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explicitly evaluable functions. For example, the M-ary error proba- 
bility is expressed as a quadrature in Lindsey’s equation (17), 

PE(M) = 1 [I - 2 lrn Qi(h, $;) exp (-g) dz] 

z/d eeL 
s 

m 
=22/;;moe -(1+d)s~41--‘2@3(1, 1 + M, s, sL) d.s, 

(5) 
where, following Lindsey, h2/2 has been replaced by L to simplify the 
notation. 

From the series form of @3, it is obvious that the integral gives an 

additional double series numerator parameter: 

PE(M) = di eeL z ~1 (1 + d)--“-1’2 
i 

(61 

A complete set of recursion relations for F1 when one parameter at 
a time changes has been given by Le Vavasseur [S]. It is a simple 
matter to derive the necessary change for this two-parameter case 
but Le Vavasseur has included this as one of several examples, so 
that we have at once 

4-f - P - P’Plb + 1, P, P’, Y + 1, 2, Y) 

= wy [ - ru - 4 & - ro - Y) & 1 
*FIG% P, P’, Y> Xl Y), 

whose confluent form is 

a@lb + 1, P, Y + 1, 2, Y> = Y $y a, P, Y, x, Y) 

Thus, 

(7) 

(8) 

(9) 

- I, 

e (a”-’ 
a”‘-‘_ [eLP,(l)] = (1 + &)Y,(l), 

which is equivalent to a result of Price [9], who has derived a number 
of expressions for these and related integrals. 

Note that the derivation above is, thus far, much simpler and more 
straightforward than the admirably executed tours de force of pre- 
vious derivations. However, the last step, viz., recognizing the form 
of the result, is automatically accomplished in the other derivations, 
and is much the harder part in the hypergeometric case. To obtain 
the reduction, we use operational relations [lo] to get 

Furthermore [II], 

,F,($; 2; 2t) = e”[l,(t) + I,(t)]. 01) 

The integral with the special parameters of (11) has been pre- 
viously recognized as a Q function [12]-[14] so that the reduction is 
essentially complete. 

ACKNOWLEDGMENT 

It is a pleasure to acknowledge my indebtedness to Dr. R. Price of 
the Sperry Rand Research Center, Sudbury, Mass., for a most 
valuable discussion on the subject of this note. 

JAMES A. MULLEN 
Research Division 

Raytheon Company 
Waltham, Mass. 

REFERENCES 
[1] W. C. Lindsey, “Error probabilities for Ricisn fading multichannel reception,” 

IEEE Trans. on Information Theory. vol. IT-lo. pp. 339350, October 1964. 
[2] J. I. Marcum, “A statist&l theory of target detection by pulsed radar.” 

IEEE Trans. on Infomzation Theory, vol. 6, pp. 59-144, April 1960 
[3] A. Erdblyi, W. Magnus, F. Oberhettinger. and F. Tricomi, Hiuher Trans- 

cendental Functions. New York: McGraw-Hi 1953, p. 155. sec. 2. 5.4. vol. 1. 
[4] %.p&$hm 9. 2. 1. (18) vol 2 p. 136. 
[5] Ibid. equation 5.7. 1. (22), kol. i, I;. 225. 
[S] Ibid. equation 5. 8. 2. (5). vol. 1, p. 231. 
[7] Ibid. equation 5. 7. 1. (6). vol. 1, p. 224: for 01, equation 5. 7. 1. (20), P. 225. 
[8] P. Appell and J. Kamp6 de F&i&, Fonctions hypergkomdtriques et hyper- 

sph6rique.x Paris: Gauthier-Viiars, 1926, p. 22; R. Le Vavasseur, Sur le 
systdne d’tquations am d&ivkes partiellea simultan& auzquelles satisfait la 
&tie hyperg&m&rique a deuz uariables F1, Thbe (Paris), no. 793, 1893; also, 
J. A. Mullen, “The differentid recursion formulae for Appeii’s hypergeometric 
functions,” to sppertr in J. SIAM, 1966. 

[Q] R. Price, “Some noncentrz+l F-distributions expressed in closed form,” Bio- 
metrika, vol. 61, pp. 107-122, equation (2.9). June 1964. 

[lo] I. I. Hirschman and D. V. Widder, The Convolution Transform. Princeton. 
N. J.: Princeton University Press, 1955, theorem 3 .I, p. 6. 

[ll] Erdhlyi et al. [3], equation 6. 9. 1. (lo), vol. 1, p. 265; also equation 6.4. (12). 
vol. 1, p. 255. 

[12] L. C. Maximon, “On the representation of indefinite integrals containing 
Bessel functions by simple Neumann series,” Proc. Am. Math. Sm. vol. 7, 
pp. 1054-1062, December 1956. 

[13] Price, [Q], equation (5.2). 
(141 Y. L. Luke, Integrals of Bessel Functions. New York: McGraw-Hill, 1962. 

pp. 287-288. 

Run-Length Encodings 

I. A CONTEXT FOR THE PROBLEM 

Secret Agent 00111 is back at the Casino again, playing a game of 
chance, while the fate of mankind hangs in the balance. Each game 
consists of a sequence of favorable events (probability p), terminated 
by the first occurrence of an unfavorable event (probability q = 1 -p). 
More specifically, the game is roulette, and the unfavorable event is 
the occurrence of 0, which has a probability of q = l/37. No one 
seriously doubts that 00111 will come through again, but the Secret 
Service is quite concerned about communicating the blow-by-blow 
description back to Whitehall. 

The bartender, who is a free-lance agent, has a binary channel 
available, but he charges a stiff fee for each bit sent. The problem 
perplexing the Service is how to encode the vicissitudes of the wheel 
so as to place the least strain on the Royal Exchequer. It is easily 
seen that, for the case p = q = l/2, the best that can be done is to 
use 0 and 1 to represent the two possible outcomes. However, the 
case at hand involves p >> q, for which the “direct coding” method is 
shockingly inefficient. 

Finally, a junior code clerk who has been reading up on Infor- 
mation Theory, suggests encoding the run. lengths between successive 
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TABLE I 
RUN-LENOTH DICTIONARIES FOR SMALL m 

m=l 
n G(n) Codeword 

0 
1 
B 

l/8 
1 /I6 

4 l/32 
5 l/64 

! 
l/l28 
l/256 

: l/512 
l/1024 

10 l/2048 

0 

::0 
1110 
11110 
111110 
1111110 
11111110 
111111110 
1111111110 
11111111110 

?I WOm 
0 0.293 
1 0.207 

: 0.116 0.104 
4 0.073 

: 0.051 0.036 

zi 0.025 0.018 
1: 0.009 0.013 

=2 
Codeword - 

% 
100 
101 
1100 
1101 
11100 
11101 
111100 
111101 
1111100 

m=3 
G(n) Codeword 

0.206 
0.164 
0.130 

K% 
0.064 
0.051 
0.041 
0.032 
0.026 
0.021 

m. =4 
G(n) Codeword 

0.151 000 
0.128 001 
0.109 010 
0.092 011 
0.078 1000 
0.066 1001 
0.056 1010 
0.048 1011 
0.040 11000 
0.034 11001 
0.029 11010 

unfavorable events. In general, the probability of a run length of 
n is p”p, for 12 = 0, 1, 2, 3 ,..., which is the familiar geometric distri- 
bution. (See Feller,’ page 174.) 

II. THE ENCODING PROCEDURE 

If the list of possible outcomes were finite, we could list them with 
their probabilities, and apply Huffman coding2 (as done by 
Abramson, page 77 et seq.). However, with an infinite list, it is 
clear that we cannot start at the bottom and work our way up. 
Fortunately, the fact that the probabilities follow a distribution law 
furnishes a short cut, as follows. 

Let m = - log 2/lag p. (That is, p” = l/2.) The results will be 
most readily applicable for those p such that m is an integer (viz., 
p=O.5,p=O.707 . . . . p=O.794 . . . . p=O.849 . . . . p=O.873 . . . . etc.). 
The resulting coding scheme is especially simple when m is a power 
of 2, but any integer m is a favorable case. 

If pm = l/2, then a run of length vz + m is only half as likely as a 
run of length n. (The respective probabilities are pm+% g = +pnq and 
p”q.) Thus, we would expect the codeword for run-length n + m to be 
one bit longer than the codeword for run-length n. This argument, 
although nonrigorous, leads to the correct conclusion that there 
should be m codewords of each possible wordlength, except for the 
shortest wordlengths, which are not used at all if m > 1, and possibly 
one transitional wordlength which is used fewer than m times. 
Knowing this answer, there is a rigorous proof by mathematical 
induction. The dictionaries for the first several values of m are as 
shown in Table I, where G(n) is used to designate p”p. 

In general, let k be the smallest positive integer such that 2kL 2m. 
Then the corresponding code dictionary contains exactly m words of 
every word length 2 k, as well as 2”-i- m words of length k -1. 
(The simplification which occurs for m a power of 2 is that the col- 
lection of words of length k - 1 is empty.) This result is obtained by 
seeing how much “signal space” is used up by having m words of 
every length 2 k. This consumes 

leaving 1 - m/2k-1 = (2”-’ - m)/2k-1 unused, which means that 
2k-1-m words of length k-l may be adjoined. 

III. FURTHER EXAMPLES 

We will consider the cases m = 14 and m = 16, to illustrate what 
happens when m is not a power of 2 and when m is a power of 2, 
respectively. The dictionaries in these two cases are shown in Table 
II. In the case m = 14, we find k = 5, and 2k-1-m = 2, so that there 
are two codewords of length 4, followed by fourteen codewords of 
lengths 5, 6, 7, etc. On the other hand, since m = 16 is a power of 2, 
the corresponding dictionary contains exactly 16 words of every 
wordlength starting with length 5. 

In a practical situation, if m = - log 2/lag p is not an integer, then 
the best dictionary will oscillate between [m] words of a given 

1 W. Feller, An Introduction to Probability Theory and Its Applications, vol. 1. 
New York: Wiley, 1950. 

2 D. Huffman, “A method for the construction of minimum redundancy codes,” 
Proc. IRE, vol. 40, pp. 1098-1101, September 1952. 

3 N. Abramson, Information Theory and Coding. New York: McGraw-Hill, 1963. 

TABLE II 
RUN-LEN~H DICTIONARIES FOR m = 14 AND m = 16 

112 = 14 
/I 

m = 16 

n 
0 
1 

16 
:i 
19 
% 
22 
23 

- 

_- 

- 

Codeword 
0000 
0001 
00100 
00101 
00110 
00111 
01000 
01001 
01010 
01011 
01100 
01101 
01110 
01111 
10000 
10001 __~ 
100100 
100101 
100110 
100111 
101000 
101001 
101010 
101011 

Codeword /I n Codeword __- 
00000 
00001 
00010 
00011 
%bY 
00110 
00111 
01000 
01001 
01010 
01011 
01100 
01101 
01110 
01111 
100000 
100001 
100010 
100011 
100100 
100101 
100110 
100111 

- 

-- 

- 

Codeword __- 
101000 
101001 
101010 
101011 
101100 
101101 
101110 
101111 ____- 
1100000 
1100001 
1100010 
1100011 
1100100 
1100101 
1100110 
1100111 
1101000 
1101001 
1101010 
1101011 
1101100 
1101101 
1101110 
1101111 

length and [m] + 1 words of another length. (Here [m] denotes the 
greatest integer 5 m.) For large m, however, there is very little 
penalty for picking the nearest integer when designing the code. 
Very often, the underlying probabilities are not known accurately 
enough to justify picking a non-integral value of m. (For example, 
saying p = 0.95 on the basis of statistical evidence may involve as 
large a round-off error as saying m = 14.) For Agent 00111, the 
approximation m = 25 corresponds closely to q = l/37. 

IV. DECODING 

The dictionaries in Table II exhibit striking patterns which 
suggest that a rather simple decoding procedure might be employed. 
For the case m = 16, the following rule for decoding is adequate. 

Start at the beginning (left end) of the word, and count the number 
of l’s preceding the first 0. Let this number be A 2 0. Then the word 
consists of A + 5 bits. Let the last 5 bits be regarded as the ordinary 
binary representation of the integer R, 0 5 R 5 15. Then the correct 
decoding of the word is 16A + R. This simple decoding reveals an 
equally simple method of encoding. To encode the number N, we 
divide N by 16 to get N = 16A + R, and write A l’s followed by the 
5-bit binary representation of R. 

The case m = 14 is only slightly more complicated. Suppose a 
word starts in A l’s, and the next three bits are not all 0’s. Then we 
consider the word to consist of A + 5 bits altogether. Let the last 5 
bits be the binary representation of the integer R. Then the correct 
decoding of the codeword is 144 + R - 2. On the other hand, if the 
initial A l’s are followed by three or more O’s, we regard the codeword 
as consisting of a total of A + 4 bits. Letting the last 4 bits be the 
binary representation of an integer R’, the correct decoding in this 
case is 14A + R’. This procedure also can be inverted to describe 
direct encoding from ordinary numbers to codewords. 
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The Senior Cryptographer observes that although run length 
coding is a big improvement over no coding at all, it is less than 
100 percent efficient for the mission at hand. He has heard that a 
method invented at M.I.T. is 100 percent efficient. However, a 
hasty briefing on this method convinces Operations that it is unimple- 
mentable, because it requires infinite computing capability. The 
run-length system is employed after all. As it turns out, however, 
Agent 00111 has bribed the croupier, and the “Unfavorable Case” 
occurs only half as often as expected. Fortunately, the coding 
procedure is such that the cost of communicating has also decreased 
as a result! 

It is appropriate to mention that there really is a method, invented 
by Elias and Shannon (see Abramson,3page 61), which is 100 percent 
efficient for communicating events from a p: p distribution. More- 
over, the assertion that “infinite computing capability” is required is 
a gross overstatement. Nevertheless, British Intelligence quite 
possibly made the correct practical decision. We shall leave it to the 
reader to judge. 

VI. PERSPECTIVE 

The literature in statistical communication theory generally 
contains a significant shift in viewpoint between the discrete and the 
continuous case. In the latter context, a particular distribution is 
assumed almost from the outset, and most of the theorems refer to 
such things as the “white Gaussian noisy channel,” or other equally 
specific assumptions. For the discrete case, on the other hand, the 
results are rarely evaluated in terms of specific distributions. The 
present remarks are intended as a step in this direction, viz., the 
explicit form which Huffman coding assumes when applied to the 
geometric distribution. It would also be appropriate to have explicit 
answers for the binomial distribution, the Poisson distribution, etc. 

SOLOMON W. GOLOMB 
Dept. of Elec. Engrg. 

University of Southern California 
Los Angeles, Calif. 

A Remark Concerning the Existence of Binary Quasi- 
Perfect Codes ?Y(s) = 2(x) *I(x) 

It is an easy exercise to show that if there exist single error- have the same weight. The sequence (4) can be divided into auto- 

correcting quasi-perfect (SEC QP) codes with m check bits for block morphism classes by squaring; the exponents of “(5) in such a class 
lengths n1 and 122 (ni < nz), then there exist SEC QP codes with m are in one cycle6zz(m’) and there exists a one-to-one correspondence 

check bits for all block lengths n with ni < n < n2. It would be between these cycles and the irreducible factors of xm’-1 over the 
useful to know whether this statement generalizes to t error-cor- binary field. Only one element of each automorphism class need be 
recting codes. (See Peterson’ for definitions.) considered in order to have a compact weight-representation of the 

In the course of using a tree-search technique for finding quasi- ideal M. The process of finding such representatives can easily be 
perfect codes on a digital computer (see Wagne+), the writer noticed mechanized on a computer, and some codes have been studied in this 
that for t = 2 some quasi-perfect codes were never found which the way. The following weight distribution of the (41, 21) cyclic code 
above statement, if true, indicated existed. Since the computer has been computed in ten seconds on a medium capacity computer 
search was by no means exhaustive, a counter-example was not (add time ten microsencond) in Table I. Table II gives the minimum 
found. Recently, an exhaustive search along the lines of Wagner2 has distance (probably new) of several cyclic codes. 
revealed that a double error-correcting quasi-perfect (16, 8) code The method can be generalized to every ideal, since7 any ideal is 
does not exist. Since DEC QP (14, 6), (15, 7), and (17, 9) codes exist, the direct sums of the minimal ideals contained in it. Some refine- 
this provides a counter-example to the statement for t = 2. ments of the method are being studied for further publication. 

TERRY J. WAGNER 
Dept. of Elec. Engrg. 

University of Texas 
Austin, Tex. 
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Analysis of Weight Distribution in Binary Cyclic Codes 

Bose-Chaudhuri codes constitute the presently best-known class 
of binary codes for correction of independent errors. The most 
interesting property of these codes is that a lower bound for minimum 
distance can be given by an a priori algebraic argument. It can, 
however, be shown in a number of cases that either these codes 
actually correct more errors than one is able to prove, or that 
there exists cyclic codes of the same size that have larger minimum 
distance. It seems thus interesting to dispose of easily mechanized 
methods of analysis for such codes. In a recent paper, MacWilliamsl 
outlines a method of attack based on an extensive analysis of their 
algebraic structure. Our own research led us to similar methods and 
to some additional results briefly discussed herein. 

Firstly, the process of finding cycle representatives in a minimal 
ideal2 is not as laborious as stated,3 since it can be easily mechanized 
utilizing the isomorphism between a minimal ideal M generated by 

d4 = v - l)l~W (1) 

and the Galois Field GF(2k) modulo the irreducible polynomial h(s) 
of degree k. Let n’ be the exponent to which h(z) belongs; then all 
vectors in M have the same cycle length n’ and there exist 

m’ = (2k - l)/n’ 

cycle representatives. As shown by Nili, the elements 

(2) 

g(z) ; a(~)~ g(z) ; cx2(x)g(x) ; * . * am’-‘(lc) .g(zE) (3) 

where &) is any primitive root in the Galois Field GF(2Q are the 
cycle representatives of M. Instead of g(z), the primitive idempotents 
G(Z) may be used to generate the ideal M, and the cycle representa- 
tives become 

G(x) ; a(x). E(z) ; a”(x) f G(E?$ ; f * . am’-‘(~) -G(x). (4) 

It is no longer necessary to compute the weights of all elements in 
(4), since, for example, the vectors 

V(X) = ai .r(xj 
and 

4 H. Nili, “Matrixsohaltungen cur Codierung und Deoodierung YOU Gruppen- 
Code,” Arch. eleck. Ubertragung, vol. 18, pp. 555-565, September 1964. 

6 MacWilliam,’ lemma 2.6, page 322. 
6 Ibid., psge 306. 
7 Ibid., lemma, 2.12 (iii). 
8 Rather than union, &s it is called by MaeWilliams.’ 
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