demo.m’

[idx,C] = kmeans(X,2);

% Display the clusters

plot(X(idx==1,1),X(idx==1,2),'r.',

'MarkerSize',12)

hold on

plot(X(idx==2,1),X(idx==2,2),'b.',

'MarkerSize',12)

% Display the centroids

plot(C(:,1),C(:,2),'kx',...

'MarkerSize',15,'LineWidth',3) 

legend('Cluster 1','Cluster 

2','Centroids',...'Location','NW')

% Testing

Xtest = [6 4];
[dist, cluster_index] = pdist2 
(C,Xtest,'euclidean','Smallest',1);
>> pdist2(Xtest, C(1,:))
>> pdist2(Xtest, C(2,:))

>> mean(data_C1)
ans =

3.1741    2.9980
>> mean(data_C2)
ans =

9.1741    8.9980

>> C
C =

3.1418    2.9944
9.2063    9.0017

Training and Testing with kmeans



Distance Measure

[idx,C,sd] = kmeans(X,2);

>> sd

sd =

480.7163

475.0740

>> d1 = pdist2(X(idx==1,:), C(1,:)).^2;

d2 = pdist2(X(idx==2,:), C(2,:)).^2;

>> sum(d1)

ans =

480.7163

>> sum(d2)

ans =

475.0740



sklearn

import numpy as np
infile = r"C:\...\kmeans.csv"
dataset = np.loadtxt(infile, delimiter=',')
X = dataset[:, 0:2]

from sklearn.cluster import KMeans

cluster = KMeans(n_clusters=2, random_state=0).fit(X)

cluster.cluster_centers_

xtest = [[6,4]]
cluster.predict(xtest)

xtest = [[6,8]]
cluster.predict(xtest)

:array([[9.20631359, 9.00165323],
[3.14182431, 2.99438324]])

:array([1])

:array([0])

Matlab:

writematrix (X, 'kmeans.csv');



K-medoids Method

• k-medoids clustering is a partitioning method commonly used in 
domains that require robustness to outlier data, or ones for which 
the mean does not have a clear definition.

• It is similar to k-means, and the goal k-methods is to divide a set of 
measurements or observations into k subsets or clusters so that the 
subsets minimize the sum of distances between a measurement 
and a center of the measurement’s cluster. 
– In the k-means algorithm, the center of the subset is the mean of 

measurements in the subset, often called a centroid. 
– In the k-medoids algorithm, the center of the subset is a member of 

the subset, called a medoid.

• The k-medoids algorithm returns medoids which are the actual data 
points in the data set. This allows us to use the algorithm in 
situations where the mean of the data does not exist within the 
data set. 

• Thus the main difference between k-medoids and k-means is that 
the centroids returned by k-means may not be within the data set. 



[idx,C] = kmedoids(X,2);

% Display the clusters

plot(X(idx==1,1),X(idx==1,2),'r.

','MarkerSize',12)

hold on

plot(X(idx==2,1),X(idx==2,2),'b.

','MarkerSize',12)

plot(C(:,1),C(:,2),'co',...

'MarkerSize',7,'LineWidth',1.5) 

grid

legend('Cluster 1','Cluster 

2','Medoids',...

'Location','NW');



Medoids

>> find(X(:,1)==C(1,1) & X(:,2) == C(1,2))

ans =

152

>> X(152,:)

ans =

9.1094    9.0302

>> find(X(:,1)==C(2,1) & X(:,2) == 
C(2,2))
ans =

52
>> X(52,:)
ans =

3.1094    3.0302

>> C
C =

9.1094    9.0302
3.1094    3.0302



PCA
• Principal Component Analysis, or PCA, can help us get a good understanding of 

the variance in the multivariate data.

• Suppose input data have 𝑚 features, which are random variables 𝑋1, 𝑋2, …𝑋𝑚.

• While the features are all correlated to varying degrees, PCA changes the 
variables into 𝑌1, 𝑌2, … 𝑌𝑚, which are linear combinations of the 𝑋s.

• The first several principal components 𝑌𝑘 (sometimes called “latent factors”) 
"explains" a big chunk of the variance of the original variables, with the 
remaining components becoming somewhat meaningless. 

• In this two-feature example, PCA seeks a space of 
lower dimensionality, known as the principal 
subspace, as denoted by the magenta line, such 
that the orthogonal projection of the data points 
(red dots) onto this subspace maximizes the 
variance of the projected points (green dots). 

• PCA is widely used for applications such as 
dimensionality reduction (from 𝑚 down to 𝑘), 
lossy data compression, feature extraction, and 
data visualization.



The idea of PCA

• In the PCA algorithm, we first center the data by subtracting off the 
mean.

• Next, we choose the direction with the largest variation and places 
an axis in that direction, along which we project the data. 

• We then look at the variation that remains, and finds another axis 
that is orthogonal to the first and covers as much of the remaining 
variation as possible. 

• Repeat the above procedure until we run out of possible axes.
• All the variation is along the axes chosen, since the covariance 

matrix becomes diagonal after data projection — each new variable 
is uncorrelated with other variables. 

• Some of the axes that are found last have very little variation, and 
so they can be removed without affecting much the variability in 
the data.

• Thus PCA can be used for lossy data compression, dimensionality 
reduction and feature selection for supervised learning. 



Theory
• Suppose the centralized input data 𝐗 is a 𝑁 ×𝑚 matrix. That is, the 

input consists of 𝑁 samples, with each sample is a point in a 𝑚-
dimensional space (or with 𝑚 components). 

• Let the covariance matrix of 𝐗 be 𝐂 = 𝐸[𝐗T𝐗], where 𝐂 is a 𝑚 ×𝑚
matrix. It follows 𝐂T = 𝐂.

• Since 𝐂 is a symmetric matrix, any two of its eigenvectors, 𝐮1 and 
𝐮2 , corresponding to distinct eigenvalues 𝜆1 and 𝜆2 are orthogonal: 

𝐂𝐮1 = 𝜆1𝐮1 𝐂𝐮2 = 𝜆2𝐮2

𝐂𝐮1
T = 𝜆1𝐮1

T 𝐮1
𝑇𝐂𝑇 = 𝜆1𝐮1

T

𝐮1
𝑇𝐂 = 𝜆1𝐮1

T 𝐮1
T(𝐂𝐮2) = 𝜆1𝐮1

T𝐮2

𝐮1
T𝜆2𝐮2 = 𝜆1𝐮1

T𝐮2

𝐮1
T𝐮2 = 0



Variance of Projections
• 𝐂𝐕 = 𝐕𝐃, where 𝐕 is the eigenvector matrix consisting of 𝑚 normalized 

eigenvectors, 𝐕 = [𝐯1, 𝐯2, … , 𝐯𝑚], 𝐯𝑖
T𝐯𝑖 = 1.

• 𝐃 is a diagonal matrix consisting of the corresponding 𝑚 eigenvalues 𝜆𝑖, 
such that 𝐂𝐯𝑖 = 𝜆𝑖𝐯𝑖. 

• If we project the data 𝐗 to the axis given by the eigenvector 𝐯𝑖, then we 
generate the 𝑁 × 1 “scores” vector 𝐘 = 𝐗𝐯𝑖.

• The variance of the projection is the corresponding eigenvalue:

• The correlation of the projections using different eigenvectors (𝑖 ≠ 𝑗):

• We can choose the 𝑘 principal components to go along with the 
𝑘 eigenvectors, corresponding to 𝑘 largest eigenvalues, after sorting the 
eigenvalues in an descending order. 

𝐸 𝐘i
T𝐘i =𝐸 𝐗𝐯𝑖

T𝐗𝐯𝑖 = 𝐸 𝐯𝑖
T𝐗T𝐗𝐯𝑖 = 𝐯𝑖

T𝐸 𝐗T𝐗 𝐯𝑖

=𝐯𝑖
T𝐂𝐯𝑖 = 𝐯𝑖

T𝜆𝑖𝐯𝑖 = 𝜆𝑖𝐯𝑖
T𝐯𝑖 = 𝜆𝑖

𝐸 𝐘i
T𝐘j =𝐸 𝐗𝐯𝑖

T𝐗𝐯𝑗 = 𝐸 𝐯𝑖
T𝐗T𝐗𝐯𝑗 = 𝐯𝑖

T𝐸 𝐗T𝐗 𝐯𝑗

=𝐯𝑖
T𝐂𝐯𝑗 = 𝐯𝑖

T𝜆𝑖𝐯𝑗 = 𝜆𝑖𝐯𝑖
T𝐯𝑗 = 0



Singular Value Decomposition
• The eigenvalues and eigenvectors can also be 

determined by the SVD method. 
• In linear algebra, the singular value decomposition 

(SVD) is a factorization of a matrix. 
• It decompose a 𝑁 ×𝑚 matrix 𝐗 with an orthonormal 

eigenbasis.
• 𝐗 = 𝐀𝐒𝐁T, where 𝐀 is an 𝑁 ×𝑁 orthogonal matrix, 

that is 𝐀𝐀𝐓 = 𝐀𝐓𝐀 = 𝐈, 𝐒 is an 𝑁 ×𝑚 rectangular 
diagonal matrix with 𝑚 non-negative real numbers on 
the diagonal, and 𝐁 is an 𝑚×𝑚 orthogonal matrix.

• In Compact SVD, 𝐗 = 𝐀𝐒𝐁T, where 𝐀 is an 𝑁 × 𝑟
matrix, 𝐒 is an 𝑟 × 𝑟 diagonal matrix with 𝑟 non-zero 
singular values, and 𝐁 is an 𝑚 × 𝑟 matrix. Both a and 
are semi-orthogonal matrices, that is, 𝐀𝐓𝐀 = 𝐈r, and 
𝐁𝐓𝐁 = 𝐈r.



Singular Values and Eigenvalues

• 𝐗 = 𝐀𝐒𝐁T, thus

𝐗T𝐗 = 𝐀𝐒𝐁T T
𝐀𝐒𝐁T = 𝐁𝐒T𝐀T𝐀𝐒𝐁T

• Since 𝐀T𝐀 = 𝐈, 𝐗T𝐗 = 𝐁𝐒T𝐒𝐁T = 𝐁𝚺𝐁T, where 
𝚺 is a 𝑚 ×𝑚 diagonal matrix consisting the 
square of the singular values at the diagonal of 𝐒. 

• Since 𝐁T𝐁 = 𝐈, (𝐗T𝐗)𝐁 = 𝐁𝚺𝐁T𝐁 = 𝐁𝚺, thus

• 𝐁 is the eigenvector matrix of (𝐗T𝐗), and 𝚺 is the 
diagonal matrix of eigenvectors of (𝐗T𝐗).



PCA Algorithm

• Write 𝑁 data points 𝒙𝑖 = (𝒙𝑖1, 𝒙𝑖2, . . . , 𝒙𝑖𝑚) as row 
vectors.

• Put these vectors into a matrix 𝐗raw (which will have size 
𝑁 ×𝑚)

• Center the data by subtracting off the mean of each 
column, putting it into matrix 𝐗.

• Compute the covariance matrix 𝐂 = 𝑐𝑜𝑣 𝐗 .
• Compute the eigenvalues and eigenvectors of 𝐂, so 𝐂𝐕 =
𝐕𝐃, where 𝐕 holds the eigenvectors of 𝐂, and 𝐃 is the 𝑚 ×
𝑚 diagonal eigenvalue matrix.

• Sort the columns of 𝐃 into order of decreasing eigenvalues, 
and apply the same order to the columns of 𝐕.

• Choose first 𝑘 principal components and project the data 
onto the corresponding eigenvectors. 



Centering the Raw Input Data

N = 100;

m1 = [3, 3]';   

cov1 = [2 1; 1 2]; 

rng default

Xraw = mvnrnd(m1,cov1,N);

% Center the data

mu = mean(Xraw);

X = Xraw - mu;

mean(X)



% Empirical sample 

covariance matrix

(X'*X)/(N-1)

% Same as using cov()

C = cov(X)

% Find out the eigenvalues 

and eigenvectors

[V,D] = eig(C);

C*V

V*D

V1 = V(:,1); norm(V1)

V2 = V(:,2); norm(V2)

V1’*V2

% Display the eigenvectors for data projection
hor = min(X(:,1)): 0.01: max(X(:,1));
ver = V1(2)/V1(1)*hor;
plot(hor, ver, 'g');

hold on;
hor = min(X(:,1)): 0.01: max(X(:,1));
ver = V2(2)/V2(1)*hor;
plot(hor, ver, 'r');

Unit eigenvectors are perpendicular

V =
0.6639   -0.7478
-0.7478   -0.6639

D =
1.0084         0

0    4.0373



SVD
[A,S,B]= svd(X/sqrt(N-1),'econ');
>> whos A

Name        Size            Bytes  Class     Attributes
A         100x2              1600  double 

S =
2.0093         0

0    1.0042

>> S.^2
ans =

4.0373         0
0    1.0084

>> B
B =

-0.7478   -0.6639
-0.6639    0.7478

V =
0.6639   -0.7478
-0.7478   -0.6639

D =
1.0084         0

0    4.0373

[V,D] = eig(C);



% Variance after projection

Y1 = X*V1;

var(Y1)

ans =

1.0084

figure;  scatter(Y1,zeros(100,1))

Y2 = X*V2;

var(Y2)

>> var(Y2)

ans =

4.0373

figure;  scatter(Y2,zeros(100,1))

grid

% Correlation between projections

>> Y1'*Y2

ans =

-9.9476e-14

D =
1.0084         0

0    4.0373



The pca function in Matlab
>> [coeff,score,latent] = pca(Xraw);
coeff =

0.7478   -0.6639
0.6639    0.7478

V =
0.6639   -0.7478
-0.7478   -0.6639

• Each column of coeff contains coefficients (indicating projection direction vectors) 
for one principal component, and the columns are in descending order of 
component variance.  

• Coefficients are sometimes called “loadings”, which are the coefficients (or 
weights) of the linear combination (weighted average) of the original variables 
from which the principal components (PCs) are constructed. 

>> whos score
Name         Size            Bytes  Class     Attributes
score      100x2              1600  double 

• Scores are the value of projection of the input data onto a eigenvector (or the results of 
the linear combination of the original variables).

>> latent
latent =

4.0373
1.0084

Latent: Principal component variances, that is the eigenvalues of the 
covariance matrix, returned as a column vector.

>> cov(score)
ans =

4.0373    0.0000
0.0000    1.0084



Loadings and Scores
>> X(1,:)
ans =

0.5863    1.4114

>> coeff
coeff =

0.7478   -0.6639
0.6639    0.7478

>> X(1,:)*coeff(:,1)
ans =

1.3755

>> X(1,:)*coeff(:,2)
ans =

0.6663

>> score(1,:)
ans =

1.3755    0.6663

Reconstruction of X(1,:) using coeff
>> score(1,:)*coeff‘    // inv(coeff) = transpose(coeff)
ans =

0.5863    1.4114

>> coeff'*coeff
ans =

1.0000   -0.0000
-0.0000    1.0000

>> inv(coeff)
ans =

0.7478    0.6639
-0.6639    0.7478



Reconstruction using the Principal Component

score_truncated = score;

score_truncated(:,2) = 0;

X_rec2 = score_truncated * coeff';

figure;

plot(X(:,1),X(:,2),'b.','MarkerSize',12)

hold on;

plot(X_rec2(:,1),X_rec2(:,2),'r.','Marker

Size',12)

legend('Original Data', 'Reconstructed 

Data','Location','SE');

grid

axis equal

>> diff = (X_rec2 - X);
diff_sq = diff(:,1).^2 + diff(:,2).^2;
% Average distortion (mean square error)
sum(diff_sq)/(N-1) 
ans =

1.0084 (same as the variance of the 2nd

component dropped)
>> latent
latent =

4.0373
1.0084



sklearn
import numpy as np
infile = r"C:\...\pca.csv"
dataset = np.loadtxt(infile, delimiter=',')
X = dataset[:, 0:2]

from sklearn.decomposition import PCA

pca = PCA(n_components=2)
# sklearn automatically centers the input raw data
pca.fit(X)

# Eigenvectors (loadings)
print(pca.components_)

# Eigvenvalues (latent)
print(pca.explained_variance_)

# Scores
Y = pca.transform(X)

#axis = 0, along the columb; ddof = 1 for dividing by (N-1); 
np.var(Y, axis = 0, ddof=1) 

# Reconstruction by keeping only the 1st 
principal component
# setting the 2nd component in Y to zero
Y_trunc = Y
Y_trunc[:,1] = 0

X_rec = pca.inverse_transform(Y_trunc)

# Centered (instead of the raw) input to 
compare with the reconstructed data
X_center = X - np.mean(X)

# Mean square error
diff = X_rec - X_center
diff_sq = diff[:,0]**2 + diff[:,1]**2
np.sum(diff_sq)/(np.size(diff_sq)-1)


