

A COMPARISON OF FEATURE SELECTION METHODS FOR MACHINE LEARNING BASED AUTOMATIC MALARIAL CELL RECOGNITION

Vishnu Muralidharan, Yuhang Dong, and W. David Pan

Dept. of Electrical and Computer Engineering, University of Alabama in Huntsville, Huntsville, AL 35899, USA

Introduction

- Wholeslide Imaging: accurate ensure diagnosis of malaria using blood smears.
- Dependent Machine learning: automatic diagnosis is desirable in resource-scarce areas.

Feature selection method	Classification Parameters					
	Accuracy	Sensitivity	Specificity	PPV	NPV	
KL Dist.	95.5	96.43	94.61	94.50	96.50	
Bhatt. Dist.	94.75	96.37	93.24	93.00	96.50	
ROC	91.75	94.18	89.57	89.00	94.50	
Wil. Ranksum Test	89.25	94.86	84.89	83.00	95.5	
F-Score	83.25	94.63	76.49	70.50	96.00	

Results

Objective: study SVM performance under different feature selection techniques.

Materials and Methods

- highest Wholeslide acquired images: at resolution in DeepZoom pyramid.
- Segmented to obtain samples

http://peir-vm.path.uab.edu/debug.php?slide=IPLab11Malaria

Easture Selection method	SVM Parameters			
reature Selection method	Cost	Scale		
KL. Dist.	8	32		
Bhatt. Dist.	2	2		
ROC	8	128		
Wil. Ranksum Test	2	8		
F-Score	2	0.5		

Eastura Salastian	Confusion Matrices				
reature Selection	Labels	Normal	Infected		
KL Dict	Normal	189	11		
KL. DISI.	Infected	7	193		
Phott Diat	Normal	186	14		
Dhall. Dist.	Infected	7	193		
POC	Normal	178	22		
RUU	Infected	11	189		
Wil Donkeum Tost	Normal	166	34		
vvii. Naiksuiti test	Infected	9	191		
E Sooro	Normal	141	59		
r-Score	Infected	8	192		

- □ 76 features belonging to five categories are extracted.
- Feature selection using various methods is done to select features.
- □ SVM classification is performed on test set.

Feature Selection

- Five different filter methods are used.
- Study discriminating power between classes.
- Five methods:
 - Kullback-Leibler (KL) Distance $D_{KL}(P||Q) = \sum_{x} P(x) \log \frac{P(x)}{Q(x)}$
 - Bhattacharyya Distance
 - Wilcoxon Ranksum Test

- ✤ ROC
- ***** F-Score

KS Density plots show discrimination

False Positive Rate (1 - Specificity)

Conclusions

□ KL distance is the best measure.

Models entropy and asymmetry

Yields a classifier that is flexible and does not overfit.

Q ROC curve is favorable for classification.