Homework 2

(Total 100 pts)

Due 5:00 pm on June 20, 2024 (Thursday)

Note: Your work must be electronically submitted to Canvas as a single PDF file.

1. (10 pts) Determine the z-transform, including the ROC for the following sequence: $x[n]=-\left(\frac{1}{2}\right)^{n} u[-n-1]$.
2. (20 pts) Determine the z-transform of the following sequence. Include with your answer the region of convergence in the z-plane and a sketch of the pole-zero plot. Express all sums in closed form; α can be complex.
$x_{a}[n]=\alpha^{|n|}$, where $0<|\alpha|<1$.
3. (60 pts) A causal LTI system has the following system function:

$$
H(z)=\frac{4+0.25 z^{-1}-0.5 z^{-2}}{\left(1-0.25 z^{-1}\right)\left(1+0.5 z^{-1}\right)}
$$

(A) What is the ROC for $H(z)$?
(B) Is the system stable or not?
(C) Determine the difference equation that is satisfied by the input $x[n]$ and the output $y[n]$.
(D) Determine the impulse response of the system $h[n]$.
(E) Find $Y(z)$, the z-transform of the output, when the input $x[n]=u[-n-1]$. Specify the ROC for $Y(z)$.
(F) Find the output sequence $y[n]$ when the input is $x[n]=u[-n-1]$.
4. (10 pts) A causal LTI system with input $x[n]$ and output $y[n]$ is described by $y[n]=2 y[n-1]+x[n]$. Find the impulse response of the system $h[n]$. Is the system stable?

