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Abstract—In many biomedical applications, images are stored
and transmitted in the form of compressed images. However,
typical pattern classifiers are trained using original images. There
has been little prior study on how lossily decompressed images
would impact the classification performance. In a case study
of automatic classification of malaria infected cells, we used
decompressed cell images as the inputs to deep convolutional
neural networks. We evaluated how various lossy image com-
pression methods and varying compression ratios would impact
the classification accuracies. Specifically, we compared four
compression methods: lossy compression via bitplane reduction,
JPEG and JPEG 2000, and sparse autoencoders. Decompressed
images were fed into LeNet-5 for training and testing. Simulation
results showed that for similar compression ratios, the bitplane
reduction method had the lowest classification accuracy, while
JPEG and JPEG 2000 methods could maintain good accu-
racies. In particular, JPEG 2000 decompressed images could
achieve about 95% accuracy even after 30 to 1 compression.
We also provide classification results based on the widely used
MNIST dataset, where handwritten digits were found to be
much easier to classify using decompressed images, with about
90% accuracy still achievable using only one single bitplane.
As a lossy compression method, Autoencoder was also applied
to the MNIST dataset, achieving about 85% accuracy with a
compression ratio much higher than the other three lossy image
compression methods. Autoencoders were also found to provide
more scalable compression ratios, while capable of maintaining
good classification accuracies.

I. INTRODUCTION

Malaria is a potentially fatal parasitic disease of both human

and animals. Half of the world population is at risk of this

life threatening infectious disease. Malaria is of great danger

to pregnant woman and children, especially those under five

[1]. In most cases, malaria infection could be diagnosed by

microscopic examination of blood films. In order to provide

a reliable diagnosis, necessary training and specialized human

resource are required. Patients suffering from malaria disease

should be diagnosed at early stage and should be given an

effective and affordable treatment within 24 hours [2]. Unfor-

tunately, most infections occur in rural areas, where resources

are far from being enough. Also failure to diagnose on time

may lead to incorrect treatments. This alarming situation has

prompted researchers to develop telemedicine solutions for

rapid and accurate identification of malaria infection. To give

an idea of the red blood cells involved in this study, we show

some samples in Fig. 1.

With the emergence of digitized medical images such as the

whole slide images [5], more and more images are stored and

Fig. 1: Red blood cell samples: the two cells on the left are

malaria infected, and two cells on the right are non-infected.

All these cell images were segmented from a whole slide

image scanned by the Department of Pathology, University

of Alabama at Birmingham (UAB) [3]. The original image

contains more than 900,000 red blood cells, among which

around 3,000 are malaria infected. After several morphological

operations, isolated cell samples were segmented, which were

then curated by pathologists from UAB Medical School [4].

transmitted through the Internet in the format of compressed

images. The purpose of image compression is to reduce

the storage space and transmission cost while maintaining

good quality. Image compression techniques are categorized

into lossy compression and lossless compression techniques.

Lossy compression techniques are capable of offering much

higher image compression than their lossless counterparts,

albeit at the cost of introducing distortion to the reconstructed

images. However, if the decompressed images are used for

image classification, the impact of image distortion caused by

lossy compression has not been well studied in the literature.

Therefore, in this case study, we used decompressed images

of red blood cells as the input of an automatic classification

system aimed at differentiating between malaria infected red

blood cells and those healthy ones.

Studies on malaria cell classification provided many di-

agnostic methods, most of which were based on machine

learning, including unsupervised [6] and supervised learning

[7]. However, the performance of these methods are highly

sensitive to features extracted from original images. Although

many works has been done on feature extraction for malaria

cells [6], [7], [8], new feature extraction methods need to

be designed for different datasets. In order to achieve fully

automated diagnosis without any manual feature extraction,

we chose deep convolutional neural network (CNN) as the

classifier. CNN can extract hierarchical representations of the

input data. In this work, LeNet-5 [9] was used to learn the

inherent features of malaria infected and non-infected cells.

LeNet-5 [9] is one of the best known CNN architectures. It was

first used in handwriting digits recognition and achieved a very

low error rate of 0.8%. LeNet-5 consists of three convolutional

layers, with two subsampling layers in between, and an output
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layer. The convolutional and subsampling layers are organized

into planes called feature maps.

It has been shown that bitplanes from different color chan-

nels of images contain information that could be used for

compression [10] and retrieval [11]. By training CNN using

images reconstructed from different bitplanes, we are able

to determine how classification accuracy would change ac-

cordingly. Similarly, we created reconstructed image datasets

using JPEG and JPEG 2000 image compression standards with

various compression ratios. Another dataset is achieved by

utilizing autoencoder, which can also be viewed as a lossy

compressor.

The main novelty of this work is that rather than using origi-

nal images to train and test the network, we used reconstructed

images after compression by four different methods, including

bitplane reduction, JPEG, JPEG 2000 image compression

methods, and the autoencoder [12]. Four datasets were created

using reconstructed images by these compression methods.

Autoencoder is an unsupervised learning algorithm. With the

help of back propagation, it tries to learn an approximation

to the identity function, thereby transforming the input image

to an decoded image with the smallest possible amount of

distortion. Autoencoders have taken center stage in the deep

learning approach. In [12], [13], [14], [15], autoencoders

based on Restricted Boltzmann Machines (RBM), are stacked

and trained bottom up in a unsupervised mode, followed by

a supervised learning stage to fine-tune the entire network.

These deep architectures have been shown to provide state-of-

the-art performances in many challenging classification and

regression problems. In fact, even a single-layer autoencoder

is capable of learning a low-dimensional representation of the

input image. Thus an autoencoder can be used as a lossy image

compressor. We can reconstruct a lossy version of the original

image by using the corresponding “autodecoder” based on the

learned low-dimensional representations. In our prior work,

we designed a four-layer staked autoencoder network to learn

the inherent features of red blood cell images [16]. To reduce

the training time, we used a simple one-layer autoencoder

to encode the input images, and a corresponding one-layer

autodecoder to reconstruct the original image with loss. The

compression ratios of the autoencoder can be controlled by

adjusting the number of neurons.

Similarly, By training the CNN using images reconstructed

from different bitplanes, we are able to determine how classifi-

cation accuracy would change accordingly. It has been shown

that bitplanes from different color channels of images contain

information that could be used for compression [10] and

retrieval [11]. We also created reconstructed image datasets

using JPEG and JPEG 2000 image compression standards with

various compression ratios.

The rest of this paper is organized as follows. Section

II discusses how we compiled new datasets using the four

compression methods. The computation platform and simu-

lation results are given in Section III, along with results for

the MNIST dataset. Section IV concludes this paper with a

discussion of the further work.

II. RECONSTRUCTED IMAGE DATASET COMPILATION

A. Reconstruction of Bitplane Reduction Images

The original cell samples are color images (with three color

channels, R, G, and B) of size 60×60×3, with each pixel

being represented by eight bits. In bitplane coding, if only

one single bitplane in the R (Red) channel is kept, then all

other seven bitplanes will be set to zero, corresponding to an

24 to 1 compression. During image reconstruction, we convert

bitplanes back to their corresponding decimal representations.

The reconstructed image would be a lossy version of the

original image, since only one single bitplane in R channel

was retained. In this fashion, each sample image can be

decomposed into 24 bitplanes, each representing the nth (from

the 1st to the 8th) bitplane in one of the RGB channels.

Reconstruction of these bitplanes led to the creation of 24

reconstructed image datasets.

Fig. 2: Bitplane images. The image in the top row is the

original malaria infected cell. In each of the lower four rows,

there are eight bitplane images, with the leftmost column

representing the least significant bitplane (LSB) and the right-

most column the most significant bitplane (MSB). Moreover,

the second to forth row are bitplane images from R, G and

B channels, respectively. The bottom row are bitplanes for

combined RGB channels. Note that in this particular example,

the most significant bitplanes retain less features (e.g., the

characteristic ring form of the parasite in an infected cell)

than the second most significant bitplanes, due to a majority

of pixels in the original image have values above 128.

Alternatively, we can choose to retain the co-located bit-

plane for three color channels simultaneously, leading to 8:1

compression. In this way, we created eight more reconstructed

image datasets.Note that while bitplanes are bi-level images,

decompressed bitplane images have the same size as the

original images. Fig. 2 shows some example bitplanes. All

pixels in these bitplane images are normalized to the range

of [0, 255] for better visualization. The lowest bitplane is the

least significant bitplane (LSB), and the highest bitplane is

the most significant bitplane (MSB). It can be seen that, in



general, lower bitplanes tend to have more “noise”, and higher

bitplanes convey more salient features of the original image.

B. Reconstruction of JPEG Compressed Images

JPEG is a widely used lossy image compression method,

where the image source is converted from the spatial domain

into the frequency domain using discrete cosine transform

(DCT). Then the DCT coefficients are quantized (a lossy

step), followed by Huffman coding. In Matlab implementation,

the tradeoffs between the compression ratio and distortion of

the reconstructed images can be controlled by changing the

value of the parameter “Quality”. Some example reconstructed

images are shown in Fig. 3.

2.67 7.07 8.86 10.1 11.9 13.5 14.5 15.2

Fig. 3: Reconstructed JPEG images. The number above an

image is the corresponding compression ratio. The higher the

compression ratio, the lower the quality of the reconstructed

image compared to the original image shown in Fig. 2. The

ring form of the parasite is barely visible in the rightmost

image, which has the largest compression ratio.

C. Reconstruction of JPEG 2000 Compressed Images

JPEG 2000 is a more advanced image compression stan-

dard with higher computational cost than JPEG. JPEG 2000

methods provide a wider range of compression ratios with

acceptable reconstruction image quality than JPEG, owning

mainly to its usage of discrete wavelet transforms and more

sophisticated entropy coding schemes such as the Embedded

Block Coding with Optimal Truncation [17]. While JPEG

2000 offers both lossy and lossless modes, we used only the

lossy compression mode in this work. In Matlab implementa-

tion, the reconstruction image quality can be controlled by

changing the value of the parameter “Compression Ratio”.

Note that this parameter specifies only a target compression

ratio. The actual compression ratio achieved may deviate from

the target. Some example reconstructed images using JPEG

2000 with distinct compression ratios are shown in Fig. 4.

4.86 9.28 13.5 19.3 21 26 30 30.6

Fig. 4: Reconstructed images from JPEG 2000 compression of

the original image shown in Fig. 2. The number above each

image is the corresponding compression ratio. The rightmost

image has a compression ratio that more than doubles that

of co-located JPEG reconstructed image (in Fig. 3), however,

the reconstructed image still retains the salient features of

the original image such as the nucleus and ring form of the

parasite.

D. Reconstruction of Autoencoder Compressed Images

Autoencoder is an artificial neural network that perform

unsupervised learning on data. The simplest single-layer au-

toencoder is made of two components: one encoder and one

decoder. The encoder obtains the lower dimension representa-

tion (called codewords) of the input data. The codewords are

vectors of floating-point numbers. Since the encoder performs

dimensionality reduction of the input, the autoencoder can

be viewed as an input data compressor. Next, the decoder

reconstructs the input data from the codewords. The training

process seeks to minimize the difference between the input

data and reconstructed data. As loss in the reconstructed

data is typically inevitable, autoencoder can be used as a

lossy compression method. Autoencoder can also be used for

lossless compression, if the reconstruction error is maintained

[16]. By changing the number of neurons in the single layer

of the encoder, we can obtain different effective compression

ratios, as calculated by using the following equation.

Compression Ratio =
# of P ixels× 8

# of Neurons× 10,
(1)

where 8 in the numerator stands for the number bits per pixel.

The codewords are real numbers ranging between 0 and 1. We

round the codewords to decimal numbers ranging from 0.000

to 0.999. Each of these decimal numbers can be represented

by a corresponding binary number with 10 bits (ranging from

0 to 999), hence 10 in the denominator.

For this work, we used Matlab’s built-in sparse autoencoder,

which uses regularizers to learn a sparse representation of

input. The influence of these regularizers can be controlled by

adjusting the following parameters. L2WeightRegularization

has control over the impact of L2 regularizer on weights

of the network. SparsityRegularization and SparsityProportion

control the sparsity of the output from the hidden layer. If the

second parameter is set to 0.1, each neuron in hidden layer

will have an average output of 0.1 over the training samples.

The UseGPU option was also set to true in order to speed

up the training process. Fig. 5 shows the diagram of a single

layer autoencoder.
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Fig. 5: Autoencoder as a lossy image compressor. Each

input image (e.g, with a size of 784 pixels) is encoded into

a codeword (a 10-point vector in this example), and then

decoded back to a reconstructed image (a 28 × 28 image in

this example). The effective compression ratio depends on the

size of the codeword.

Single-layer autoencoders are simple and fast to train. We

also found that for the MNIST dataset, the reconstructed

images are of such good quality that they work well with



classifiers based on deep convolution neural networks. How-

ever, for the Malaria datasets, the reconstructed images tend

to have poor quality that prevents the classifier from achieving

good classification accuracy. In principle, we can improve the

reconstruction image quality by stacking several autoencoders

together, albeit at the cost of much increased training time

and computational complexity. In the following section, we

provide detailed simulation results and discussions.

III. SIMULATION RESULTS AND DISCUSSIONS

We used an NVIDIA DIGITSTM DevBox, which is an effi-

cient platform of training and testing CNN’s for classification.

Several well known CNN structures have been integrated into

and optimized for the DevBox, including LeNet-5, AlexNet

and GoogLeNet. LeNet-5 is selected in this paper for its

simple structure and relatively less computational time. The

DIGITS software can utilize up to four Nvidia Titan X GPUs

to accelerate neural network training.

A. Malaria Dataset

The reconstructed image datasets we obtained above were

used the train LeNet-5. The datasets were split for training,

validation and testing according to the proportion of roughly

5:1:1 [18]. The training epoch number was set to 30 for all

datasets. In other words, all the training samples will run

the forward propagation and backward propagation through

the network for 30 times. The stochastic gradient descent

algorithm [19] was used as the solver to optimize the mean

square error cost function. After each training epoch, the CNN

model will be evaluated on the validation set. If the accuracy

of the training set keeps increasing, while validation loss also

starts to increase after a certain number of epochs, this is a

sign that the model will provide a good fit only for the training

set. That is, the trained model cannot be generalized enough to

handle unseen data. The loss of validation set will be used to

control the potential overfitting issue. The final classification

model is achieved after 30 epochs, and then tested on the pre-

defined testing set to demonstrate its generalization capability.

The classification accuracies of 24 individual reconstruction

bitplane image datasets, as well as the 8 reconstruction bit-

plane image datasets for combined color channels are shown

in Fig. 6. We can see the general trend of increased classifi-

cation accuracy as we use higher bitplanes for classification.

This owns to the fact that lower bitplanes tend to have less

impact on the pixel intensity of the reconstructed images. For

example, a flipped bit in the LSB will only change the intensity

of the reconstructed image by 1 (20), whereas a flipped bit

on the MSB would lead to an intensity change by 128 (27).

However, there are exceptions to this general rule, as suggested

by the non-monotonically increasing nature of the curves in

Fig. 6. In addition, we can see using bitplanes from combined

color channels offers higher classification accuracy than using

bitplanes from separate color channels, albeit at the cost of a

lower (a 3 : 1 reduction) compression ratio.

For both JPEG and JPEG 2000 compression, eight dis-

tinct compression ratios are selected, with the classification
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Fig. 6: Classification accuracies of reconstructed bitplane

images. “R”,“G” and “B” stand for datasets for separate color

channels, and “RGB” refers to the datasets for combined color

channels.

accuracies corresponding to each compression ratio shown in

Fig. 7. We can see the relationship between accuracy and

compression ratio is as expected, i.e., in general, the higher

the compression ratio, the lower the accuracy of classification.

The classification results agree well with the visual display of

the reconstructed images in Fig. 3 and Fig. 4. Furthermore,

we can see that a very high accuracy (above 95%) can still

be achieved after JPEG compression of the original images

by 10 to 1. More impressively, about 95% accuracy can still

be maintained even if the original images are compressed

by JPEG 2000 with a large (30 to 1) reduction of the size.

Large reduction of image size would be very beneficial to

both efficient storage and transmission of medical images in

telemedicine applications. These results show that lossy image

compression would be a viable solution.
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Fig. 7: The classification accuracies of the reconstructed

images using the JPEG and JPEG 2000 methods.

One important distinction of JPEG and JPEG 2000 is

that the compression are mainly accomplished in frequency

domain, which allows the reconstruction quality to more



“gracefully” degrade as we increase the compression ratios.

In contrast, bitplane reduction is accomplished in the spatial

domain. So dropping bitplanes, especially those higher bit-

planes, will adversely impact the quality of the reconstructed

images, thereby causing lower classification accuracy for sim-

ilar compression ratios.

B. DIGITS Dataset

To diversify the datasets used, we applied four compression

methods on the widely used MNIST dataset [20]. Since

MNIST images are all grayscale images, bitplane coding was

conducted on just one single channel. By combining the

first N bitplanes (going down incrementally from the MSB),

eight different reconstructed image datasets were created, with

compression ratio ranging from 8 : 1 (by keeping only the

MSB) to 1 : 1 (by keeping all the bitplanes, meaning no

compression). Some example decompressed images are shown

in Fig. 8.

1 1.14 1.33 1.6 2 2.67 4 8

1.19 1.35 1.54 1.64 1.82 1.95 2.07 2.12

1.17 1.29 1.65 1.99 2.33 2.57 2.87 3.03

Fig. 8: Reconstructed images after compression with bitplane

reduction (the first row), JPEG (the second row), and JPEG

2000 (the third row). The number above each of the images

is the practically achievable compression ratio.

compression ratio

1 2 3 4 5 6 7 8

A
c
c
u

ra
c
y

0.9895

0.99

0.9905

0.991

0.9915

0.992

0.9925

JPEG

JPEG 2000

Bitplane

Fig. 9: Classification accuracies of the handwritten digits

reconstructed from the compressed images in the MNIST

datasets.

After training the LeNet-5 with all these datasets, the testing

accuracies obtained are shown in Fig. 9. Unlike the malaria

infection dataset, reconstructed images from the compressed

MNIST dataset all led to classification accuracies over 90%

for the given range of compression ratios, even for the bitplane

method. The main reason is that the handwritten digits have

high contrast against the background. This means almost

all the bitplanes for the background will be “1”, and most

bitplanes of the foreground will be “0”. Thus even if we

drop all the higher seven bitplanes, the digit pattern in the

reconstructed image is still recognizable. For the same reason,

we can achieve very high accuracies by using reconstructed

images after JPEG or JPEG 2000 compression. Interestingly,

unlike the curves in Fig. 7, for reconstructed images of digits,

there is not a clear trend of decreased classification accuracy

as the compression ratio increases. Our hypothesis is that a

certain degree of compression artifacts might indeed help the

distinguishing features stand out better through deep learning.

To validate this hypothesis requires more in-depth study.

Autoencoder was also tested as a lossy compression method.

As shown in Fig. 5, each 28×28 DIGIT image is reshaped into

a vector of 784, and then encoded into a 10-point compressed

codeword. The effective compression ratios as calculated by

using Eq. (1) are summarized in Table I.

# of Neurons 100 70 50 30 20 15 10
CR 6.27 8.96 12.54 20.90 31.36 41.80 62.70

TABLE I: Effective compression ratios (CR) corresponding to

the number of neurons in the single layer of the autoencoder.

The classification results are shown in Fig. 10, where

the classification accuracy decreases as compression ratio

increases. This is expected, as a high compression ratio

typically leads to lower image quality, which will translate

into a lower classification accuracy. For example, a blurry

hand-written digit “6” may be misclassified as a “0”. However,

even when compression ratio is higher than 60, the classifier

can still achieve an accuracy above 85%. We can see that

the autoencoder can offer a much wider range of compression

ratios than the other three lossy compression methods, while

maintaining a reasonably good classification accuracy.
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Fig. 10: Classification accuracies of the handwritten digit

images in the MNIST datasets reconstructed from the autoen-

coder.



IV. CONCLUSION

Large reduction of medical image size would be very

beneficial to many telemedicine applications. We evaluated the

impact of lossy image compression methods on classification

accuracies of convolutional neural networks, which has not

been studied before in the literature. Simulation results showed

that the bitplane reduction method had lower accuracy than

JPEG and JPEG 2000 methods. We found that autoencoders

were capable of providing a much more scalable compression

ratios than the other three lossy compression methods, while

maintaining a reasonably good classification accuracy for the

handwritten digit images. We also found that for these type

of images, a certain degree of compression artifacts might

indeed be beneficial to improving the classification accuracy,

an intriguing phenomenon prompting for more in-depth study.

As a further work, we seek to improve the reconstruction

image quality of more “natural” images such as the red

blood cell images in the Malaria dataset by stacking several

autoencoders together.
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