$$H(A^{(n)}) = -\sum_{i_1=1}^{m} \sum_{i_2=1}^{m} \cdots \sum_{i_n=1}^{m} P(\hat{u}_{i_1}, \hat{u}_{i_2}, \cdots, \hat{u}_{i_n}) \log_2 P(\hat{u}_{i_1}, \hat{u}_{i_2}, \cdots, \hat{u}_{i_n})$$

Joint Entropy Joint PMF

= n H(A) ?

Use m = 2, n = 2, as an example.

$$A = \{a_{1}, a_{2}\}, a_{R}d \quad P(a_{1}) + P(b_{2}) = 1.$$

$$H(A^{(n)}) = -\sum_{i_{1}=1}^{m} \sum_{i_{2}=1}^{m} \cdots \sum_{i_{n}=1}^{m} P(a_{i_{1}}, a_{i_{2}}, \cdots, a_{i_{n}}) \log_{2} P(a_{i_{1}}, a_{i_{2}}, \cdots, a_{i_{n}})$$

$$= -\sum_{i_{1}=1}^{2} \sum_{j_{2}=1}^{2} P(a_{i_{1}}, a_{i_{2}}) \log_{2} P(a_{i_{1}}, a_{i_{2}}), where$$

$$P(a_{i_{1}}, a_{i_{2}}) = P(a_{i_{1}}) \log_{2} P(a_{i_{1}}, a_{i_{2}}) \log_{2} P(a_{i_{1}}, a_{i_{2}})$$

$$= -P(a_{1}, a_{1}) \log_{2} P(a_{1}, a_{1}) - P(a_{2}, a_{2}) \log_{2} P(a_{1}, a_{2})$$

$$-P(a_{2}, a_{1}) \log_{2} P(a_{2}, a_{1}) - P(a_{2}, a_{2}) \log_{2} P(a_{2}, a_{2})$$

$$P(a_{1}, a_{1}) \log_{2} P(a_{1}, a_{1}) = P(a_{1}) \cdot P(a_{1}) \left[\log_{2} P(a_{1}) + \log_{2} P(a_{1})\right]$$

$$= P(a_{1}, a_{2}) \log_{2} P(a_{1}, a_{2}) = P(a_{1}) \cdot P(a_{2}) \left[\log_{2} P(a_{1}) + \log_{2} P(a_{2})\right]$$

$$= -P(a_{1}, a_{2}) \log_{2} P(a_{1}, a_{2}) = P(a_{1}) \cdot P(a_{2}) \left[\log_{2} P(a_{1}) + \log_{2} P(a_{2})\right]$$

Lecture 18 Page 1

$$P(a_1) p(a_1) \log_2 p(a_1) + P(a_1) p(b_2) \log_2 p(a_1) = p(a_1) \left(P(a_1) + P(b_2) \right) \log_2 p(a_1) = P(a_1) \log_2 p(a_1)$$

$$H(A^{(2)}) = -p(a_{1}, a_{1}) \log_{z} p(a_{1}, a_{1}) - p(a_{1}, a_{2}) \log_{z} p(a_{1}, a_{2}) - p(a_{2}, a_{1}) \log_{z} p(a_{2}, a_{1}) - p(a_{2}, a_{2}) \log_{z} p(a_{2}, a_{2}) = (-p(a_{1}) \log_{z} p(a_{1}) - p(a_{2}) \log_{z} p(a_{2})) + (-p(a_{1}) \log_{z} p(a_{1}) - P(a_{2}) \log_{z} p(a_{2})) = H(A) + H(A) H(A^{(2)}) = 2 H(A)$$

Golomb Codes
 Compared with Huffman Codes:

Huffman encoding:
Huffman encoding:
Driginal
$$\rightarrow$$
 Encoder \rightarrow bitstream
Data.
(Sig)
code = huffmanenco(sig.dict)
Reconstructed \leftarrow Decoder
Jata.
(Sig1)
Sig1 = huffmandeco(code,dict);
Sig1 = huffmandeco(code,dict);
 $dict (symbols, p)$
 \rightarrow symbols = 1:6;
 $p = [.5.125.125.0625.0625];$
 $\rightarrow> [dict, avglen] = huffmandict(symbols, p);$
 $\rightarrow> code = huffmanenco(Sig,dict);$
 $\rightarrow> code = huffmanenco(Sig,dict);$
 $\rightarrow> 224/100$
ans =
2.2400

Huffman codes:

(1) Code book has to be trained based on the source probability distribution => Hard to adapt to the changing statistics.

(2) Code book has to be stored as "side" information, resulting in loss of compression efficiency.

(3) Decoding is complex.

- Golomb Codes

- (1) Designed to compress non-negative integers.
- (2) Optimal for geometric sources with certain parameters.

(3) Variable-length codes

Example: RV with **Geometric** Distribution

X: takes non-negative integer values (n)

$$G(n) = P(\chi = n) = p^n(1-p)$$
, where $0 ; given parameter$

Assume that the probability of a symbol '0' occurring is: $p \Rightarrow p('l') = l-p$ for binary source $p(0 0 \dots 0 1) = p^n \cdot (l-p)$ run length = n

Golomb code: $p^m = \frac{1}{2}$

Golomb Coding Scheme

Code the non-negative integers n = mq + r, where m is a coding parameter (positive integer).

Split the integer n into two parts:

(1) Code q with unary code. Here q is the quotient of (n/m).

Unary code: q 1's, followed by one '0'. Codeword length of this unary code: (q + 1) bits (2) Code r using binary code. Here r is the remainder of (n/m). Binary code has (log_m) bits

(log_m) bits for binary representation of r. If m is not power of two, discuss later ...

Assumption: the integer n's follow the geometric distribution:

$$G(n) = p^{n}(1-p)$$
, where $p^{m} = \frac{1}{2}$

Examples:

n	G(n) $m =$	= 1 Codeword
0	1/2	0
1	1/4	10
2	1/8	110
$egin{array}{c} 1 \\ 2 \\ 3 \end{array}$	1/16	1110
	1/32	11110
5	1/64	111110
$egin{array}{c} 4 \\ 5 \\ 6 \end{array}$	1/128	1111110
7	1/256	11111110
8	1/512	111111110
8 9	1/1024	1111111110
10	1/2048	11111111110

$$m = 1 \implies p^{m} = p' = p = \frac{1}{2}.$$

$$G(n) = \left(\frac{1}{2}\right)^{n} \cdot \left(1 - \frac{1}{2}\right) = \left(\frac{1}{2}\right)^{n+1}$$

$$\frac{n}{m} = \frac{n}{1} \implies \begin{cases} g = n \implies n \quad 1's, \text{ followed by 'o'} \\ r = 0 \implies no \text{ binary code} \end{cases}$$

$$\log_{2} m = \log_{2} 1 = 0 \quad \text{bit } \swarrow$$

m = 16				
n	Codeword	n	Codeword	
0	00000	24	101000	
1	00001	25	101001	
2	00010	26	101010	
3	00011 <	27	101011	
1 2 3 4 5 6 7 8 9	00100	28	101100	
5	00101	29	101101	
6	00110	30	101110	
7	00111	31	101111	
8	01000			
9	01001	32	1100000	
10	01010	33	1100001	
11	01011	34	1100010	
12	01100	35	1100011	
13	01101	36	1100100	
14	01110	37	1100101	
15	01111	38	1100110	
10	100000	- 39	1100111	
16	100000	40	1101000	
17	100001	41	1101001	
18	100010	42	1101010	
19	100011	43	1101011	
20	100100	44	1101100	
$\frac{21}{22}$	100101	45	1101101	
$\frac{22}{23}$	100110	46	1101110	
25	100111	47	1101111	

$$p^{m} = \frac{1}{2} \implies p^{16} = \frac{1}{2} \implies p = \left(\frac{1}{2}\right)^{\frac{1}{16}}$$

$$m \log_{2} p = -1 \qquad \qquad >> (1/2)^{(1/16)}$$

$$ans = = 0.9576$$

$$G(n) = p^{n} (1-p), \quad where \quad p^{m} = \frac{1}{2}.$$

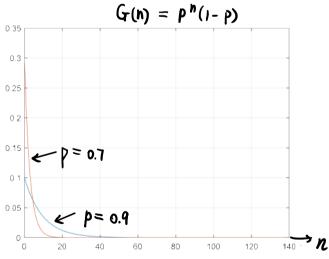
$$\frac{n}{m} = \frac{n}{16} = \begin{cases} unary \ code \\ binary \ cade \ (log_{2}m = log_{2}lb = 4bits) \end{cases}$$
If $n = 27$

$$\frac{n}{m} = \frac{27}{16} = \begin{cases} g = 1 \implies 10' \\ r = 11 \implies 10' \\ q = bit$$

$$n = 29$$

$$q = (g = 1 \implies 10')$$

$$\frac{n}{m} = \frac{2q}{16} = \begin{cases} g = 1 \rightarrow 10' \\ r = 13 \rightarrow 10' \\ r = 13 \rightarrow 10' \\ 4 \text{ bit} \end{cases}$$



>> p = 0.9; n = 0: 137; $G = p.^n*(1 - p);$ figure; plot(n, G); grid pm = 1 ₽ >> p = 0.7; $M\log_2 p = -1$ >> G = p.^n*(1 - p); >> hold on; ⇒m=log.p >> plot(n,G) >> p = 0.9576; >> p = 0.7; >> -1/log2(p) >> -1/log2(p) ans = ans = 15.9987 1.9434