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4D Hyperspectral Data
• Remote sensing (high resolution = large size).
• Hyperspectral Imaging.

– 3D Data cube (2D Spatial + 1D Spectral)
– 12 bits or 16 bits/pixel.

• Time-lapse Hyperspectral imagery 
– A sequence of 3D HSIs captured over the same scene but 

at different time stamps (often at a fixed time interval).
– 3D Dimensions + 1D Time (4D)
– For example, 454.78 MB (for 7 frames) to 584.71 MB (for 

9 frames). See Table.
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4D Hyperspectral Data (Cont.)

• Problems:
– More stacks will be captured by the HSI sensor with the 

time.
– Extreme case:  in 4D HSI data streaming, the captured data 

volume accumulates very fast.
– Large data volume can:

• Slow down the data transmission within the limited 
bandwidth condition.

• Requires more storage space which could be very 
expensive in many remote sensing applications.



Why compression?

• Limited bandwidth and storage space on hyperspectral 
imaging sensor.

• Data compression techniques provide a good solution to 
these problems.

• High fidelity of captured images in the accuracy demanding 
applications requires lossless compression over lossy
compression.



Related work

• Predictive methods:
– 3D CALIC [1], M-CALIC [2], LUT [3], SLSQ [4] and CCAP [5].
– “Fast Lossless (FL)” method [6]:

• NASA Jet Propulsion Lab.
• Achieve good compression efficiency at very low 

complexity. 
• CCSDS standard [9] for multi- and hyper-spectral 

imagery.
• Transform based methods:

– SPIHT [7] and SPECK [8].



More related work

• For hyperspectral images compression, only spatial and 
spectral correlations have been exploited so far.

• [10 ] proposed a 4D lossless compression algorithm, albeit 
lacking details on the prediction algorithms used for 
prediction.

• Karhunen-Loeve Transform (KLT), Discrete Wavelet Transform 
(DWT) and JPEG 2000 has been applied to reduce the spectral 
and temporal redundancy of 4D remote sensing image data [ 
11].



Our contributions

• An information-theoretic analysis on the amount of 
compression achievable on 4D HSI based on conditional 
entropy, by taking into account spectral and temporal 
correlations.

• A predictor based on low complexity Correntropy-based Least 
Mean Square (CLMS) learning algorithm was proposed to 
better model the data.



Problem Analysis
• Information theoretic analysis
• Let 𝑋𝑋𝑗𝑗𝑡𝑡 be a 4D hyperspectral image source at the 𝑡𝑡𝑡𝑡𝑡 time 

instant and 𝑗𝑗𝑡𝑡𝑡spectral band producing 𝐾𝐾 different pixel 
values 𝑣𝑣𝑖𝑖 𝑖𝑖 = 1,2 …𝐾𝐾 . The entropy of this source can be 
computed based on the probabilities 𝑝𝑝 𝑣𝑣𝑖𝑖 by:

𝐻𝐻 𝑋𝑋𝑗𝑗𝑡𝑡 = −�
𝑖𝑖=1

𝐾𝐾

𝑝𝑝 𝑣𝑣𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙2 𝑝𝑝 𝑣𝑣𝑖𝑖 .

• For 4D hyperspectral images, there exists strong spectral and 
temporal correlations.

• Therefore, these correlations can be exploited to reduce the 
𝐻𝐻 𝑋𝑋𝑗𝑗𝑡𝑡 .



Problem Analysis

• The conditional entropy of this time-lapse hyperspectral 
image source can be computed as follows:

𝐻𝐻 𝑋𝑋𝑗𝑗𝑡𝑡|𝐶𝐶𝑗𝑗𝑡𝑡 = −�
𝑖𝑖=1

𝐾𝐾

𝑝𝑝 𝑣𝑣𝑖𝑖|𝐶𝐶𝑗𝑗𝑡𝑡 𝑙𝑙𝑙𝑙𝑙𝑙2 𝑝𝑝 𝑣𝑣𝑖𝑖|𝐶𝐶𝑗𝑗𝑡𝑡 .

Where 𝐶𝐶𝑗𝑗𝑡𝑡denoted as Context, a group of correlated pixels.
• As long as there is any correlation between the context 
𝐶𝐶𝑗𝑗𝑡𝑡 and the current pixel, 𝐻𝐻 𝑋𝑋𝑗𝑗𝑡𝑡|𝐶𝐶𝑗𝑗𝑡𝑡 < 𝐻𝐻 𝑋𝑋𝑗𝑗𝑡𝑡 always holds, 
in other words, fewer bits are required after  compression.



The Algorithm

• Linear prediction based lossless compression method uses a 
linear combination of those encoded pixels (causal context 
pixels) adjacent to the current pixel as its estimate.

• For 4D time-lapse HSI lossless compression, a linear prediction 
can be generalized as follows:

�𝑥𝑥𝑚𝑚,𝑛𝑛
𝑡𝑡,𝑗𝑗 = 𝒘𝒘𝑡𝑡,𝑗𝑗

𝑇𝑇𝒚𝒚𝑚𝑚,𝑛𝑛
𝑡𝑡,𝑗𝑗 .

where �𝑥𝑥𝑚𝑚,𝑛𝑛
𝑡𝑡,𝑗𝑗represents an estimate of a pixel, 𝑥𝑥𝑚𝑚,𝑛𝑛

𝑡𝑡,𝑗𝑗at 
spatial  location 𝑚𝑚,𝑛𝑛 , 𝑗𝑗𝑡𝑡𝑡band and 𝑡𝑡𝑡𝑡𝑡 time frame while 
𝒚𝒚𝑚𝑚,𝑛𝑛

𝑡𝑡,𝑗𝑗and 𝒘𝒘𝑡𝑡,𝑗𝑗
𝑇𝑇 represent its causal context pixels and linear 

weights respectively.



Correntropy
• FL compression method for hyperspectral images is built on 

Least Mean Square (LMS), which is only optimal in gaussian
situation.

• However,  prediction residuals are more likely to follow a 
Laplcacian or Geometric distribution.

• So the performance of the conventional LMS predictor, for 
example, the FL method may degrade in presence of non-
Gaussian signals, especially in those very structured regions of 
one image.

• To improve the robustness of the predictor, we develop a 
predictor based on the Maximum Correntropy Criterion 
(MCC), denoted as CLMS predictor.



Correntropy

• A brief introduction of Correntropy [12]:
• Correntropy was developed as a local similarity measure 

between two random variables 𝑋𝑋 and 𝑌𝑌 in
𝑉𝑉𝜎𝜎 𝑋𝑋,𝑌𝑌 = 𝐸𝐸 𝐾𝐾𝜎𝜎 𝑋𝑋 − 𝑌𝑌 .

• where 𝐾𝐾𝜎𝜎 is a positive definite kernel with kernel width 
controlled by the parameter 𝜎𝜎, and the expectation 𝐸𝐸[] is 
practically computed using sample arithmetic average.

• Correntropy can be viewed as a generalized correlation 
function containing even higher order moments of the error 
signal 𝑋𝑋 − 𝑌𝑌.



Correntropy based LMS
• Assume we have a pair of random variables with a finite number of 

samples {𝑑𝑑𝑖𝑖 ,𝑦𝑦𝑖𝑖}𝑖𝑖=1
𝑁𝑁where N is the number of samples in each random 

variable. 
• Furthermore, the estimate 𝑦𝑦𝑖𝑖can be computed as 𝑦𝑦𝑖𝑖 = 𝒘𝒘𝑖𝑖

𝑇𝑇𝑿𝑿𝑖𝑖, a linear 
weighted average of input vector 𝑿𝑿𝑖𝑖. 

• Replace Mean Square Error (MSE) in LMS with Correntropy leads to a 
new adaptive learning algorithm: CLMS. The weight update function is 
shown as follows:

𝒘𝒘𝑛𝑛+1 = 𝒘𝒘𝑛𝑛 +
𝜇𝜇

2𝜋𝜋𝜎𝜎3
exp

−𝑒𝑒𝑛𝑛2

2𝜎𝜎2 𝑒𝑒𝑛𝑛𝑿𝑿𝑛𝑛.

where 𝑤𝑤𝑛𝑛 is the weight vector at 𝑛𝑛𝑡𝑡𝑡 time instant and 𝑒𝑒𝑖𝑖= 𝑑𝑑𝑖𝑖 − 𝒘𝒘𝑖𝑖
𝑇𝑇𝑿𝑿𝑖𝑖 .

• In fact, this Correntropy-induced updating function can be viewed as 
LMS with a self-adjusting learning rate.



CLMS based Predictor

• In Fig. 1, suppose the red pixel is the one we are predicting 
and the arithmetic average of the three blue pixels from its 
spatial causal neighborhood is computed and subtracted from 
the red pixel value.

• Denote 𝑁𝑁𝑠𝑠and 𝑁𝑁𝑡𝑡as the number of pixels from previous 
spectral bands at the current time instant (yellow pixels) and 
the number of pixels from the same spectral bands from 
previous time frames (green pixels),  respectively.

• The causal context is constructed as
𝐶𝐶𝑗𝑗𝑡𝑡 = 𝑥𝑥𝑡𝑡,𝑗𝑗−1, 𝑥𝑥𝑡𝑡,𝑗𝑗−2, … , 𝑥𝑥𝑡𝑡,𝑗𝑗−𝑁𝑁𝑠𝑠 , 𝑥𝑥𝑡𝑡−1,𝑗𝑗 , 𝑥𝑥𝑡𝑡−2,𝑗𝑗 , … , 𝑥𝑥𝑡𝑡−𝑁𝑁𝑡𝑡,𝑗𝑗 .



CLMS based Predictor



Entropy Coding

• Golomb-Rice Coding is favored in this work because of its 
simplicity and low complexity.

• Arithmetic Coding is also optional for slightly better 
compression ratio.



Experiments

• We conducted our experiment on three 4D time-lapse HSI test 
datasets, Levada, Gualtar and Nogueiro.

• While the size of a single dataset we tested is not very large, 
ranging from 454.78 MB (for 7 frames) to 584.71 MB (for 9 
frames), the data can easily grow to a huge size with increased 
number of time frames and higher spatial and spectral 
resolutions.



Experiment Settings

• Learning rate 𝜇𝜇 = 0.3 and kernel width 𝜎𝜎 = 50.



Results

• We applied our algorithm using different combinations of 
𝑁𝑁𝑠𝑠 and 𝑁𝑁𝑡𝑡causal pixels from spectral and temporal bands.



Case study: surface plot



Case study: surface plot



Case study: surface plot



Case study: bit rate change



Case study: bit rate change



Analysis
• The bit rate has been reduced by approximately 1.2 bits by 

just adding one previous spectral band and the same spectral 
band from the previous time stamp in the context.

• Furthermore, if we fix either 𝑁𝑁𝑠𝑠or 𝑁𝑁𝑡𝑡and increase only 𝑁𝑁𝑠𝑠or 
𝑁𝑁𝑡𝑡accordingly, the compression bit rate will drop as well.

• However, this performance improvement gradually becomes 
marginal as 𝑁𝑁𝑠𝑠or 𝑁𝑁𝑡𝑡 increases.

• Overall, it is possible to increase 𝑁𝑁𝑠𝑠or 𝑁𝑁𝑡𝑡 to achieve higher 
compression ratio.

• On the other hand, prediction using only one previous 
spectral band and/or the same spectral band but from last 
time instant will also yield good compression performance at 
a very low computational cost.



Conclusion

• Experimental results have demonstrated the outstanding 
capability of this proposed algorithm to compress 4D time-
lapse HSI data through spectral and temporal decorrelation.

• Second, an information theoretic analysis based on 
conditional entropy has been made to provide a framework to 
guide and evaluate the actual compression.

• Increasing the number of previous bands involved in the 
prediction will absolutely yield better compression 
performance as long as they are correlated statistically with 
the current HSI band.



Future work

• We will investigate how to fully utilize this proposed algorithm 
and analytic framework to handle HSI data streaming, which is 
more challenging but also in better need for compression.

• Additionally, ROI lossless compression of HSI has begun to 
gain attention from researchers. Recently, some work has 
been done to handle ROIs in HSI data.
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