Lecture 22

General Question:

What is the average codeword length of unary codes (without using Golomb codes)?

In this special case, the Golomb code becomes the unary code.

Unary code performs worse and worse when m increases. Next, analyze the Golomb coding efficiency. Code the non-negative integers n = mq + r, where m is a coding parameter (positive integer).

Split the integer n into two parts:

(1) Code **q** with unary code. Here **q** is the quotient of (n/m).

Unary code: q 1's, followed by one '0'. Codeword length of this unary code: (q + 1) bits (2) Code **r** using binary code. Here **r** is the remainder of (n/m). Binary code has $(l_{m} m)$ bits

m = 16				n n $(g = 0 : 1 - bit unary cod)$
n	Codeword	n	Codeword	$\vec{m} = \vec{h} \Rightarrow \vec{l} = n : 4 - bit binary c$
0	00000	24	101000	
1	00001	25	101001	- C
2	00010	26	101010	$\int f m = i \eta + 1 \qquad \cdot \qquad \cdot$
5	00011	27	101011	(1 - 1) + 10 + 1 + 10 + 10 + 10 + 10 + 10 +
ŧ	00100	28	101100	
8	00101	29	101101	-
7 1	00110	21	101110	= 1 17 22
	01000	101	101111	- 1, 11, 33,
ă I	01001	32	1100000	
io i	01010	33	1100001	n
11	01011	34	1100010	- = r=1 same remainder
12	01100	35	1100011	m
13	01101	36	1100100	
14	01110	37	1100101	1.16+1
12	01111	38	1100110	$\Pr\{[k-1] - \sum p(1-n)$
18	100000	- 39	1100111	$(\gamma \sigma (1 - 1) - \Delta r (1 - r))$
17	100000	40	1101000	i=0
18	100010	42	1101010	V
19	100011	43	1101011	
20	100100	44	1101100	
21 [100101	45	1101101	$-(l_{-})_{0} \sum o'''$
22	100110	46	1101110	$= (1 - \mu)\mu \leftarrow \mu^{-1}$
23	100111	47	1101111	1=0
		1		v

Example : m = 1h

In general, if n = jm + r, where $0 \le r \le m$, then all these n values lead to the same remainder r, Since η mod m = r. Given $G_r(n) = p^n (1-p)$, $Prob [Remainder = r] = \sum_{j=0}^{\infty} p^{jm+r}(1-p) = p^r(1-p) \sum_{j=0}^{\infty} (p^m)^j = \frac{p^r(1-p)}{1-p^m}$

In summary,

$$Prob [Remainder = r] = \frac{P^{r}(i-p)}{i-p^{n}}$$
For example, $m = ib$, $p^{m} = p^{ib} = \frac{1}{2} \Rightarrow p = (\frac{1}{2})^{\frac{1}{4}}$

$$Prob [r] = 2p^{r}(i-p) \Rightarrow p = (1/2).^{(1/16)}$$

$$p = 0.9576$$

$$p = 2^{r}(p.r)^{*}(1-p);$$

$$p = 2^{r}(p.r)^{*}(1-p);$$

$$p = (1/2).^{(1/16)}$$

$$p = 0.9576$$

$$p = 2^{r}(p.r)^{*}(1-p);$$

$$p = (1/2).^{(1/16)}$$

$$p = 0.9576$$

$$p = 2^{r}(p.r)^{*}(1-p);$$

$$p = (1/2).^{(1/16)}$$

$$p = 0.9576$$

$$p = 2^{r}(p.r)^{*}(1-p);$$

$$p = (1/2).^{(1/16)}$$

$$p$$