Homework 1

(Total 130 pts)
Due 5:00 pm on June 12, 2024 (Wednesday)
Note: You work must be electronically submitted to Canvas as a single PDF file.

1. $(20 \mathrm{pts}) \mathrm{A}$ system has the input-output relation given by $y[n]=T\{x[n]\}=n x[n]$.
Determine whether the system is
(a) linear; (b) time invariant; (c) stable; (d) causal.
2. (20 pts) Let $\mathrm{x}[\mathrm{n}]=\delta[\mathrm{n}]+2 \delta[\mathrm{n}-1]-\delta[\mathrm{n}-3]$ and $\mathrm{h}[\mathrm{n}]=2 \delta[\mathrm{n}+1]+2 \delta[\mathrm{n}-1]$. Compute the following convolution: $\mathrm{y}[\mathrm{n}]=\mathrm{x}[\mathrm{n}] * \mathrm{~h}[\mathrm{n}]$.
3. (30 pts)
(a) Calculate the Fourier transform of $X\left(e^{j \omega}\right)$ of the sequence:

$$
x[n]=u[n+3]-u[n-4] .
$$

(b) In Matlab, plot and label the magnitude of the Fourier transform $\left|X\left(e^{j \omega}\right)\right|$ (where ω goes from -2π to 2π. Attach a printed hardcopy of the plot.
4. (20 pts)
(a) If $x[n]$ is a complex sequence with Fourier transform being $X\left(e^{j \omega}\right)$, prove that $\mathcal{F}\left\{x^{*}[-n]\right\}=X^{*}\left(e^{j \omega}\right)$.
(b) Suppose $x[n]$ is a real sequence. Use Property 7 of the Symmetry of Fourier Transforms to prove that the imaginary part of its Fourier transform is odd, i.e., $X_{I}\left(e^{j \omega}\right)=-X_{I}\left(e^{-j \omega}\right)$.
5. (10 pts) Determine the frequency response $H\left(e^{j \omega}\right)$ of the LTI system whose input and output satisfy the following difference equation.

$$
y[n]+\frac{1}{2} y[n-1]+\frac{3}{4} y[n-2]=x[n]-\frac{1}{2} x[n-1]+x[n-3] .
$$

6. (10 pts) Suppose the frequency response of an LTI system is given by $H\left(e^{j \omega}\right)=\frac{1}{1-0.5 e^{j \omega}}$. If the input to the system is $x[n]=1+e^{j m m}$, what is the output $y[n]$?
7. (20 pts) The sequences $s[n], x[n]$ and $w[n]$ are sample sequences of wide-sense stationary random processes where $s[n]=x[n] w[n]$. The sequences $x[n]$ and $w[n]$ are zero-mean and statistically independent. The autocorrelation function of $w[n]$ is
$E\{w[n] w[n+m]\}=\sigma_{w}^{2} \delta[m]$. And the variance of $x[n]$ is σ_{x}^{2}.
(a) Show that $s[n]$ is white.
(b) Find the mean square of the $s[n], E\left\{s^{2}[n]\right\}$.
