
Use m = 2, n = 2, as an example.

Lecture 18

 Lecture 18 Page 1

 Lecture 18 Page 2

Golomb Codes-

Compared with Huffman Codes:

Huffman encoding:

code = huffmanenco(sig,dict)

>> symbols = 1:6;
p = [.5 .125 .125 .125 .0625 .0625];
>>[dict,avglen] = huffmandict(symbols,p);
>> Sig = randsrc(100,1,[symbols;p]);

>> code = huffmanenco(Sig,dict);
>> 224/100
ans =
 2.2400

Sig1 = huffmandeco(code,dict);

Huffman codes:
(1) Code book has to be trained based on the source probability distribution => Hard to adapt
to the changing statistics.
(2) Code book has to be stored as "side" information, resulting in loss of compression
efficiency.
(3) Decoding is complex.

Golomb Codes
Designed to compress non-negative integers.(1)
Optimal for geometric sources with certain parameters.(2)
Variable-length codes(3)

-

 Lecture 18 Page 3

https://www.mathworks.com/help/releases/R2022a/comm/ref/huffmanenco.html?searchHighlight=huffmanenco&searchResultIndex=1#d123e54794

Variable-length codes(3)

 Lecture 18 Page 4

Example: RV with Geometric Distribution
 X: takes non-negative integer values (n)

Assume that the probability of a symbol '0' occurring is:

Golomb code:

Golomb Coding Scheme

Code the non-negative integers n = mq + r, where m is a coding parameter (positive integer).

Split the integer n into two parts:
(1) Code q with unary code. Here q is the quotient of (n/m).
 Unary code: q 1's, followed by one '0'. Codeword length of this unary code: (q + 1) bits
(2) Code r using binary code. Here r is the remainder of (n/m). Binary code has

If m is not power of two, discuss later …

Assumption: the integer n's follow the geometric distribution:

Examples:

 Lecture 18 Page 5

>> (1/2)^(1/16)
ans =
 0.9576

>> p = 0.9;
n = 0: 137;
G = p.^n*(1 - p);
figure; plot(n, G); grid

>> p = 0.7;
>> G = p.^n*(1 - p);
>> hold on;
>> plot(n,G)
>> p = 0.9576;
>> -1/log2(p)
ans =
 15.9987

>> p = 0.7;
>> -1/log2(p)
ans =
 1.9434

 Lecture 18 Page 6

