Lecture 16

Kraft-McMillan Inequality (K-M inequality): 4

(1) If a code Cis uniquely decodable, then K(C) = Z 27X
Where N is the number of codewords in i=1
codeC,and A, &, ..., By

Are the codeword lengths.

(2) IfK(C) $ 1, then we can always construct a prefix code with
T codeword lengths being l, , ,2,_, e Lv

P'\‘NQ. (2) :

Construct a prefix code:

Assign some vertices as codewords, then we oot

cannot assign codeword to any leaves belonging

to the subtree rooted at that codeword. odowords

Look at the number of leaf nodes: VN A Codevard]
iven the wde . AR

C" n W'a leﬂ:"‘hs - y 1/;_ ‘.‘“ ~N .
£| , ll y T zN / __/ '\ ;';‘\ .

\ e Dy

dQ‘Fmt N .. .- 4
L=max { &, & .., L)Y Subtreg

Construct a full binary tree of length l ’

which has 21- leat nodes.

Next, 6SSign a codeword to verfex Vi ot level Jf, | the,

the path from the yost to vertey V, hes a by code

With len5+h di. And +here s a need 4o prune Hhe subtyee
Footed t Vi, vesulting in o lost of 224 Jegt podee.
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Likewise, the number of leaf nodes lost for each codeword assignment:
Given +he wodewd |engths -
£l ’ L. y T 2I\I

!

22‘(» zﬂ'll 2@-61

The total number of leaf nodes needed to build a code:

! | o,
Z 22“‘! — 212 2’*‘1 < 2[

=)

k(o) = % -t <

Construct a full binary tree of depth [, which hag 2‘{ ,ea-F nodes

Therefore, we can always construct a prefix code.

Huffman Code (example)

Alphabet =
{Q'U Ch,) 03, G, as}

Uodeword, Symbot Prob

0l Gy 0.2 0.4 D — 0
000 Gy 0.2 : ]‘oé ! by -
w0 G 0 ! '
0[ 0 | 0.y 0.2
LT T W B

kKO = 27'4 2242734 2% 2 = | 3
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L= wax§ L, Rey=4
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a, (loss of 2'"'< ¢

|€a'f n,d")
(loss of 2772=y
legf nodeg)
244 =)
lecf node leaf node

Leaf nod :
eaf nodeS o5t Q, 0, B g

v l

- Length of Huffman codes

Answer the following question:
Are we losing on the coding efficiency (in terms of average codeword length) if we restrict
ourselves to prefix codes?

For @ sowrce with alphabet A = {4, 00, 0, and probability model -
{P @), PCaY, -, p(ﬁu)} , they the average cosleword [ength .

A | N . — k
( CL) 15 3 th b/ [ _ z PU{.’) ﬂ,‘

It Can be Shown +hot : H(S) < I § H(S) + )

First prove the lower bound:

H(S) - £ <o
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Where

K
His)y - L = ~ :Z P@) log, p(ar) - EK:' pla Ly

K -4
= D p@) log, ( \
= P@)

Consider Jensen's Inequality:

If f(x) is a concave function, then E[f(X)] <= f(E[X]), where X is a random
variable, and E[X] is the expected value of X.

E[f(X)] <= f(E[X])

v
(o0 < loge E0 P
Define a two mass-point distribution: %’ l‘
E G(X):‘ = P {(Xl) + Pa- ]c(')(z) *' .xz > ¥

.'F(E[X]) = {(P"xl + P;"Xz)

E[f(X)] <= f(E[X])

PO'{(N) + P"‘C(Xl) < {Q’l'xi + P;-Xz)

. T k 3
For a general k mass-point distribution: 2 P . y < ]C ( z .
X (fl RV) takes  X|, %, -, Y = 'F(xr) s P 7())

Thus, log.( )

— K l k 2"»ll'
Hi - L = 2 p@) log, |21 < l%{ E’@»- \J} S log,1=0

= P( ) = Ka'.)
Hence, - K '
H(S)s L ZZ—L'='<(()S
i=)
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