
GOLOMB-RICE CODING PARAMETER LEARNING USING DEEP BELIEF NETWORK FOR
HYPERSPECTRAL IMAGE COMPRESSION

Hongda Shen, W. David Pan, Yuhang Dong and Zhuocheng Jiang

Dept. of Electrical and Computer Engineering
University of Alabama in Huntsville

Huntsville, AL 35899, USA

ABSTRACT

While Golomb-Rice codes are optimal for geometrically dis-
tributed source, the practically achievable coding efficiency
depends on the accuracy of the coding parameter estimated
from the input data. Most existing methods are based on the
assumption of geometric distribution and thus would suffer
from a loss in coding efficiency if the underlying distribution
deviates from the geometric distribution, which is usually the
case in practice. We proposed a data-driven parameter es-
timation method without assuming the underlying distribu-
tion. We formulated the problem of choosing the best coding
parameter for the given input data as a pattern classification
problem. To this end, we trained a deep belief network us-
ing the data segments to be coded, along with their “labels”,
which are the optimal coding parameters that yield the short-
est codewords. Simulations on data synthesized using statis-
tical models, as well as data in hyperspectral image coding
showed that the proposed deep learning method tended to be
more robust than several state-of-the-art parameter estimation
methods, with the capability to further improve the accuracies
of these methods.

Index Terms— Golomb-Rice code, hyperspectral image
compression, machine learning, deep belief network.

1. INTRODUCTION TO CODING PARAMETER
ESTIMATION

Golomb-Rice (GR) codes [1, 2] are often used to compress
prediction residuals found in many data compression ap-
plications. Particularly, GR codes have been used in the
“Fast Lossless” (FL) method, the Consultative Committee for
Space Data Systems (CCSDS) new standard for Multispec-
tral and Hyperspectral Data Compression [3]. Parameterized
with a single integer, Golomb-Rice codes are easy to imple-
ment, and are optimal for sources with geometric distribution.
However, coding parameter has to be estimated from the in-
put data, which might deviate from the assumed geometric
distribution. And the efficiency of the Golomb-Rice codes
depends directly on the estimation accuracy [4].

Specifically, a geometrically distributed source X is de-
fined as follows:

P (X = k) = (1− p)pk, (1)

where p ∈ (0, 1) and k is a non-negative integer. Given p,
the minimal expected code length is achieved by selecting a
coding parameter m as follows [5]:

m = log2

(⌈
− log(1 + p)

log p

⌉)
, (2)

which plays a central role in the actual coding process as de-
scribed in [1]. In practice, we often estimate m from the in-
put data. To our best knowledge, so far, there have been only
three existing methods on this problem. These three state-of-
the-art methods are presented as follows. [6] used the follow-
ing formula to estimate m from the prediction residuals for
hyperspectral data compression.

m = max
(
0,
⌈
log2

(
−µ
2

)⌉)
, (3)

where µ is the arithmetic average of the data to be coded.
In [7] and [8], two similar formulas involving the arithmetic
average µ have been proposed, respectively:

m = max

(
0, 1 +

⌊
log2

(
log(φ− 1)

log( µ
µ+1 )

)⌋)
, (4)

where φ denotes the golden ratio (
√
5 + 1)/2, and

m = max

(
0,

⌈
log2(µ)− 0.05 +

0.6

µ

⌉)
. (5)

All these parameter estimation methods were derived or
optimized based on the assumption that the underlying dis-
tribution is geometric distribution. Nevertheless, the actual
data could deviate from a perfect geometric distribution. For
example, in the work on predictive hyperspectral image com-
pression [9], we sought to code the prediction residuals using
Golomb-Rice code. Deviations from the geometric distribu-
tion can be seen from some representative data histograms (as



an approximation of the actual distribution) shown in Fig. 1.
The “tails” in the histogram (to the left) makes the distribu-
tion more resemble a mixture of two distinct geometric dis-
tributions, due to the existence of edges, contours or corners
in the original images. Histogram to the right of Fig. 1 shows
more deviations from the standard geometric distribution, due
to the presence of impulsive noise in the hyperspectral im-
ages. On the other hand, to avoid long processing delays, data
to be coded are typically partitioned into short segments [3],
making accurate parameter estimation difficult due to insuf-
ficient statistics. To remedy this problem, modified Golomb-
Rice codes have been proposed by using more complex data
source modeling [5, 10], which are beyond the scope of this
work, which aims at improving the accuracy of parameter es-
timation for Golomb-Rice codes. In this paper, we proposed
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Fig. 1: Histograms of two data segments from a sample
dataset, “Indian Pines”.

a data-driven parameter estimation method without assuming
the underlying distribution. The novelty lies in our formula-
tion of the problem of choosing the best coding parameter for
the given input data as a pattern classification problem. Tradi-
tional machine learning algorithms require pre-extracted fea-
tures prior to the actual classifier. Hence, it is impossible to
apply traditional machine learning methods to this problem.
However, motivated by the success of deep machine learn-
ing methods in solving many classification problems without
feature extraction, we considered one specific deep learning
method known as the Deep Belief Network (DBN), which has
been applied to classification in lower dimensions [11] and
data-driven classification [12,13] for image, speech and other
data types. The rest of this paper is organized as follows. Sec-
tion 2 presents the proposed method of learning the optimal
Golomb-Rice coding parameters using deep belief network.
Simulation results are then given in Section 3. Section 4 con-
cludes the paper.

2. THE PROPOSED DEEP LEARNING METHOD

We first explain why the problem of choosing the best coding
parameter can be reformulated as a supervised pattern clas-
sification problem. Then we describe how we use the deep
machine learning method to solve the classification problem.
In most practical applications, there are only a finite number
of parameter values to choose from for Golomb Rice codes.

For example, coding a typical image with 8 bits/pixel would
require the coding parameterm to be chosen from one of only
9 possible integers in the set of [0, 8]. Similarly, the an image
with 16 bits/pixel would require only a slight larger set [0, 16]
of 17 integers. Therefore, we can train a classifier, where
the input is a data segment to be Golomb-Rice coded, and its
“label” is the m value in the set, such that Golomb-Rice cod-
ing the data segment will give the shortest codeword length,
among all the possible m values in the set of admissible val-
ues. In the testing phase, we feed the new data segment to
be coded into the classifier, which will output the m value we
will use for actual coding of this data segment. We expect the
coding parameters thus chosen would yield good coding effi-
ciency if the classifier has been reasonably well trained. Such
a data-driven method does not require any knowledge about
the underlying distribution of the input data, and thus would
be generally more robust than methods that presume a cer-
tain distribution of the data. Furthermore, the classification
performance can be readily measured by comparing the out-
put of the classifier during testing with the ground truth – the
actual m value that can best compress the test data segment
using the Golomb-Rice code.
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Fig. 2: The architecture of the deep belief network for
Golomb-Rice coding parameter estimation. Note that the re-
construction layers were used only for pretraining of RBM’s.

The deep belief network (DBN) is a generative graphical
model composed of multiple stacked Restricted Boltzmann
Machines (RBMs). Using DBN to model image data has
been extensively studied in [12]. Motivated by DBN’s re-
markable data modeling capability, we designed a data-driven
method based on DBN to estimate the parameter value for the
Golomb-Rice codes. Although DBN is a unsupervised learn-
ing method, the automatically learned features can be uti-
lized for supervised learning to achieve pattern classification.
Specifically, on top of the stacked RBM, a discriminative soft-
max layer was added to enable classification using the learned
features of the data. The DBN was pretrained and unrolled in



a greedy layer-wise manner [14]. Then back propagation was
carried out to fine-tune the entire DBN based on the negative
log-likelihood of the labels. Since Gaussian-Bernoulli RBM
(GB-RBM) is mainly designed for real-valued data [11], we
selected the Bernoulli RBM (B-RBM) for nonnegative dis-
crete data. All the data samples were first mapped to the in-
terval [0, 1] and then sent to the DBN. A four-layer DBN was
constructed to learn from the data. There are 400, 200, 200
and 100 neurons within each of the four layers of DBN. The
top layer is a softmax layer, which outputs the class label (the
m value), as shown in Fig. 2. Note that while this 400-200-
200-100 architecture was found to provide accurate parame-
ter estimation, it is not unique and other architectures might
provide better results. All the data segments to be coded came
with the ground truth (the optimal coding parameter value that
gives the shortest codeword). In the training phase, the DBN
can learn the underlying distribution of the data and adjust the
weights within each layer of the network. Once the training
is completed, new data segments can be directly forward fed
through the network, thereby yielding the estimated parame-
ter value at the output of the network.

3. SIMULATION RESULTS

In order to study the efficiency of the proposed method, we
conducted two simulations. The first simulation used syn-
thesized data generated by using a certain distribution that
deviates from the standard geometric distribution. The sec-
ond simulation used actual residual data obtained by apply-
ing the “Fast Lossless (FL)” predictor on the well-known hy-
perspectral image dataset, “Indian Pines” [6]. Comparisons
were made against three existing parameter estimation meth-
ods, namely, Method 1, Method 2, and Method 3, correspond-
ing to Eq. (3), Eq. (4), and Eq. (5), respectively.

As shown in Fig. 1, data segments to be coded might not
follow exactly the geometric distribution. Therefore, we syn-
thesized data using distributions that deviate from the stan-
dard geometric distributions. Motivated by the work [4, 9],
we generated the synthetic dataset following a mixture of two
distinct geometric distributions. We first generated 5,000 data
segments, with each segment containing 100 samples, follow-
ing the standard geometric distribution with p = 0.8. Then,
we added more data segments generated with another geomet-
ric distribution (p = 0.999). These additional data segments
can be treated as “outliers” (in a loose sense) and they range
from 1% to 10% of the total number of data segments, indicat-
ing different degrees of mixtures. Note all these values were
chosen to simulate typical scenarios encountered in lossless
coding of hyperspectral data in our case study.

Fig. 3 shows that the proposed method has the lowest mis-
classification rates for most of the cases for the synthesized
dataset except for the case where the outlier percentage is
9%. Overall, the proposed method tends to be most robust
in achieving high estimation accuracy.
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Fig. 3: Simulation results on synthetic data.

The so-called Fast Lossless (FL) predictor has been pro-
posed to de-correlate the hyperspectral image in the spatial
and spectral directions due to its low-complexity [6]. After
the prediction, residual data segment within a spectral band is
encoded using the Golomb-Rice code. For the hyperspectral
dataset “Indian Pines” [15] used in our case study, we treated
each row of a spectral band image as one data segment
(containing 145 data samples), based on which the coding
parameter was estimated. Since the dataset has 200 spectral
bands, corresponding to a total of 29, 000 = 145 × 200 data
segments, a reasonably large number of data would be avail-
able for both training and testing of the deep belief network.
We randomly selected 14, 500 data segments for training,
and the remaining 14, 500 segments for testing. Since each
pixel has 16 bits, there will be a total of 17 possible classes,
{0, 1, · · · , 16}. However, only eight classes ({2, 3, · · · , 9})
showed up in the ground truth, whereas the remaining coding
parameters were never chosen due to their inferior coding
efficiency (less compression) than the parameters falling in
the set of eight winning classes.

Fig. 4 shows the proposed method achieved very high ac-
curacy, ranging from 96.57% (for Class 7) to 98.88% (for
Class 9), indicating that the distribution of each data segments
was learned very well by the deep belief network.

Table 1: False estimation rate for all four methods.
Method 1 Method 2 Method 3 Proposed
6.21% 4.28% 4.33% 2.01%

Table 1 shows the proposed method has the lowest false
estimation rates than the other three methods. This means
that the proposed deep learning method can further improve
the accuracy of the existing parameter estimation methods (al-
ready with higher than 90% accuracy) on the real data.
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Fig. 4: Classification accuracy confusion matrix.

4. CONCLUSIONS

We proposed a data-driven parameter estimation method for
Golomb-Rice coding by learning from the data using a deep
belief network. To the best of our knowledge, this might be
the first time the Golomb-Rice coding parameter estimation
problem was formulated as a supervised learning problem.
Simulations of the proposed method on both synthesized and
real data demonstrated its advantages in terms of robustness
and accuracy over several other parameter estimation methods
that presumes the input data to be geometrically distributed.
As the next step, we will study how varying the data segment
size and the size of the training dataset will affect the estima-
tion accuracy.
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