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Biased Run-Length Coding of Bi-Level
Classification Label Maps of Hyperspectral Images
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Abstract—For efficient coding of bi-level sources with
some dominant symbols often found in classification label
maps of hyperspectral images, we proposed a novel bi-
ased run-length (BRL) coding method, which codes the
most probable symbols separately from other symbols.
To determine the conditions in which the BRL coding
method would be effective, we conducted an analysis of
the method using statistical models. We first analyzed
the effect of two-dimensional blocking of pixels which
were assumed to have generalized Gaussian distributions.
The analysis showed that the resulting symbol blocks
tended to have lower entropies than the original source
without symbol blocking. We then analyzed the BRL
coding method applied on the sequence of block symbols
characterized by a first-order Markov model. Information-
theoretic analysis showed that the BRL coding method
tended to generate codewords that have lower entropies
than the conventional run-length coding method. Further-
more, numerical simulations on lossless compression of
actual data showed improvement of the state-of-the-art.
Specifically, end-to-end implementation integrating symbol
blocking, BRL and Huffman coding achieved up to 4.3%
higher compression than the JBIG2 standard method, and
up to 3.2% higher compression than the conventional run-
length coding method on classification label maps of the
widely used “Indian Pines” dataset.

I. INTRODUCTION

Hyperspectral imaging techniques have been used in a
wide array of earth observing applications such as mate-
rial quantification and target detection. A hyperspectral
image is often organized as a three-dimensional dataset
with two spatial dimensions and one spectral dimension.
As an example, see Fig. 1(a), which is the 30th spectral
band (out of a total of 220 bands) from NASA’s Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS) hyper-
spectral image dataset [1]. The high spectral resolution
makes it possible to address various applications requir-
ing very high discrimination capabilities in the spectral
domain. However, the large data volume of hyperspectral
images presents a challenge for both data transmission
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and storage [2]. Our recent work in [3] addressed lossless
methods for efficiently compressing arbitrarily shaped
“sub-images” belonging to a certain class of particular
interest (see Fig. 1 for an example of the bi-level classi-
fication label maps for 16 classes resulting from pattern
classification via the support vector machine [4]). Any
pixel within an hyperspectral image either belongs to a
certain class or belongs to any other classes. Therefore,
the class label map is a bi-level image, with the same
size as that of the original image in any spectral band.
The map provides critical spatial information required
to reconstruct the pixel values belong to a certain class.
Therefore, efficient lossless compression of these bi-level
maps would be useful or even critical in some remote
sensing applications with severely limited bandwidths
[5]. This is a separate problem not addressed in our prior
work [3], [6].

Conventional bi-level image compression techniques
include run-length coding [7], arithmetic coding [8],
and geometric-based coding [9], [10]. In addition, In-
ternational standards for binary image compression have
been developed [11], including JBIG2 [12], and JPEG
2000 [13]. In order to exploit the pixel correlations
in both horizontal and vertical directions, our previous
work [14] adopted a symbol packing approach, where a
binary image was first partitioned into blocks, with each
block being scanned in a raster-scan order. The resulting
sequence of bi-level symbols was then converted to a
binary representation of that block. We observed that in
many bi-level images, either the all-1 or the all-0 block
symbol tends to be the most probable one among all
possible symbols. To take advantage of the redundancy
associated with the most probable symbols, we intro-
duced a biased run-length encoding method, which run-
length codes only the most probable block symbol. In
the following, we first give a brief survey in Section II
on the run-length coding methods. We then point out
the novelty of the proposed biased run-length method.
Section III presents the analysis for proposed biased
run-length coding method, based on the mathematical
model given in Section IV. Simulation results are given
in Section V. The paper is concluded in Section VI.



2

(a) Spectral band 30. (b) 16 classes identified. (c) Class 0.

(d) Class 1. (e) Class 2. (f) Class 3. (g) Class 4.

(h) Class 5. (i) Class 6. (j) Class 7. (k) Class 8.

(l) Class 9. (m) Class 10. (n) Class 11. (o) Class 12.

(p) Class 13. (q) Class 14. (r) Class 15. (s) Class 16.

Fig. 1: Sample dataset (“Indian Pines”) and the classification label maps. (a) A sample band. (b) 16 classes identified
using the support vector machine (SVM) method [6], [14]. (c) Class “0” belongs to the pixels that are not actually
classified (due to lack of ground truth for assessment). (d)-(s) Individual classification label maps (pixels belonging
to the same class are shown in white, with the pixels of other classes shown in black).

II. RUN-LENGTH CODING METHODS

A run is a sequence of pixels having an identical value,
and the number of such pixels is length of the run. Run-
length encoding (RLE) is a very simple form of lossless

data compression on which run of data are stored as a
single data value and count, rather than as the original
run. This is most useful on data that contains many such
runs [7], [15]. In some recent work, [16] introduces a so-
called extended frequency-directed run length coding for
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test data compression, and [17] proposes a variable prefix
dual run length coding for VLSI test data compression,
among other similar run length coding methods proposed
for this purpose [18]–[20]. Furthermore, [21] combined
run-length coding with Huffman coding for lossless com-
pression of fluoroscopy medical images. [22] presented
a lossless audio coding method using Burrows-Wheeler
Transform with the combination of run-length coding.
Additional work on application of run-length coding
includes papers on image and data compression [23]–
[26], feature and region data extraction [27], [28], image
quality index [29] and image hiding [30]. To improve the
conventional RLE, [31] introduces an adaptive scheme
that encodes run and level separately using adaptive
binary arithmetic coding and context modeling. [32]
proposed a method to parse the binary data sequences
to make run-length coding more efficient, where the
run-length code belongs to the family of variable-length
constrained sequence codes [33].

In contrast to the exiting methods, we proposed to
code only the most probable block symbol to avoid
excessive number of short runs (a major source of coding
inefficiency). Thus the main novelty of the proposed
biased run length (BRL) coding methods lies in its
separate special treatment of the most probable symbol
from the rest of the block symbols. The run-lengths
of the most probable block symbol are entropy coded
using a variable-length code such as the Huffman code.
On the other hand, we use a separate Huffman code to
compress the modified sequence of block symbol values.
Fig. 2 shows the block diagram for the biased run length
coding method. The goal of this paper is to provide
an in-depth analysis of the compression performance of
the proposed biased run-length coding method based on
statistical model, instead of relying on empirical data.
The analysis will gain insight into why and when the
proposed method would be effective.

Fig. 2: The biased run length coding method.

III. BIASED RUN-LENGTH CODING METHOD

In order to exploit the pixel correlations in both
horizontal and vertical directions, we proposed a symbol
packing approach in order to pack more pixels in a block
symbol, because the background appears to contain the
majority of the pixels. In addition, objects usually have
some “thickness”, meaning that there might be more
grouped “0” pixels in the image than those isolated
“0” pixels. To show that this is indeed the case, we
calculated the probability distribution of block symbols
for all the bi-level maps considered. Fig. 3 shows the
first nine most probable block symbols in descending
order from left to right. Note that all 512 possible block
symbols will be used in constructing the Huffman code
table. Block symbol “511” is the most probable block
symbol with probability of 0.9192. Block symbol “0”
is the next most probable block with probability of
0.0408. We can see that the probability of the block
symbols with same pixel values grouped together (group
of white/black pixels) are higher than block symbols
with random pattern (isolated black or white dots). Note
that using larger blocks would allow us to better exploit
the spatial correlations in the source image; however, a
large alphabet of block symbols would make the actual
implementation of entropy coding (e.g., Huffman coding)
overly complicated. Given a block size of N × N , the
number of distinct block symbols is 2N

2

. In this work,
we found the block size of 3 × 3 pixels (corresponding
to 29 = 512 possible block symbols) offered a good
tradeoff. A further increase of the block size to, for
instance, 4 × 4, will generate 65, 536 possible block
symbols, making the Huffman code table too large to
be manageable in practical implementations.

A. Distribution of Block Symbols

In this section, we will examine when the block
symbol-based coding is beneficial using statistical model.
It was shown that the distribution of integers can be mod-
eled using the generalized Gaussian distribution (GGD)
[34]. We assume the probability of block symbols can
be shown in discrete Gaussian distribution. Since the
block symbols are always positive integers, only the
right side of the Gaussian function is chosen. Note
that the normalization is required so that the sum of
right-sided discrete Gaussian function is still unity. Note
that we are not limited to this distribution. We have
chosen this distribution because we can readily change
its parameters to generate a large set of varying bi-level
images. The probability G at given kβ can be calculated
using the following formula, where k is an integer, β is
the quantization level, and n is the maximum number of
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Fig. 3: Some symbol blocks in descending order of
probability (from left to right).

block symbols.

G(x = kβ) =

1
σ
√
2π

exp(− (kβ−µ)2
2σ2 )∑nβ

x=0
1

σ
√
2π

exp(− (x−µ)2
2σ2 )

. (1)

Fig. 4 shows the discrete Gaussian Distribution prob-
abilities for different β values. We can see that as β
increases, the distribution changes as well, and as a result
the entropy varies. The entropy using the block-symbol
technique can be calculated using the following equation:

Entropy of block symbols =
−
∑2N

n=1Gn logGn
N

, (2)

where N is the number of pixels per block, and 2N is
the number of block symbols. Note that the top part of
the equation is the average amount of pixels per block,
which needs to be divided by the number of pixels per
block to calculate the average number of bits per pixel.

Given the statistical probabilities of block symbols
Gn, we seek to extract the probability of “1” from the
source probabilities of block symbols. First, we find the
probability of “1” in each block symbol, then rearrange
it from the most probable to the least probable symbol
block and store it in an array “A” which contains 2N

elements. Fig. 3 shows an example of nine first most
probable block symbols using the bi-level maps. For
instance, the most probable block symbol is 511 which
consists of nine 1‘s so the probability of 1 is unity. Next
is block symbol 0, which has no 1‘s, and therefore the
probability of “1” is 0. Next is 219 which contains six
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Fig. 4: Discrete Gaussian distribution for different β for
σ2 = 0.5.

1‘s, and as a result, the probability of “1” is 0.6667. As
a result, the probability of “1” (p) can be calculated as:

p =

2N∑
n=1

AnGn. (3)

Once the probability of “1” is calculated from block
symbols, the entropy of the newly extracted binary source
can be calculated using the following equation:

H = −p log2 p− (1− p) log2(1− p). (4)

Next, we compared the entropy values between the 2-D
block-symbol source and the derived 1-D binary source.
It can be seen in Fig. 5 that as σ2 decreases, entropy
decreases as well for both sources. For a given β value,
the 1-D source has higher entropy than the 2-D source,
which shows the advantage of using block symbols. As
β increases, the entropy values of both sources get closer
and closer. We also compared the empirical entropy
values of actual binary images and the corresponding
sequence of block symbol sources, as shown in Fig. 6,
where we used 3×3 blocks. Here the probability of
1’s for each image was found based on the actual data
instead of a model. We see again blocking helps reduce
the source entropy, thereby improving compression effi-
ciency. Note that when the 2-D block symbol sequence
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Fig. 5: Entropy comparison between the 1-D source and
3×3 block-based source for different β and σ2.

has small entropies, the gaps between 1-D and 2-D
sequence tend to be small (e.g., maps 1, 7, and 9). This
behavior is similar to what is shown in Fig. 5 for a
large β value. Overall, symbol blocking appears to be
beneficial for compression due to its ability to capture
two-dimensional correlations in the original source.
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Fig. 6: Entropy comparison between the bi-level classifi-
cation label maps of “Indian Pines” and the correspond-
ing sequence of 3×3 block-based symbols.

IV. STATISTICAL MODEL AND ANALYSIS

In the biased run-length coding method, the original
bi-level data source is segmented into two sources with
different distributions. The first source consists of the
run-lengths of the most probable block symbol. It can be
described by the Markov model using the probability of
the most probable block symbol, which is extracted from

the original distribution of block symbols. Fig. 7 shows
the diagram for the biased run-length coding method
using the statistical models.

Fig. 7: Analysis of the biased run-length coding method
using the statistical model.

A. Geometric Distributions

Run lengths of binary source can normally be modeled
using the geometric distribution as following

G(n) = pnq = pn(1− p), (5)

where p is the probability of “1”, and n is the run length
of “1”. However, regarding the biased run-length coding
method, since the most probable block symbol is only
run-length encoded, p is now the probability of the most
probable block symbol, and n is the run lengths of the
most probable block symbol. However, the geometric dis-
tribution model cannot capture the transition probabilities
between the most probable block symbol and other block
symbols. To this end, we introduce a new Markov model
based on the Capon model [35].

B. Markov Model for Distribution of the RLs

Fig. 8: Transition probabilities between block symbol
“511” and other blocks.

In this analysis, we chose to use a first-order, two-state
Markov model to characterize inter-symbol correlations
in terms of different transition probabilities between
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block symbols. Fig. 8 shows the transition probabilities
between the most probable block symbol and other
symbol blocks. p is the probability of the most probable
block symbol occurs, 1− p is the probability that other
blocks symbols occur. Let A represents the state for most
probable block symbol, and B represents the state for
other block symbols. Given the current block symbol is in
state A, the probability of next block symbol being also
in A is q. As a result, the probability of next block is in
state B (given the current state is in A) is 1−q. Similarly,
the probability of next state is B (given the current state
is also B) is r, and the probability of next state is A
(given the current state is B) is 1 − r. The following
inequality (7) must be satisfied in order to maintain the
stability for transitions between states (Eq. 6). Moreover,
we want to emphasize that in Capon’s original model,
the probabilities of runs of white and black pixels are
assumed to have the same distribution. However, our
mathematical model is uniquely derived using the biased
distribution (of the most probable block symbol and rest
of the block symbols).

p(1− q) = (1− p)(1− r) (6)

0 <
p(1− q)
1− p

< 1⇒ q > 2− 1

p
(7)

Table I shows the probability distribution of the run
lengths of the most probable block symbol using the
Markov model. Note that for demonstration purposes,
the codewords are shown in binary format, where indeed
1 represents the most probable block symbol, and 0
represents other block symbols. As a result, the Markov
model for run-lengths can be defined as the following
equation:

M(n) = pq(n−1)(1− q). (8)

The Markov distribution will be used to calculate the
reduced probability of the most probable block symbol

TABLE I: Generation of probability distribution of run-
lengths using the Markov model. n is the run length of
the most probable block symbol.

n Codeword Probability
1 10 p(1− q)
2 110 pq(1− q)
3 1110 pq2(1− q)
4 11110 pq3(1− q)
... ... ...
n 11...0 pq(n−1)(1− q)

using the original probability. Before calculating the
entropy, the Markov probability distribution needs to be
normalized so the sum of probabilities is equal to unity.

Mnormalized(n) =
M(n)∑∞
n=1M(n)

(9)

The entropy of the Markov distribution of the run-
lengths can be calculated as

HM = −
∞∑
n=1

Mnormalized(n) log2[Mnormalized(n)].

(10)
After the biased run-length coding, the number of merged
most probable block will be smaller than the original
number of the most probable blocks. For example, if the
run-length of a “511” blocks is five, then five consecutive
“511” blocks will be reduced to a single merged-block
symbol, with its value being five. The average shrinking
factor (SF) can be found as:

SF =
1

E[n]
=

1∑∞
n=1 nq

(n−1)(1− q)
= 1− q. (11)

In practical simulations with only finite run-lengths
being observed, the average shrinking factor can be
estimated as:

SF =
1

Ê[n]
=

1∑
R n · Prob[n]

, (12)

where Ê[n] is the sample mean of the set (R) of
distinct run-lengths (n) ever encountered, and Prob[n]
represents the empirical distribution of the run-lengths.
Consequently the length of the merged-block sequence
can be found as

Sequence Length = N · p · SF , (13)

where N is the length of the original block symbol
sequence.

Table II shows the original symbol blocks “511” versus
the new merged blocks for different run-lengths of block
symbol “511”. Thus the total number of bits for the run-
lengths can be calculated as

Total # of bits for RL = HM · (N · p · SF ). (14)

C. Construction of New Modified Sequence

To construct the modified sequence, we use the orig-
inal right-sided discrete Gaussian distribution of block
symbols in addition to the distribution of RLs. To ob-
tain the original number of each of block symbols B,
the original right-sided discrete Gaussian distribution in
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Eq. (1) will be multiplied by N , the total number of
blocks as shown below:

B = G×N. (15)

Then the new modified sequence will have the same
distribution of blocks except for the most probable block
symbol. That is, the original number of most probable
block symbol will be replaced by the new number of
block symbols, which is the same as the sequence length
calculated in Eq. (13) as shown below:

B(1) (New # of most probable block symbol)

= N · p · SF .

Note that B is an array of probabilities, thus B(1)
is the first probability value in the array. Once the
new distribution of block symbols is constructed, the
new “Modified Sequence” (MS) can be calculated by
normalizing the block distributions as follows:

MS =
B∑∞
n=1B

. (16)

Next, the entropy of the modified sequence will be
calculated. To calculate the total number of bits for the
modified sequence, the entropy of the modified sequence
should be multiplied by the number of symbols in the
modified sequence. The total number of symbols in
the modified distribution can be calculated using the
following equation:

Total # of symbols in the modified sequence

= N −Np+N · p · SF = N [1− p(1− SF )] (17)

Next, the total number of bits required for the modified
sequence can be found by multiplying the entropy of the
modified sequence by the total number of symbols in the
modified sequence, as given below:

Total # of bits for MS

= −
∞∑
n=1

MS log2(MS)×N [1− p(1− SF )]. (18)

TABLE II: The “511” blocks vs. the new merged blocks.

n Original Blocks Merged Blocks
1 511 511
2 511 511 511
3 511 511 511 511
... ... ...
M 511 ... 511 511
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Fig. 9: Size comparison between the biased method and
the entropy of the original distribution for β = 0.5, with
different σ2 and q.
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Fig. 10: Comparison of the bitrates between the biased
run-length coding method and the entropy of the original
distribution for β = 0.8, with different σ2 and q values.

Finally, the total number of bits for the biased method
can be calculated by adding the total number of bits for
the run-lengths (Eq. (14)), and the modified sequence
(Eq. (18)).

Fig. 9 shows comparison results on the synthesized
images between the proposed biased RL model and the
entropy of the original distribution. For this example “N”
is 2304, β is 0.5, and σ2 and q are variables. We can see
that for higher q values, the biased run-length coding
method is superior to the original distribution in terms
of entropy.

Fig. 10 shows another comparison, where N = 2, 304,
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β = 0.8, σ2 and q are variables, and the smallest
possible values for q for each σ2 were used. We can
see that when σ2 is very small, even in the worst case
when q is the minimum possible value, our BRL coding
method has lower entropy than the original distribution.
As σ2 increases, there is a margin for q where the BRL
coding method is beneficial. In other words, when q is
larger than some threshold, our method is superior, in
terms of having a lower entropy than that of the original
distribution of block symbols. The threshold values for
each distribution vary. For example, when σ2 = 0.2,
the threshold is about 0.91. The analysis allows us to
study different types of bi-level images with varying
distributions of block symbols and inter-symbol corre-
lations. For instance, when σ2 = 0.1, the BRL method
always compresses better than the conventional entropy
coding, regardless of the symbol transition probabilities.
As σ2 increases, there are less all-1 block symbols.
Thus as q decreases, the compression gain by using the
BRL coding method gets reduced. Therefore, in general,
we can use this method to select the best compression
method (between the BRL coding and the conventional
run-length coding methods).

V. RESULTS ON MAPS OF ACTUAL DATA

In addition to synthesized maps based on mathematical
models, we also tested the proposed method on classi-
fication label maps obtained from actual hyperspectral
data. As shown in Fig. 11, the BRL coding method
achieved outstanding compression on 16 out of 17 bi-
level classification label maps given in Fig. 1, with higher
compression efficiency than various standards.
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Fig. 11: Compression results for bi-level classification
label maps of “Indian Pines”.

As a case study, we compared the empirical entropy
values of the biased run-length (BRL) coding and those

of the conventional run-length coding method. Fig. 12
shows how to calculate the entropies of the biased RL
method as an estimate of the achievable amount of
compression. Fig. 13 shows that the BRL coding method
would allow for better compression than the conven-
tional run-length coding method for all these maps.

Fig. 12: Empirical entropy calculation for the biased run-
length coding method.
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Fig. 13: Bitrates based on entropy calculated for the
biased run-length coding method and the conventional
run-length coding method.

To more comprehensively evaluate the proposed method,
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we also provided the results (Fig. 15) of compressing
the classification label maps for another hyperspectral
image dataset – “Pavia University” (PU) [1], which has
much larger (610× 340 pixels) classification label maps
than the “Indian Pines” dataset. To apply the proposed
symbol blocking method (with block size being 3×3), we
resized the ten bi-level classification maps (see Fig. 14)
to 609 × 339 pixels. Fig. 15 shows the proposed BRL

(a) Class 0 (b) Class 1 (c) Class 2 (d) Class 3

(e) Class 4 (f) Class 5 (g) Class 6 (h) Class 7

(i) Class 8 (j) Class 9

Fig. 14: Classification label maps of the PU dataset
obtained using support vector machine based on the
ground truth provided in [1].
method clearly outperforms the arithmetic coding method
and the JPEG 2000 standard. The BRL method com-
presses slightly better than JBIG2 standard for maps 3,
5, 6 and 7. For the remaining maps where the foreground
patterns tend to be less “clustered”, JBIG2 performs
slightly better as expected due to the most probable block
symbols becoming less dominant. Note that the Huffman
code table used was trained based on the statistics of
the maps for the “Indian Pines” dataset, thereby leading
to lost coding efficiency if applied another dataset with
varying statistics. This can explain why the advantage of
BRL method is less pronounced than the results for the
“Indian Pines” dataset shown in Fig. 11.

Fig. 15: comparison of compressed bit rates on the PU
dataset.

VI. CONCLUSIONS

The bi-level classification label maps for hyperspectral
images are the overhead information that needs to be
compressed efficiently. We proposed to run-length coding
the most probable symbol block separately to achieve
more efficient compression. We provided model-based
analysis on the conditions in which the BRL coding
method could provide better compression on binary
images than the conventional run-length coding method.
End-to-end implementation integrating symbol blocking,
BRL and Huffman coding achieved significantly higher
compression than arithmetic coding method and the
JPEG 2000 standard method. When the Huffman coding
table was trained based on maps to be compressed, we
can achieved up to 4.3% better compression than the
highly optimized JBIG2 standard method for lossless
compression of binary images. We expect the coding ef-
ficiency can be further improved by training the Huffman
code using more data or using adaptive coding methods.
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