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Abstract—While adaptive filtering has been widely used in
predictive lossless compression of hyperspectral images, the
prediction performance depends heavily on the filtering weights
estimated in a step-by-step manner. Traditional filtering methods
do not take into account the longer-term dependencies of the
data to be predicted. Motivated by the effectiveness of recurrent
neural networks in capturing data memory for time series
prediction, we design LSTM (long short-term memory) networks
that can learn the data dependencies indirectly from filter weight
variations. We then use the trained networks to regulate the
weights generated by conventional filtering schemes through a
close-loop configuration. We compare the proposed method with
two other memory-less algorithms, including the popular Least
Mean Square (LMS) filtering method, as well as its variant based
on the maximum correntropy criterion (MCC). Simulation results
on two publicly available datasets show that the proposed LSTM
based filtering method can achieve smaller prediction errors.

Index Terms—Predictive compression, LSTM, Recurrent Neu-
ral Networks, Hyperspectral images, Least mean square

I. INTRODUCTION

Efficient hyperspectral image compression is important for
many remote sensing applications. Given that hyperspectral
image sensor has only limited memory capacity, the ability
to compress image cubes losslessly in real-time hyperspectral
imaging system is extremely valuable for a wide range of
applications, ranging from data transmission to data storage.
To guarantee there is strictly no loss in the reconstructed
data, in this work, we focus on lossless compression using
predictive coding approaches, where we take advantage of
the correlations of adjacent pixels [1] in the hyperspectral
images. In these methods, pixel values are predicted from
their causal contexts, with the prediction errors (also known as
residuals) are coded by an entropy encoder. For hyperspectral
data where contiguous spectral bands are highly correlated,
linear prediction is usually used to model the correlated
pixels in different spectral bands [2]. There have been several
algorithms proposed for predictive lossless compression on
hyperspectral image datasets [3], [4]. To improve the predic-
tion accuracy, in our recent work, [5] proposed a two-stage
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prediction scheme by modeling the residuals with a mixture
geometric distribution. [6] replaced the cost function of Least
Mean Square (LMS) with Maximum Correntropy Criterion
(MCQC) to further reduce the entropy of residuals. It is worth
noting that an LMS-based adaptive filtering method [7] has
been chosen as the core predictor in the CCSDS standard for
multispectral and hyperspectral data compression [8]. Besides
linear predictive compression, nonlinear predictors such as 3-D
CALIC [9], and context-based conditional average prediction
(CCAP) [10] were also shown to provide good compression
performance. Furthermore, transform-based methods intended
for lossy compression [11] can be adapted for lossless com-
pression.

While adaptive filtering has been widely used, its prediction
performance depends heavily on the filtering weights estimated
in a step-by-step manner [5], [7], [8]. These filtering methods
do not take into account the longer-term dependencies of the
data to be predicted. Motivated by the excellent performance of
recurrent neural networks (RNNs) and their variants including
LSTM (long short-term memory) [12] in time series predic-
tion, in this work, we design LSTM networks that can learn
the data dependencies indirectly from filter weight variations.
The rest of this paper is organized as follows. Section 2
gives a brief introduction to the weight updating schemes in
adaptive filtering and the basics of LSTM networks. Section 3
presents the proposed filtering method using LSTM networks.
Experimental results are presented in Section 4. The paper is
concluded in Section 5.

II. ADAPTIVE FILTERING AND LSTM NETWORKS

In adaptive filtering, the estimated pixel value was calcu-
lated as WT,T X, where X,, and W,, are the context vector and
the corresponding weight vector, respectively. The prediction
error is e,, = d; — W;{ X, where d; is the actual pixel value.
Stochastic gradient descent is typically used with a small
learning rate p to maximize the cost function by iteratively
adjusting the weight W as

Wn+1 =W, + Mean (D

Our prior work [6] showed that MCC-LMS (Maximum Cor-
rentropy Criteria based Least Mean Square) could offer better
compression on hyperspectral images than the conventional



LMS-based cost function. The correntropy [13] based weight
updating at the n*" time instant can be written as:
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where o is the standard deviation of the normalized Gaussian
kernel used.

It can be seen that filtering weights are updated in a step-by-
step manner, without taking into account the memory of the
dataset over longer discrete time steps. Our goal is to exploit
the longer-time data dependencies to further improve the
prediction accuracy. The idea is to learn the data dependencies
using recurrent neural networks (RNNs), and use the trained
networks to regulate the weights generated by conventional
weight updating schemes. Recurrent neural networks differ
from traditional feed-forward neural networks in that recurrent
networks have an internal state that can represent context
information. A RNN keeps information about past inputs for
an amount of time that is not fixed a priori, but rather depends
on the input data, and its tunable network parameters. Long
Short-Term Memory (LSTM) recurrent networks were first
introduced for sequential prediction tasks [12] and has since
found successful applications in many areas [14], [15]. An
LSTM layer consists of a set of recurrently connected blocks,
known as memory blocks. As shown in Fig. 1, a basic block
contains one memory cell with three multiplicative gates,
which provide continuous analogues of write, read and reset
operations for a cell in a digital memory chip. Specifically,
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where Wy, W; and W, are weight matrices grouped with the
corresponding gate, and o _is the sigmoid function o () =
T +i7w' Cell state C; and C; are candidate values that can be
added to the cell state and output, both of them are computed

through a tanh layer gionp (x) = £ °.
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III. THE PROPOSED ALGORITHM

We aim to use LSTM networks to learn the relatively
longer-term dependencies of the filtering weight sequences
based on the MCC-LMS filtering method. Fig. 2 shows the
prediction context, which consists of pixels from the current
band and three previous bands. Updating the weights accord-
ing to Eq. (2) for each of the three co-located pixels from
the previous bands will generate three separate sequences of
weights, which are used to train LSTM networks, as shown
in Fig. 3. The proposed prediction algorithm has the training
stage and the prediction stage. In the training stage, context-
based conditional average prediction (CCAP) [10] was first
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Fig. 1: A basic LSTM block consisting of a self-connected
memory cell with three multiplicative gates — the input gate
i¢, output gate o, and forget gate f;. The input data x; and
the output data from previous time step h;—_; are fed to each
gate to determine the current cell state C';, and the output hy.
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Fig. 2: Causal context (pixels in blue from the current band,
as well as the pixels in green from the previous three bands)
for prediction of the current pixel in red.

preformed on hyperspectral data to reduce the first-order
entropy of the residual by taking the sample mean:

1
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where s(i,j) consists of four neighborhood pixels in the
current band (colored blue in Fig. 2). The prediction stage
has a closed-loop configuration by applying adaptive filtering
twice, where the trained LSTM networks are used to regulate
the filtering weights resulting from the first filtering operation,
before the filtering is applied for the second time. Weights
predicted by LSTM networks have taken into account the
relatively longer term data dependencies. The weight updat-
ing formula at the n'" time instant for the second filtering
operation can be written as:

Wrsram(n) = LST M (w(n)) (6)
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where w(n) is the weight vector generated by adaptive filter,
Wirstam 1s the weight vector predicted by the LSTM network,
and ey g7y (n) is the prediction error of the current pixel.
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Fig. 3: Block diagram of the proposed method.

LSTM networks were trained by the weight sequences
generated from the MCC-LMS filtering operations. Note that
three individual LSTM blocks are assigned to three weight se-
quences, respectively. In particular, for each weight sequence,
we constructed the training set and the corresponding labels
by using the current weight value to predict the next one. That
is, each element in the weight sequence can be viewed as a
training data, and the label of the corresponding training data
is the next weight value in the same sequence. The total size of
the training set is thus closely related to the number of spectral
bands. However, the time complexity would be an issue if
we use this training method. By running MCC-LMS filtering,
each spectral band involves three weight sequences, which
means that we need to train three specific LSTM networks for
each spectral band. It makes the filtering process extremely
slow. We address this limitation by sharing the weights of
LSTM networks across all the spectral bands. In other words,
training each LSTM only once will be sufficient for prediction
weights of all the bands. The reason we can do this is that the
weight sequences from different bands tend to share similar
dependency, since spectral bands are closely related to each
other. Our simulations show that almost the same prediction
errors are achieved by training and testing using the same
spectral band versus a different band.

IV. SIMULATION RESULTS

We tested the proposed algorithm on two hyperspectral
image datasets: Indian pines (IP), and Pavia University (PU)
[16]. We experimented with different MCC-LMS parameters
to achieve the best prediction results. As a result, we fix ¢ in
Eq. (2) to 50 in our simulations. Since the number of bits per
pixel varies from one dataset to another, we set the learning
rate 4 = 1 for IP and p = 0.1 for PU. A small o value will
lead to a large learning rate and vice versa. Thus, a relatively
large learning rate was selected for dataset with more bits per
pixels to ensure faster convergence.

The LSTM blocks have one memory state for each block,
since only one previous weight was used to predict the next
one. We randomly selected a band for training LSTMs (band 6

was selected in our case), and the training set were built upon
the weight sequences from band 6. Note that we only use 30
percent of the pixels in formulating training set for LSTMs
(6307 entries for training each LSTM for IP and 62220 entries
for training each LSTM for PU), thus only a small portion
of the data was employed for training LSTMs compare to
whole hyperspectral dataset. Data used for training LSTMs
were excluded from testing. Note that while this architecture
has been found to provide accurate prediction, it is not unique.
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Fig. 4: Performance of LSTM network for weight prediction
on PU dataset. All the weights were colored in blue, and the
prediction results were colored in green.

Fig. 4 shows the weights prediction result of the LSTM
network on a band of PU dataset. Note the weights were
originally generated by adaptive filter, and first 30 percent of
weights were used for training the LSTM network. It can be
seen that the prediction result (in green) perfectly matches the
real data (in blue). It means the LSTM network is competent in
learning the long-term variation of weight sequence by only
using a small portion of data. Thus, combining the LSTM
with traditional adaptive filter leads to more precise pixel-value



prediction. We conducted additional simulations to measure
the computational time in the training stage. The proposed
method was coded based on Python 3.5 and Tensorflow 1.2.1
open source framework. The computational platform is a
Thinkpad T460s with Intel Core i5-6300 (2.4GHz) and 8
GB RAM, running Windows 7 Professional (64-bit Operating
System). No GPU acceleration was used for training. It takes
61.22 seconds in average to finish the training for each weight
sequence from /P dataset. For relatively large PU dataset,
it totally takes 71.45 seconds in average for each weight
sequence.

We compare our algorithm with two existing adaptive
filtering methods:

o The adaptive LMS method was proposed in [7] as the
new CCSDS standard for hyerpsectral data compression.
Adaptive LMS can be regarded as an LMS with adaptive
learning rate. A simple CCAP is applied to the original
dataset followed by conventional LMS-based filtering.

e MCC-LMS filtering based predictive compression was
proposed in [6], which replaced the cost function of LMS
with correntropy and achieved significant compression on
regions of interest in hyperspectral images. Again, CCAP
is applied to the original data first.

Note the residuals generated by the above two methods are
encoded by a Golomb-Rice codes.

The prediction results of the three methods on two datasets
show the performance improvement brought by using the
proposed method. Table I shows the average prediction errors
in RMSE (root-mean-square-error) of the three methods. It
can be seen that our proposed method outperforms other two
methods. This means that the LSTM networks are capable of
capturing the dependencies of weight sequences, which can
lead to more accurate pixel value prediction over the entire
dataset.

TABLE I: Comparison of Root Mean Square Error (RMSE)
with two other methods on two datasets.

Dataset LMS | MCC-LMS | Proposed
Indian Pines 110.8 105.7 104.6
Pavia University | 47.4 46.3 45.7

Fig. 5 shows the band-by-band prediction errors (in MSE) of
the three methods on two datasets. For the sake of displaying
the evolution of the prediction errors clearly, we only show
21 spectral bands for each dataset. Apparently, the proposed
method (red curves) achieved more accurate predictions than
the other two methods consistently for all the spectral bands. In
particular, Fig. 5(a) shows the prediction errors of the spectral
bands ranging from 180 to 200, where the prediction errors
are gradually reduced over the band. Fig. 5(b) shows how
the prediction errors change for the PU dataset from spectral
band 80 to 100. Again, the proposed method achieves the
lowest prediction errors among all the bands. For example, the
MSE of band 89 was decreased to 600, which is a significant
improvement over other two methods. Note the variation of
the prediction errors for the PU is larger than the IP dataset.
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Fig. 5: Average band-by-band prediction errors.

This might be caused by impulsive noises. The noise rejection
property of LSTM network might have played an important
role in smoothing the variations.

V. CONCLUSIONS AND FUTURE WORK

We presented a novel adaptive filtering algorithm using
LSTM network for hyperspectral images. LSTM networks ap-
pear to be effective in capturing the longer term dependencies
of weight sequences. We proposed a two-stage framework by
combining the trained LSTM networks with adaptive filters in
a closed-loop configuration. Simulation results demonstrated
we can reduce the prediction residuals, which would very
likely lead to better compression. To the best of our knowl-
edge, this is the first attempt to model not only the correlations
between pixels from different spectral bands, but also the tem-
poral dependencies of the filtering weights. We will evaluate
the impact of reduced prediction errors on predictive lossless
coding performance.
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