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Abstract—While autoencoders have been used as an un-
supervised machine learning technique for classification and
dimensionality reduction of the input data, they are lossy in
nature when used alone in data compression. In this work, we
proposed an image coding scheme by using stacked autoencoders,
where the reconstruction residuals were entropy-coded to achieve
lossless compression. As a case study, we compressed labeled red
blood cell images from a database curated by pathologists for
malaria infection diagnosis. Specifically, we trained two separate
stacked autoencoders to automatically learn the discriminative
features from input images of infected and non-infected cells.
Subsequently, the residuals of these two classes of images were
coded by two independent Golomb-Rice encoders. Testing results
showed that this deep learning approach provided remarkably
higher compression on average than several other lossless coding
methods including JPEG-LS, JPEG 2000 lossless mode, and
CALIC.

I. INTRODUCTION

Malaria is a life-threatening disease caused by parasites that
are transmitted to people through the bites of infected female
Anopheles mosquitoes. According to the report released by the
World Health Organization (WHO), there were 214 million
cases of malaria in 2015 and 438,000 deaths [1]. There has
been a growing interest in building an efficient automated
malaria diagnostic system [2] to deliver resources remotely
to those underdeveloped areas where malaria has a marked
predominance. In most cases, malaria can be diagnosed by
manual examination of the microscopic slides. Whole slide
imaging (WSI), which scans the conventional glass slides in
order to produce digital slides, is the most recent imaging
modality being employed by pathology departments world-
wide. WSI data provide a direct access for pathologists to
diagnose malaria. Fig. 1 shows four human erythrocyte (red
blood cell) samples segmented from a whole slide image.
Whole slide images have very high resolutions and multi-
layer display feature, which allow pathologists to see more
details; however, the images tend to be very large, easily taking
up multiple gigabytes. This often is a bottleneck for remote
diagnostic applications with limited network bandwidths and
inadequate storage space. To this end, compression techniques
provide a good solution. While lossy compression methods
have been studied for whole slide images [3], [4], information
loss may have a negative impact on doctors’ diagnosis, and

thus lossless compression is often preferred on whole slide
images [5].

Among many lossless image compression methods, JPEG-
LS/LOCO-I [6] is often used as the benchmark. JPEG-LS
employs a simple but effective predictor called Median Edge
Detector (MED), followed by an adaptive Golomb-Rice Coder
(GRC) [7]. Context based Adaptive Lossless Image Codec
(CALIC) [8] is another benchmark algorithm. In contrast to
MED of JEPG-LS, the Gradient Adjusted Predictor (GAP)
was employed by CALIC with a dedicated context model-
ing scheme. In [9], an Edge Directed Predictor (EDP) was
proposed in order to better model the structure of the image
data using Least-Square (LS) based adaptation. Besides the
above well-known methods, there are a wide variety of lossless
compression methods that are based on different mathematical
models and optimized for different applications. However,
most of these approaches focus on spatial redundancy removal
within an individual image, without considering cross-image
correlations. Learning-based methods have been exploited on
this regard [10]. However, they mostly focus on the lossy com-
pression. In a recent work [11], a memory-assisted approach
utilizes Principal Component Analysis (PCA) to take into
account both intra- and inter-image redundancies, achieving
an improved lossless compression efficiency over traditional
methods. Specifically, the following two-stage scheme was
proposed: 1) Train the “memory” model based on a large
number of similar images (learning); 2) Use the trained model
to compress the new incoming data samples (testing). Since
the training stage can extract the common features shared by
the data, inter-image redundancy can be removed in addition
to individual image de-correlation.

Fig. 1: Red blood cell samples: The two cells on the left are
malaria infected, and two cells on the right are normal (non-
infected).

Our previous work [5] studied regions of interest (ROIs)
extraction from whole slide images and achieved very large
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Fig. 2: The lossless image compressor.

lossless compression on the ROIs, which are typically red
blood cells in the case of malaria diagnosis. From Fig. 1, we
can see that infected cells differ from normal cells in that
the infected cells have the purple “ring form” characteristic
of a parasite being present. Therefore, if this common feature
shared by all infected cells can be “learned” automatically,
then we can remove the inter-image redundancy to further
improve the compression performance. For this sake, we
considered deep learning techniques [12]. While most deep
learning approaches mainly focus on pattern classification
problems [13], [14], the Stacked Autoencoder (SAE) based
on Restricted Boltzmann Machines [15] has been proposed to
reduce the dimensionality of the data, with the capability to
extract discriminative features of the input data automatically.
It was shown in [15] that, even in very low dimensions, the
SAE networks (as a non-linear method in general) provide
much better separation of input data belong to different classes
than the PCA approach. Therefore, we proposed a new lossless
compression method for images. As a case study, we designed
a four-layer SAE network to “learn” the inherent features of
the input images, which were taken from a set of labeled
red blood cell images curated by a group of pathologists we
are collaborating with. The reconstructed images using these
learned low-dimensional representations were then used as
the approximation of the input images. To achieve lossless
compression, we employed a Golomb-Rice Code (GRC),
which is a computationally efficient coding scheme, to code
the residual images. Note that this approach is different from
that used in [11]. To the best of our knowledge, this might be
the first attempt to achieve lossless data compression by using
a deep learning technique.

The rest of this paper is organized as follows. Section II
gives a brief introduction to autoencoders and presents the
proposed lossless image compression scheme based on a
stacked autoencoder network. Section III gives the testing re-
sults by comparing against three state-of-the-art image lossless

compression methods. Section IV concludes this paper with a
discussion of further work.

II. LOSSLESS COMPRESSION USING STACKED
AUTOENCODERS

A. Stacked Autoencoders
Autoencoders [15] and their variants [16] are in essence

artificial neural networks that perform unsupervised learning
on the input data [17]. In the encoding phase, low-dimensional
representations of the input data are learned through training
the neural network. Next, these learned representations (so
called low-dimensional “codes”) are used to reconstruct the
original data (decoding). The training algorithm will seek to
optimize the neural network by minimizing the reconstruction
loss as a cost function on sufficiently large amount of data.
Moreover, a deep neural network can be constructed by con-
catenating multiple autoencoders (refer to Fig. 2 for the four
serially connected autoencoders in the “Encoder” component
of the Compressor). This would allow for a hierarchical
representation of the data through a multi-layer architecture.
In [15], the Restricted Boltzmann Machine (RBM) was used
as an autoencoder, which serves as a building block of a deep
autoencoder network. Each RBM was pretrained and unrolled.
Then back propagation was carried out to fine-tune the en-
tire stacked autoencoder based on Cross-Entropy or Mean
Square Error (MSE) as the cost function. Results reported
in [15] indicate superior performance of SAE compared to
the standard PCA and its variants. SAE takes into account
the nonlinearity of the image data and is able to extract
features in a hierarchical manner. All these properties allow for
very large dimensionality reduction of the input image, while
preserving well the discriminative features. Thus we propose
a lossless compression scheme, where the SAE is used as an
aggressive yet lossy image encoder. The very low-dimensional
code (30-point vector in this work), as well as the residual (the
difference between the original image and the reconstructed
version) will be coded to achieve lossless compression.



Here we distinguish the term “compressor” from the term
“encoder” to avoid confusion. The input to the compressor
is the image to be losslessly compressed, and its output is
a compressed bitstream. In contrast, the encoder is the first
component of the compressor (see Fig. 2). The job of the
encoder is to reduce the input image to a very low dimen-
sional vector through the “encoding” function of the stacked
autoencoders. The second component of the compressor is the
“decoder”, whose job is to reconstruct an approximate version
of the original image by going through the reversed operations
of the stacked autoencoders. The residual between the original
image and its approximation needs to be entropy coded (yellow
line in Fig. 2) to produce the compressed bitstream. On the
other hand, the decompressor takes as its input the compressed
bitstream and the coded version of the low-dimensional vector.
The “decoder” component of the compressor is reused in the
decompressor to produce an approximation of the original
image by feeding forward through the SAE decoder layers.
The approximation, combined with the residual recovered
from the compressed bitstream, will be used to reconstruct
the original image losslessly. In Fig. 2, each pair of gray
bars represents a RBM with its corresponding weight shown
[15]. In the training stage, a sufficiently large number of
images are fed to the multi-layer SAE as training data. Our
autoencoder consists of four layers of RBMs with 2500, 1500,
500 and 30 neurons at each layer. Eventually, the encoder of
the SAE generates a 30-point code of the input image. Note
that the weights of the decoder are assumed known at both
the compressor and decompressor sides in advance so that the
residual image and the approximation image can be recovered
for end-to-end lossless compression.

B. The Separate Coding Scheme

We experimented with training the SAE using a set of
images mixed with infected and non-infected cells images. The
SAE trained this way was found to offer lower compression
than an alternative scheme, where we train two SAEs, one
on infected cell and the other on non-infected cell images.
This is expected since common features shared by the cells of
the same class can be more easily learned by the SAE training
with images of that particular class. The flowchart of the entire
compression process is shown in Fig. 3.
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Fig. 3: Separate compression of images based on their classes.

In order to determine the discriminative capability of the
stacked autoencoders, we modified the SAE network architec-
ture into 2500-1500-500-2 and trained it on 1,000 infected
and 1,000 non-infected cell images mixed together. As a
result, an input image (a 2,500-point vector) was reduced to
a mere two-dimensional vector. Fig. 4 shows the resulting

-25 -20 -15 -10 -5 0 5 10 15
-20

-15

-10

-5

0

5

Infected
Non-infected

Fig. 4: The distribution of the two-dimensional codewords for
the infected (blue) and non-infected cells (red).

two-dimensional codes, demonstrating the ability of the deep
autoencoders in extracting the discriminative features from the
data. Furthermore, we can see that the infected cells are more
concentrated in their cluster than the non-infected cells. This
implies that the images of the infected cells might benefit more
from the proposed compression scheme than the non-infected
cells.

Since the residual images approximate the Laplacian distri-
bution, Golomb-Rice codes were used to encode the residuals
by using the same coding parameter estimation method as in
JPEG-LS [6]. Note that while other entropy codes such as the
arithmetic codes can be used to generate shorter bitstreams,
they tend to have higher computational costs. Typically, the
30-point code consist of real numbers. We need to quantize
them to integers by using direct binary coding ()with at most
12 bits/sample). The de-quantized values are then provided to
the decoder to ensure strict lossless compression. So a total
number of 360 bits for each image will be stored as side
information with the coded bitstream for the residuals.

III. EXPERIMENTAL RESULTS AND ANALYSIS

A. Data Preparation

We used a dataset of red blood cell images [18], provided
and labeled by a group of pathologists from the Medical
School of the University of Alabama at Birmingham (UAB),
as part of the collaborative research on automated malaria
infection diagnosis. To facilitate training of the deep learn-
ing network, we developed image processing algorithms to
segment the original wholeslide image and cropped each
individual cell into an image of 50×50 pixels. We might need
to down sample some cells to make a uniform image size. All
the pixel values were mapped to [0, 1] prior to training. The
cross-entropy was chosen as the cost function for training. To
avoid overly long training time, we used only the red channel
of the original color images to demonstrate the compression
performance of the proposed method.

B. Experiments Setting

We chose a 2500-1500-500-30 network architecture, which
was found to provide good compression on the data. Two



SAEs were trained separately, one on infected and the other
on normal cell images. For each type of images, 1,000 labeled
images were divided into two sets: 900 for training and 100 for
testing. The number of epochs is set to 1,000 for pre-training
and fine-tuning. For comparison, three lossless compression
methods, including JPEG 2000 lossless mode (JP2K-LM),
JPEG-LS and CALIC, were applied on the test images. The
built-in JP2K-LM function of MATLAB, the implementations
of JPEG-LS [19] and CALIC [20] were used. The training took
about two hours to finish using Matlab running on a computer
running Ubuntu 14.04.

C. Results and Analysis

The weighs obtained at the first layer of the stacked autoen-
coder are shown in Fig. 5a and 5b for infected and non-infected
cell images, respectively. The ring forms characteristic of the
infected cells are clearly visible in Fig. 5a.

(a) Images of infected cells. (b) Images of non-infected cells.

Fig. 5: Weights learned by the stacked autoencoder.

Fig. 6 demonstrates the image approximation performance
of the SAE. We can see that except for the second left
and the right most images, most residual images have very
small values (even near the edges, where traditional intra-
image predictors would likely fail). PSNR values (in dB) of
the reconstructed images also indicate that SAE can produce
accurate data approximation. Besides, the SAE can even learn
the irregular shapes of some cells (e.g., the third image from
the left), which was found to be challenging in our prior study
on lossless compression of regions of interest of arbitrary
shapes [21]. More accurate reconstruction leads to smaller
residuals, which would very likely translate to smaller bit rates
than traditional methods.

Label SAE JPEG-LS JP2K-LM CALIC
Infected 5.1729 5.6921 6.2320 5.4391
Normal 5.5135 5.9632 6.4195 5.6068

TABLE I: Comparison of average bit rates (bits/pixel) with
other benchmark methods.

As a comparison, Fig. 7a and 7b show the bit rates of each
individual testing image taken from the set of infected and
non-infected images. Note that image files are arranged such
that their bit rates obtained by using the proposed method are

Fig. 6: Ten randomly selected infected cell images, from top
to bottom: original images, reconstructed images, absolute
residual images and the corresponding PSNR values. A com-
plete list of test images and their reconstruction residuals (of
infected and non-infected cells) can be seen at the website
[22].

shown in a descending order for ease of comparison. Table I
summarizes the average bit rates of the several methods. We
can see that the proposed method based on SAE has lower
average bit rates than other three benchmark methods on
both infected and non-infected cell images. Particularly, for
infected cell images, our method achieved 4.9%, 9.1% and
17.0% lower bit rates than CALIC, JPEG-LS and JPEG 2000-
LM, respectively.

However, we can see that the SAE method gives the lowest
compression among all the methods for a very small set
of images, and the compression performance on normal cell
images is not as good as the infected cell case. The reason
might be that SAE is a “global” method, which aims to learn
the common features present in all the training data, while
conventional predictive lossless compression methods rely on
adaptation to local statistics. For some images, intra-image cor-
relations might be stronger than inter-image correlations, thus
local method tends to compress better. On the other hand, as
shown in Fig. 4, common features shared by non-infected cell
images tend to be more elusive than infected cells, therefore,
the advantage of using deep learning for non-infected cells
becomes less pronounced. Nonetheless, infected cells typically
belong to the regions of interest in a whole slide image when it
comes to diagnosis of malaria infection. Hence, more efficient
compression on infected cell images would be useful. In terms
of computational efficiency, the proposed method only requires
feedforwarding the data through the network once it is trained.
It took about about 30ms on average for this testing set in
our simulations. Therefore, efficient parallel implementation
is feasible. In contrast, parallel implementation is difficult
for most existing predictive lossless compression methods,
which rely on pixel prediction based on tightly coupled local
contexts.

IV. CONCLUSIONS AND FUTURE WORK

We proposed an image coding scheme by using stacked
autoencoders, and trained two separate stacked autoencoders
to automatically learn the discriminative features from input
images of malaria infected and non-infected cells. Testing
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(a) Images of infected cells.
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(b) Images of non-infected cells.

Fig. 7: Comparison of bit rates (bits/pixel) with other benchmark methods on 50 randomly selected testing images.

results showed that this deep learning approach provided
remarkably higher compression on average than several other
state-of-the-art lossless coding methods. Similar results have
recently been obtained for other types of images (e.g., the
handwritten digits from the well-known MNIST database).
As the next step, we will consider a hybrid (local prediction
plus global learning) approach to achieve further performance
gains.
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