Homework 3 (Total 230 pts) Due 5:00 pm, February 27, 2025 (Thursday)

Note: Submit electronically to Canvas two files ("HW3.pdf", and "Q1.m", "Q2.m", "Q3.m").

- 1. (80 pts) Load the following MAT file in Matlab, <u>http://www.ece.uah.edu/~dwpan/course/ee614/data/data.mat</u>, and estimate the entropies of the binary sequence "data".
 - (a) Estimate the first-order entropy $H(X) = -\sum_{i=0}^{1} P(X=i) \log_2 P(X=i)$.
 - (b) Estimate the second-order entropy of the sequence of symbol pairs (X_1, X_2) :

$$H(X_1, X_2) = -\sum_{i_1=0}^{1} \sum_{i_2=0}^{1} P(X_1 = i_1, X_2 = i_2) \log_2 P(X_1 = i_1, X_2 = i_2).$$

- (c) Suppose the binary sequence can be modeled by a discrete-time first-order Markov chain consisting of two states (S_0 and S_1). Estimate the following probabilities: $P(S_0)$, $P(S_1)$, P(0|0), P(1|0), P(0|1), P(1|1), based on which calculate the entropy of the Markov model H_M and the conditional entropy $H(X_2|X_1)$.
- (d) Fill in the following table with the results of (a), (b) and (c).

H(X)	
$H(X_1, X_2)$	
H_M	
$H(X_2 X_1)$	
$P(S_0)$	
$P(S_1)$	
P(0 0)	
P(1 0)	
P(0 1)	
<i>P</i> (1 1)	
$\frac{P(0 1)}{P(1 1)}$	

(e) Submit on Canvas the Matlab script ("Q1.m") you used to obtain the above results.

2. (60 pts) Suppose that we have a source that emits symbols from an alphabet *X* that contains five distinct symbols {A, B, C, D, E}, with the following symbol probabilities:

P[A]	P[B]	P[C]	P[D]	P [E]
0.3	0.3	0.2	0.1	0.1

- (a) What is the entropy, H(X), of the source X?
- (b) If we encode *X* using a minimum-variance Huffman code, what is the average codeword length? Sketch the Huffman code tree you constructed.
- (c) Suppose we encode a block of two symbols at a time. We assume that there is no dependence between the two symbols in a block. Then we have a new source *Y* that contains 25 symbols {AA, AB, AC, AD, AE, ..., EA, EB, EC, ED, EE}. Calculate the entropy, *H*(*Y*), of the source *Y*.
- (d) Write a Matlab script to code *Y* using a minimum-variance Huffman code. What is

the average codeword length?

- (e) Compare the results obtained in (b) and (d). What is your conclusion?
- (f) Submit on Canvas the Matlab scripts ("Q2.m") you used to obtain the results.
- (g) Fill in the following table with the results.

(a) $H(X)$	(b) Avg. codeword length of X	(c) $H(Y)$	(d) Avg. codeword length of Y

3. (90 pts) Huffman coding of digital images.

Use the *imread* function to read in the built-in color image 'landOcean.jpg' on Matlab. Next, extract the red (R), green (G) and blue (B) component images, respectively.

- (a) Display and attach the red component image *R*. What is the first-order entropy of the image R, H(R)?
- (b) Write a Matlab M file to code the image *R* using Huffman code. What is the size (bits) of the coded bitstream? And on average how many bits/pixel is needed to code the image?
- (c) Decode the bitstream obtained in (b). Use *tic* and *toc* functions to measure the elapsed time of decoding the coded bitstream. What is the running time (in seconds)? What is the version number of the Matlab you used?
- (d) Perform lossless check. Can your decoder recover the original image?
- (e) Repeat steps (a) through (d) using the green and blue component images, respectively.
- (f) Instead of Huffman coding the R, G, and B component images separately, we can apply Huffman coding on the entire color image (I) as a whole. What is the first-order entropy of the entire color image, H(I)? What is the size (bits) of the Huffman coded bitstream? And on average how many bits/pixel is needed to code the entire color image?
- (g) Which scheme offers higher overall compression on the entire color image, the separate R/G/B coding scheme, or the one-time Huffman coding scheme in (f)? Justify your answer.
- (h) Submit on Canvas the Matlab scripts ("Q3.m") you used to obtain the results.
- (i) Fill in the following table with your results.

(a) <i>H</i> (<i>R</i>)	(b) Size of the coded	(b) Avg. number	(c) Matlab	(c) Decoding	(d) Lossless
	bitstream (bits)	of bits/pixel	version	time (sec)	check passed?

H(G)	Size of the coded bitstream for <i>G</i> (bits)	Avg. number of bits/pixel for <i>G</i>	H(B)	Size of the coded bitstream for <i>B</i>	Avg. number of bits/pixel for <i>B</i>

H(I)	Size of the coded	Avg. number of	Which scheme offers higher overall		
	bitstream for <i>I</i> (bits)	bits/pixel for I	compression? Check only one.		
			R/G/B ()	One-time ()	