Lecture 19

Golomb Coding Procedure (cont'd)

What if m is not a power of 2?

Code the non-negative integers n = mq + r, where m is a coding parameter (positive integer).

Split the integer n into two parts:

(1) Code q with unary code. Here q is the quotient of (n/m).

Unary code: q 1's, followed by one '0'. Codeword length of this unary code: (q + 1) bits (2) Code r using **truncated** binary code. Here r is the remainder of (n/m).

Let $2^{B} < m < 2^{A}$, where A = B + 1For example, if m = 3, $2^{I} < m = 3 < 2^{2}$, then B = 1, and A = 2. if m = 14, $2^{3} < m = 14 < 2^{4}$, then B = 3, and A = 4

- Truncated binary code to represent r:

(1) Use B-bit binary representation for r values in $[0, 1, ..., 2^{A} - m - 1]$,

For example, if m = 3, use 1-bit binary code for r values in [0], as (0),

where
$$2^{A} - m - 1 = 2^{2} - 3 - 1 = 0$$

if m = 14, use 3-bit binary code for r values in [0, 1]

where 24-m-1 = 16-14-1 = 1

(2) Use A-bit binary representation for coding r values in $[2^{A}-m, 2^{A}-m+1, ..., m-1]_{-}$

as binary code for
$$(r + 2^{A} - m)$$
,

For example, if m = 3, use 2-bit binary code for r values in [1, 2], where $2^{A} - m = 2^{2} - 3 = 1$ '1' coded as (10)₂, and '2' coded as (11)₂.

		: 3	
n	G(n)	Codeword	
0	0.206	00	-
1	0.164	010	
2	0.130	011	
3	0.103	100	
4	0.081	1010	
5	0.064	1011	
6	0.051	1100	1 n_{-} I_{-} f_{3}
\rightarrow 7	0.041	(11010)	
8	0.032	11011	
9	0.026	11100	
10	0.021	111010	

Incomplete Binary Code

Truncated Binary Code

Another example, m = 5, $2^2 < m = 5 < 2^3$ \downarrow \downarrow \downarrow B=2 A=3

• Truncated binary code to represent r: (1) Use B-bit binary representation for r values in $[0, 1, ..., 2^{A} - m - 1]$, \downarrow 2 - bit $r \in [0, 1, ..., 2^{3} - 5 - 1 = 2]$

(2) Use A-bit binary representation for coding r values in [3, 4]

1 3

Incomplete Binary Code

Truncated Binary Code

m = 14				$2^{3} < m = 14 < 2^{4}$
n	Codeword	n	Codeword	
0	0000	24	101100	p-3 A-4
1	0001	25	101101	
9	00100	- 20	101110	
3	00101	28	110000	(1) Use B-bit binary representation for r values i
4	00110	$\frac{1}{29}$	110001	
$\overline{5}$	00111			$[0, 1,, 2^{n} - n - 1]$
6	01000	30	1100100	\sim
7	01001	31	1100101	
8	01010	32	1100110	16~14-1 = 1
9	01011	33	1100111	
10	01100	34	1101000	/ <u> </u>
11	01101	00 26	1101001	(2) Ite A-bit to represent $x = 2$
$14 \\ 13$	01110	37	1101010	() use it oil is represent 1 - 2,
14	10000	38	1101100	with offset $2^{A}-m=2^{4}-14=2$
15	10001	39	1101101	
		- 40	1101110	k + off(ot = 2 + 2 - 1)
16	100100	41	1101111	1 + 0 + 3 = 2 + 2 = 4
17	100101	42	1110000	
18	100110	43	1110001	$\int m \mu (f = 3 \Rightarrow 1/10)$
19	1010111		11100100	
20	101000			$r = 2 \Rightarrow 0100 \text{ K}$
22	101010	46	11100101	
23	101011	47	11100111	

- Golomb Decoding Case 1: m is a power of two

Code the non-negative integers n = mq + r, where m is a coding parameter (positive integer).

Split the integer n into two parts:

(1) Code q with unary code. Here q is the quotient of (n/m).

Unary code: q 1's, followed by one '0'. Codeword length of this unary code: (q + 1) bits (2) Code r using binary code. Here r is the remainder of (n/m). Binary code has (log_m) bits

Decoding

- Count from the left the number (q) of 1's preceding the first 0;
- Scan the next (s + 1) bits to reconstruct the r value.
- The codeword can be decoded as n = mq + r.

$$(0110)_2 = 6 = r$$

For example for m = 16 decode codeword (100110)

 $S = \log_2 m$

- The codeword can be decoded as n = mq + r. For example, for m = 16, decode codeword (100110) $S = \log_2 m = 4$ $f_{g=1}$ $f_{g=1}$ n = mq + r = 16x(+6=22). n = mq + r = 16x(+6=22). Case 2: m is NOT a power of two

Review the encoding procedure:

Split the integer n into two parts:

(1) Code q with unary code. Here q is the quotient of (n/m).

Unary code: q 1's, followed by one '0'. Codeword length of this unary code: (q + 1) bits (2) Code r using **truncated** binary code. Here r is the remainder of (n/m).

• Truncated binary code to represent r:

(1) Use B-bit binary representation for r values in $[0, 1, ..., 2^{A} - m - 1]$

(2) Use A-bit binary representation for coding r values in $[2^{A}-m, 2^{A}-m+1, ..., m-1]$

as binary code for
$$(r + 2^{A} - m)$$
.

Decoding Procedure:

- Count from the left the number (q) of 1's preceding the first 0;
- Skip the next bit ('0').
- First assume that r is represented by the next B-bit binary code, then check if $0 \le r \le 2^{A} - m - 1$.

If "Yes", then the assumption is valid; If "No", decode the next A-bit binary representation:

$$r = () - \text{offset}$$

$$2^{A} - m$$

- The codeword can be decoded as n = mq + r.

http://www.ece.uah.edu/~dwpan/course/ee614/code/golomb_deco.m

function n_rec = golomb_deco (codeword, m)

- % Function n_rec = golomb_deco (codeword, m)
- % golomb_deco decodes the input golomb codeword using parameter m;

- % Input: The codeword (1-D vector) for a non-negative integer n;
- % m is the coding parameter.
- % Output: n_rec is the reconstructed symbol.
- % Example: $n_rec = golomb_deco([0 1 0], 5)$

```
len = length(codeword);
% Count the number of 1's followed by the first 0
q = 0;
for i = 1: len
  if codeword(i) == 1
     q = q + 1;
  else
     ptr = i; % first 0
     break:
  end
end
if (m == 1)
  n_rec = q; % special case for m = 1
else
  A = ceil(log2(m));
  B = floor(log2(m));
  bcode = codeword((ptr+1): (ptr + B));
  r = bi2de(bcode,'left-msb');
  if r < (2^A - m)
     ptr = ptr + B;
  else
     % r is A-bit represtation of (r + (2^A - m))
     bcode = codeword((ptr+1): (ptr + A));
     r = bi2de(bcode, 'left-msb') - (2^A - m);
     ptr = ptr + A;
  end
  n_{rec} = q * m + r;
end
if ~isequal(ptr, len)
  error('Error: More than one codeword detected!');
end
```