Determining the Parameter for the Linear Force-Free Magnetic Field Model with Multi-Dipolar Configurations Using Deep Neural Networks

THE UNIVERSITY OF ALABAMA IN HUNTSVILLE

B. Benson¹, W. David Pan¹, A. Prasad², G. Allen Gary², Q. Hu²
1. Department of Electrical and Computer Engineering
2. Center for Space Plasma and Aeronomic Research University of Alabama in Huntsville, USA

INTRODUCTION

- We employed a simple one-parameter model to model active regions with multi-polar configurations.
- LFFF model is assumed as it provides the single parameter alpha.
- Pseudo-coronal loop images are formed from the multi-polar configurations.
- Alpha value determined by CNN classification and regression.
- Method extended to include active region AR11117.
- Response of pseudo-coronal loop images to that of real coronal loop images observed.

LINEAR FORCE-FREE FIELD

- Certain assumptions need to be made about the nature of the magnetic field in order to model a solar coronal magnetic field, **B**.
- In the region between the photosphere and the upper corona, the plasma forces are dominated by the magnetic field.
- Based on this observation, all lower order non-magnetic forces can be neglected to the first order. This model leads to the force-free approximation.
- A force-free magnetic field gives the simplest model for the corona, which is non-potential. It occurs when the electric current density vector is parallel to the magnetic field which causes the Lorentz forces to disappear. The linear force free fields are characterized by

a. Multi-polar configurations and vector magnetogram of AR11117

b. Pseudo-coronal loops for AR11117

 $abla \cdot \mathbf{B} = \mathbf{0},$

and

 $(\nabla \times \mathbf{B}) = \alpha \mathbf{B}.$

(2)

(1)

• The case where α = constant is called a linear force-free field (LFFF).

CNN RESULTS

CNN - Alpha Response on EUV Data

- In the process of validating our pseudo-coronal loop renderings we observed a change in the class of alpha when tested against EUV images of the same active region.
- This alpha change corresponds with flare events and provides a global nonpotential value using EUV data.

Visualizing the CNN layers showing the various features learned in convolutional filters

• The tables below show the classification accuracy for the CNN models used along with the results from transfer learning applied.

Madal			[Mode				
widdei	Wietric	Four Dipoles	Eight Dipoles	Sixteen Dipoles	AR 11117			
	Training Accuracy	99.92%	99.63%	99.89%	99.77%		ResNo	
ResNet_50	Validation Accuracy	99.47%	96.20%	96.66%	99.98%			
	Test Accuracy	99.64%	95.93%	96.31%	99.98%	8%		
	Training Time/epoch	~185 sec	~185 sec	~185 sec	~300 sec		Solar	
T	Training Accuracy	99.69%	99.68%	99.80%	99.90%			
Resnet V2	Validation Accuracy	98.52%	97.05%	97.64%	100%	ſ		
	Test Accuracy	98.98%	97.11%	97.61%	100%			
	Training Time/epoch	~300 sec	~300 sec	~300 sec	\sim 420 sec			0
SolarNet	Training Accuracy	98.11%	94.77%	95.77%	98.41%		ass	1 2 3
	Validation Accuracy	97.84%	92.84%	94.53%	99.04%		ual Cla	4 5
	Test Accuracy	97.69%	92.28%	94.49%	98.92%		Act	6 7
	Training	01	<u> </u>	04	275			0 9

odel		Base 1	Datase	et	Targ	get Da	ataset	Me	etric		Accı	uracy %
								Tra	ining		97	7.02%
				Four Dipoles		Val	Validation		94.48%			
-NI-	Net50 Sixteen Dipoles			-		Tin	Time/epoch		88 sec			
sine					Tra	Training		95.92%				
					Eig	ht Dij	ooles	Val	idatio	on	93	3.76%
					Tin	Time/epoch			88 sec			
								Tra	ining		98	8.60%
					Fou	r Dip	oles	Val	idatio	on	98	8.25%
1.~N		Civia -	n D:			-		Tin	ne/ep	och	7	2 sec
Iari	let	Sixtee		ores				Tra	ining		95	5.41%
		Eig	Eight Dipoles		Val	Validation			91.95%			
			-	<u> </u>			Time/epoch			72 sec		
								Tin	ne/ep	och		2 sec
				P	Predict	ed Cla	155	Tin	ne/ep	och		2 sec Per Class
	0	1	2	P	Predict	ed Cla	155	Tin	ne/ep	9	10	2 sec Per Class %
0	0 726	1 24	2 0	P 3 0	Predict	ed Cla 5 0	155 6 0	7 0	ne/ep 8 0	9 0	10	2 sec Per Class % 96.80%
0	0 726 8	1 24 734	2 0 0	P 3 0 8	Predict 4 0 0	ed Cla 5 0	6 0	7 0 0	8 0 0	9 0 0	10 0	2 sec Per Class % 96.80% 97.87%
0 1 2	0 726 8 0	1 24 734 5	2 0 0 729	P 3 0 8 15	Predict 4 0 0 0 0	ed Cla 5 0 0	6 0 0 0	7 0 0 1	8 0 0 0	9 0 0 0	10 0 0 0	2 sec Per Class % 96.80% 97.87% 97.20%
0 1 2 3	0 726 8 0 0	1 24 734 5 0	2 0 0 729 3	P 3 0 8 15 726	Predict 4 0 0 21	ed Cla 5 0 0 0	6 0 0 0 0	7 0 0 1 0	8 0 0 0 0	9 0 0 0 0	10 0 0 0 0	2 sec Per Class % 96.80% 97.87% 97.20% 96.80%
0 1 2 3 4	0 726 8 0 0 0	1 24 734 5 0 0	2 0 729 3 0	P 3 0 8 15 726 8	Predict 4 0 0 21 730	ed Cla 5 0 0 0 12	6 0 0 0 0 0	7 0 0 1 0 0	8 0 0 0 0	9 0 0 0 0 0	10 0 0 0 0	2 sec Per Class % 96.80% 97.87% 97.20% 96.80% 97.33%
0 1 2 3 4 5	0 726 8 0 0 0 0 0	1 24 734 5 0 0 0	2 0 729 3 0 0	P 3 0 8 15 726 8 0	Predict 4 0 0 21 730 9	ed Cla 5 0 0 0 12 733	6 0 0 0 0 0 8	7 0 0 1 0 0 0 0	8 0 0 0 0 0	9 0 0 0 0 0 0	10 0 0 0 0 0 0	2 sec Per Class % 96.80% 97.87% 97.20% 96.80% 97.33% 97.73%
0 1 2 3 4 5 6	0 726 8 0 0 0 0 0 0	1 24 734 5 0 0 0 0 0	2 0 729 3 0 0 0	P 3 0 8 15 726 8 0 0	Predict 4 0 21 730 9 0	ed Cla 5 0 0 0 12 733 7	6 0 0 0 0 8 737	7 0 0 1 0 0 5	8 0 0 0 0 0 1	9 0 0 0 0 0 0 0	10 0 0 0 0 0 0 0	2 sec Per Class % 96.80% 97.87% 97.20% 96.80% 97.33% 97.73% 98.27%
0 1 2 3 4 5 6 7	0 726 8 0 0 0 0 0 0 0 0	1 24 734 5 0 0 0 0 0 0 0	2 0 729 3 0 0 0 0 0	P 3 0 8 15 726 8 0 0 0 0	Predict 4 0 0 21 730 9 0 0 0 0 0 0 0 0	ed Cla 5 0 0 0 12 733 7 0	6 0 0 0 0 0 8 737 11	7 0 0 1 0 0 5 732	8 0 0 0 0 0 1 7 7	9 0 0 0 0 0 0 0 1	10 0 0 0 0 0 0 0 0 0 0	2 sec Per Class % 96.80% 97.87% 97.20% 96.80% 97.33% 97.33% 97.73% 98.27% 97.60%
0 1 2 3 4 5 6 7 8	0 726 8 0 0 0 0 0 0 0 0 0	1 24 734 5 0 0 0 0 0 0 0 0 0 0	2 0 729 3 0 0 0 0 0 0 0	P 3 0 8 15 726 8 0 0 0 0 0 0	Predict 4 0 0 21 730 9 0 0 0 0 0 0 0 0	ed Cla 5 0 0 0 12 733 7 0 0 0	6 0 0 0 0 0 8 737 11 0	7 0 0 1 0 0 5 732 8	8 0 0 0 0 0 0 1 722	9 0 0 0 0 0 0 0 0 1 20	10 0 0 0 0 0 0 0 0 0 0 0 0	2 sec Per Class % 96.80% 97.87% 97.20% 96.80% 97.33% 97.73% 98.27% 98.27% 96.27%

• We observed this on two active regions, AR11117 and AR11283.

b. GOES X-Ray Flux for AR12283 on September 6, 2011

 Based on these results we are looking at SHARP parameters and their response during flaring events.

• When used with regression to predict the Alpha values we obtained an MAPE of 4% - 9%.

• We are also looking at predicting these parameters from AIA EUV data.

CONCLUSION

We demonstrated the effectiveness of determining the alpha parameter from the CNN training of pseudocoronal loops. The method also indicates a correlation between change in alpha value and EUV data during flare events. We are further exploring this correlation and its effect on space weather.

MAJOR REFERENCES

[1] B. Benson, W. David Pan, G. A. Gary, Q. Hu, and T. Staudinger, "Determining the parameter for the linear force-free magnetic field model with multi-dipolar configurations using deep neural networks," *Astronomy and Computing*, vol. 26, pp. 50 – 60, 2019.

[2] G. A. Gary, "Linear force-free magnetic fields for solar extrapolation and interpretation," *The Astrophysical Journal Supplement*, vol. 69, pp. 323–348, Feb 1989.