

Predictive Lossless Compression of Regions of Interest in Hyperspectral Images via Maximum Correntropy Criterion Based Least Mean Square Learning

> Hongda Shen, W. David Pan, Department of Electrical and Computer Engineering University of Alabama in Huntsville, USA

INTRODUCTION

- There is a great need for massive hyperspectral data compression due to severely limited bandwidth and on-board storage space.
- We focused on predictive lossless compression of regions of interest (ROIs) with no-data regions.
- We proposed a MCC-LMS (Maximum Correntropy Criteria based Least Mean Square) filtering method to learn the prediction residuals with Laplacian or geometrically distributions.

MCC-LMS PREDICTOR

Correntropy was developed as a local similarity measure between two random variables *X* and *Y*, defined by:

 $V_{\sigma}(X,Y) = E\left[\kappa_{\sigma}(X-Y)\right],$

where κ_{σ} is a positive definite kernel with kernel width σ . In this work, we use d_i and y_i to represent the actual pixel value and its estimate for i^{th} pixel, respectively. Furthermore, the estimate y_i can be computed as $y_i = \mathbf{W}_i^T \mathbf{X}_i$, a linear weighted average of input context vector X_i . where W_n is the filter weight at n^{th} time instant. Iterative gradient descent method is chosen with a small learning rate μ . The correntropy-based cost function, at n^{th} time instant, can be written as:

ALGORITHM

• We aimed to improve several state-of-the-art ROI compression methods.

 $J_n = \frac{1}{N\sqrt{2\pi\sigma}} \sum_{i=n-N+1}^n \exp\left|\frac{-(d_i - \mathbf{W}_n^T \mathbf{X}_n)^2}{2\sigma^2}\right|,$

After computing the gradient of J_n w.r.t \mathbf{W}_n , we obtain:

$$\mathbf{W}_{n+1} = \mathbf{W}_n + \frac{\mu}{N\sqrt{2\pi\sigma^3}} \sum_{i=n-N+1}^n \left[\exp\left(\frac{-e_i^2}{2\sigma^2}\right) e_i \mathbf{X}_i \right],$$

where $e_i = d_i - \mathbf{W}_n^T \mathbf{X}_n$. Inspired by the stochastic gradient, N is set to 1. Therefore,

 $\mathbf{W}_{n+1} = \mathbf{W}_n + \frac{\mu}{\sqrt{2\pi\sigma^3}} \exp\left(\frac{-e_n^2}{2\sigma^2}\right) e_n \mathbf{X}_n,$

This correntropy-induced updating function can be viewed as LMS with a selfadjusting learning rate, which reflects the outlier rejection property of the correntropy.

COMPRESSION RESULTS FOR INDIVIDUAL ROIS

The table below shows the bit rates of the four methods as a result of compressing each of the ten ROIs in the dataset, "Pavia University".

COMPRESSION RESULTS FOR SEVERAL DATASETS

ROI#	Proposed	ROI-LMS	ROI-FL	SA-JPEG 2000
0	6.73	9.17	9.42	8.67
1	7.77	8.40	9.74	9.01
2	6.84	7.65	8.42	8.30
3	7.38	7.47	10.07	9.33
4	7.97	8.52	10.51	9.01
5	9.60	9.90	11.25	9.86
6	7.72	8.36	9.16	8.86
7	7.05	7.21	9.76	9.16
8	7.34	7.55	10.58	9.29
9	7.04	7.13	8.81	8.21

ROI# ROI# (c) Salinas (d) Kennedy Space Center (KSC)

The table below shows the average compression bit rates of the four datasets: the proposed method achieves the largest compression on PU, IP and Salinas, as well as on KSC (except for ROI0, which accounts for over 97% of the pixels of KSC and it is corrupted with significant impulse noise).

ROI-FL

9.39

9.12

7.25

8.29

SA-JPEG 2000

8.68

9.30

7.49

5.85

REFERENCE	DATASETS	Proposed	ROI-LMS
d I. C. Principe, "Using	PU	6.85	8.92
as a cost function in lin-	IP	7.11	7.49
e filters," in International	Salinas	5.45	6.38
ence on Neural Networks,	KSC	7.57	8.21

CONCLUSION

Simulation results demonstrated the proposed algorithm offered higher compression on ROIs with no-data regions than ROI-LMS, ROI-FL, and Shape Adaptive JPEG 2000.

MAJOR

[1] A. Singh and correntropy ear adaptive Joint Conference on Neural Networks, June 2009, pp. 2950–2955.