
Use m = 2, n = 2, as an example. 
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Golomb Codes-

Compared with Huffman Codes:

Huffman encoding:

code = huffmanenco(sig,dict)

>> symbols = 1:6; 
p = [.5 .125 .125 .125 .0625 .0625];
>>[dict,avglen] = huffmandict(symbols,p);
>> Sig = randsrc(100,1,[symbols;p]);

>> code = huffmanenco(Sig,dict);
>> 224/100
ans =
    2.2400

Sig1 = huffmandeco(code,dict);

Huffman codes:
(1) Code book has to be trained based on the source probability distribution => Hard to adapt 
to the changing statistics.
(2) Code book has to be stored as "side" information, resulting in loss of compression 
efficiency.
(3) Decoding is complex. 

Golomb Codes
Designed to compress non-negative integers.(1)
Optimal for geometric sources with certain parameters.(2)
Variable-length codes(3)

-
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https://www.mathworks.com/help/releases/R2022a/comm/ref/huffmanenco.html?searchHighlight=huffmanenco&searchResultIndex=1#d123e54794


Variable-length codes(3)
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Example: RV with Geometric Distribution
                  X: takes non-negative integer values (n)

Assume that the probability of a symbol '0' occurring is: 

Golomb code: 

Golomb Coding Scheme

Code the non-negative integers n = mq + r, where m is a coding parameter (positive integer).

Split the integer n into two parts:
(1) Code q with unary code. Here q is the quotient of (n/m).
       Unary code: q 1's, followed by one '0'.  Codeword length of this unary code: (q + 1) bits
(2) Code r using binary code. Here r is the remainder of (n/m). Binary code has 

If m is not power of two, discuss later …

Assumption: the integer n's follow the geometric distribution:

Examples:
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>> (1/2)^(1/16)
ans =
    0.9576

>> p = 0.9;
n = 0: 137;
G = p.^n*(1 - p);
figure; plot(n, G); grid

>> p = 0.7;
>> G = p.^n*(1 - p);
>> hold on;
>> plot(n,G)
>> p = 0.9576;
>> -1/log2(p)
ans =
   15.9987

>> p = 0.7;
>> -1/log2(p)
ans =
    1.9434
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