Homework 4

(Total 240 pts)

Due 5:00 pm on July 26, 2024 (Friday)

Note: Submit two files ('hw4.pdf' and 'q5.m') on Canvas.

- 1. (20 pts) The impulse response of an LTI system is $h[n] = \delta[n] + \delta[n-4]$.
 - (a) Determine analytically the group delay associated with the system. Show your derivations.
 - (b) Use the *grpdelay* function in Matlab to verify your answer in (a). Attach the Matlab scripts and the plot for group delay.
- 2. (20 pts) Consider the cascade of an LTI system with its inverse system shown below:

The impulse response of the first system is $h[n] = \delta[n] + 2\delta[n-1]$.

- (a) Determine the impulse response $h_i[n]$ of a stable inverse system for h[n].
- (b) Is the inverse system causal?
- 3. (60 pts) A causal LTI system has the system function

$$H(z) = \frac{\frac{j\pi}{3}z^{-1}(1-e^{-\frac{j\pi}{3}}z^{-1})(1+1.1765z^{-1})}{\frac{j\pi}{(1-0.9e^{-\frac{j\pi}{3}}z^{-1})(1-0.9e^{-\frac{j\pi}{3}}z^{-1})(1+0.85z^{-1})}}.$$

- (a) Sketch the pole-zero diagram. You can use the *zplane* function in Matlab. But make sure you mark the values of the poles and zeros on the plot.
- (b) What is the ROC for the system function?
- (c) Plot the magnitude and phase response of the system using the *freqz* function in Matlab.
- (d) Check whether the following statements are true or false about the system. Justify your answers.
 - (i) The system is stable. **True** () **False** (). **Why?**
 - (ii) The system is a minimum-phase system. **True** () **False** (). **Why?**
- 4. (40 pts) Consider the stable LTI system with system function

$$H(z) = \frac{1 - 4z^{-2}}{1 - \frac{1}{4}z^{-1} - \frac{3}{8}z^{-2}}.$$

The system function H(z) can be factored such that $H(z) = H_{min}(z)H_{ap}(z)$, where $H_{min}(z)$ is a minimum-phase system, and $H_{ap}(z)$ is an all-pass system, where $|H_{ap}(e^{j\omega})| = 1$.

- (a) Sketch the pole-zero diagram of H(z).
- (b) Determine $H_{min}(z)$ and its ROC.

- (c) Determine $H_{ap}(z)$ and its ROC.
- (d) Sketch the pole-zero diagrams of $H_{min}(z)$ and $H_{ap}(z)$.
- 5. (100 pts) Matlab implementation of the following system we considered in HW3:

- (a) Generate a discrete-time input sequence $x[n] = \frac{1}{4} \overline{sinc(\frac{n}{4})}$, for n = -1000 to 1000, with a step size of 1. Visualize this sequence x[n] by using the *plot* command. Show and attach the plot.
- (b) Generate the sequence $x_e[n]$ by down-sampling and then up-sampling the input sequence, as shown in the system above. Show the plot of $x_e[n]$. Attach the plot.
- (c) Implement the filter with $H(e^{j\omega})$ as shown in the above system, by using the *fir1* function in Matlab. See the page below for more details about this function: https://www.mathworks.com/help/signal/ref/fir1.html.

 Use a filter order of nfilt = 50. Show the plot of the resulting vector of filter coefficients obtained. Attach the plot.
- (d) Show the frequency response of the above filter using the *freqz* command. Attach the plot.
- (e) Obtain the reconstructed sequence $x_r[n]$ by filtering the sequence $x_e[n]$ using the filter coefficients obtained in (c). Use the *filter* function in Matlab for this sake. See the page below for more details about this function: https://www.mathworks.com/help/matlab/ref/filter.html
- (f) Show in the same plot the input and reconstructed sequences using: figure; plot(x); hold on; plot(xr, 'r')
 Attach the plot.
- (g) Determine the delay introduced by the filter implemented in (c) by using the *grpdelay* function in Matlab. Let *avg_delay* denote the average group delay over all frequencies considered. What is the value of *avg_delay*?

Then compensate the delay introduced by the filter using:

$$x_trunc = x(1: end - avg_delay);$$

 $xr_shift = xr((avg_delay + 1): end);$

Show in the same plot the truncated input sequence (x_trunc) and the reconstructed sequence that is delay-compensated (xr_shift) . Attach the plot.

- (h) Calculate the Mean Square Error (MSE) between the truncated input sequence (x_trunc) and the delay-compensated reconstructed sequence (xr_shift). As an example of MSE calculation, the MSE between the following two 3-point sequences: [1 2 3], and [4 6 8] is $\frac{50}{3} \approx 16.67$.
- (i) Now, experiment with various filter orders such that *nfilt* = 10, 20, 50, 100, 200. Repeat steps (c) through (h) to obtain the corresponding MSE values between the truncated input sequence (*x_trunc*) and the delay-compensated reconstructed sequence (*xr_shift*). Fill in the table below with your answers.

Filter Order	10	20	50	100	200
MSE	_				

- (j) What observations can you make regarding the relations between the filter order and the input reconstruction error, as well as the average group delays introduced by filtering?
- (k) Attach your MATLAB scripts used and also submit them in a single file ('q5.m') to Canvas.