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In Memory of Solomon Golomb (1932 –
2016)

Golomb in White House to receive the 
National Medal of Science (2013)

Quotes from the original paper of Golomb, a 
pioneer of communication technology (then at JPL) 
“Run-Length Encodings,” IEEE Trans. on IT, 1966.

• Secret Agent 00111 is back at the Casino again, 
playing a game of chance, while the fate of 
mankind hangs in the balance.

• Each game consists of a sequence of favorable 
events (probability p), terminated by the first 
occurrence of an unfavorable event (probability 
q = 1 - p).

• The bartender, who is a free-lance agent, has a 
binary channel available, but he charges a stiff 
fee for each bit sent. The problem perplexing 
the Service is how to encode the vicissitudes of 
the wheel so as to place the least strain on the 
Royal Exchequer.

Model of binary source for Run Length Coding:
1111111…101111101111111110…

p = Prob[1], q = Prob[0] = 1 – p
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Motivation

• Hyperspectral data are “big”.
• Efficient compression on hyperspectral data needed to 

reduce delays associated with real-time transmission of the 
data, especially for “streaming” applications.

• We are in the Alabama Remote Sensing Consortium (ARSC)
http://www.nsstc.uah.edu/arsc/

• ARSC In agreement with Teledyne Brown Engineering (TBE) for the 
provision of hyperspectral data from the company’s Multi-User 
System for Earth Sensing (MUSES), an Earth-observation platform 
built for use on the International Space Station (ISS). 

• ARSC will use the data to pursue collaborative opportunities in 
education, research, and outreach with emphasis on remote 
sensing technology and applications.

• Focus on lossless compression of hyperspectral data.

http://www.nsstc.uah.edu/arsc/


Why Golomb Codes for Data Compression?

• The better known Huffman code is an optimal variable-
length code; however,

• at the encoder, code tree needs to be trained based on the 
source distribution;

• The codeword dictionary have to be stored as side info., 
resulting in loss of compression efficiency.

• The decoder is complex.
• Golomb code is also a variable-length code

• Designed for compression of non-negative integers
• Optimal for geometric source with a certain parameter

Probability Mass Function (PMF): G(n) = pnq = pn (1 – p), 

• No need to store codeword dictionary
• Simple and fast decoding



Applications of Golomb Code

• NASA JPL Low-Complexity Lossless Compression of 
Hyperspectral Imagery via Adaptive Filtering
http://ipnpr.jpl.nasa.gov/progress_report/42-
163/163H.pdf

• Emerging CCSDS (Consultative Committee on Space 
Data Standards) Recommended Standard for 
Multispectral and Hyperspectral Lossless Image Coding

• JPEG-LS (lossless)
The LOCO-I lossless image compression algorithm: 
principles and standardizations into JPEG-LS
http://www.hpl.hp.com/research/info_theory/loco/HP
L-98-193R1.pdf
http://www.jpeg.org/jpeg/jpegls.html

http://ipnpr.jpl.nasa.gov/progress_report/42-163/163H.pdf
http://www.hpl.hp.com/research/info_theory/loco/HPL-98-193R1.pdf
http://www.jpeg.org/jpeg/jpegls.html
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H. Shen, W. D. Pan, and D. Wu, “Predictive Lossless Compression of Regions of Interest in Hyperspectral Images 
with No-Data Regions,” IEEE Transactions on Geoscience and Remote Sensing, vol. 55, no. 1, Jan. 2017.



Golomb-Rice (GR) Coding Scheme
• Golomb code is a family of codes parameterized by an integer m > 0. pm = ½

• For example, p1 = 0.5, p2 = 0.707, p3 = 0.7937 for m = 1, 2, 3.
• Represent an non-negative integer to be coded as n = mq + r, where q is the 

quotient of (n/m), r is the remainder.
• The case with m = 2s also known as Golomb-Rice (GR) Code, where the 

remainder r is simply the s LSB’s of n to be coded.
• Unary code for q (# of bits = q + 1)
• Binary code for r (# of bits = log2m = s)
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Coding Parameter Estimation
• Coding Parameter m is critical to performance of GR code
• Given a sequence of nonnegative integers n, how to estimate 

the m = 2s such that pm = ½ ? 
• Estimate 𝜇𝜇 ≈ Sample Mean
• 𝜇𝜇 = p/(1 – p) for geometric distribution, thus p = 𝜇𝜇 /(1 + 𝜇𝜇)
• pm = ½, thus 𝜇𝜇m/(1 + 𝜇𝜇)m = ½
• If 𝜇𝜇 >>1, then 𝜇𝜇m/(1 + 𝜇𝜇)m ≈ 1 – m/𝜇𝜇 = ½

by dropping higher-order terms in the Binomial Series 
• Thus m = 2s = 𝜇𝜇/2
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Challenge with Practical Data
• There are other more accurate coding parameter estimation 

methods:
• Method 1 (A. Klimesh, 2005) 

𝑠𝑠 = max 0, log2
𝜇𝜇
2

• Method 2 (M. Kiely, 2004)

𝑠𝑠 = max 0,1 + log2
log 𝜙𝜙−1
log 𝜇𝜇

𝜇𝜇+1
, where 𝜙𝜙 = 5+1

2
, the Golden Ratio.

• Method 3 (A. Said, 2006)

𝑠𝑠 = max 0, log2 𝜇𝜇 − 0.05 +
0.6
𝜇𝜇

• All these parameter estimation methods were derived or 
optimized based on the assumption that the underlying 
distribution is geometric distribution. 

• Nevertheless, the actual data could deviate from a perfect 
geometric distribution.



Deviation from the Geometric Distribution

p = 0.5

p = 0.973

In theory:
G(n) = pnq = pn (1 – p)

In Practice:
Significant deviation
due to existence of in 
hyperspectral images:
• Edges, contours, 

corners, etc.
• Impulsive noise

Two prediction residual data segments from “Indian Pines” 



Formulation as a Pattern Classification 
Problem

• we proposed a data-driven parameter estimation method 
without assuming any underlying distribution.

• The novelty lies in our formulation of the problem of 
choosing the best coding parameter for the given input data 
as a pattern classification problem. 

• Traditional machine learning algorithms require pre-
extracted features prior to the actual classifier. Hence, it is 
impossible to apply traditional machine learning methods to 
this problem. 

• However, motivated by the success of deep machine 
learning methods in solving many classification problems 
without feature extraction, we considered one specific deep 
learning method known as the Deep Belief Network (DBN).



Supervised Learning

• In most practical applications, there are only a finite number of 
parameter values to choose from for GR codes. 

• For example, coding a typical image with 16 bits/pixel would require 
only a set [0, 16] of 17 integers. 

• Therefore, we can train a classifier, where the input is a data 
segment to be coded, and its “label” is the m value in the set, 
such that GR coding the data segment will give the shortest 
codeword length, among all the possible m values in the set of 
admissible values. 

• In the testing phase,  we feed the new data segment to be coded 
into the classifier, which will output the m value we will use for 
actual coding of this data segment. 

• Such a data-driven method does not require any knowledge 
about the underlying distribution of the input data, and thus 
would be generally more robust than methods that presume a 
certain distribution of the data. 



Stacked Restricted Boltzmann Machines
The deep belief network (DBN) is a generative 
graphical model composed of multiple stacked 
Restricted Boltzmann Machines (RBMs).

Training
• Data segments with the 

ground truth (the optimal 
coding parameter value that 
gives the shortest codeword). 

• the DBN can learn the 
underlying distribution of the 
data and adjust the weights 
within each layer of the 
network. 

Testing (Actual Coding)
• new data segments can be directly forward 

fed through the network, thereby yielding 
the estimated parameter value at the 
output of the network.



Simulation Results (Synthesized Data)
• we synthesized data using distributions that 

deviate from the standard geometric 
distributions. 

• The synthetic dataset follows a mixture of 
two distinct geometric distributions. 

• We first generated 5,000 data 
segments, with each segment 
containing 100 samples, following the 
standard geometric distribution with
𝑝𝑝 = 0.8. 

• Then, we added more data segments 
generated with another geometric 
distribution (𝑝𝑝 = 0.999).  

• These additional data segments can be 
treated as ``outliers" (in a loose sense) and 
they range from 1% to 10% of the total 
number of data segments, indicating 
different degrees of mixtures



Actual Data from Hyperspectral Image 
Compression

• We used the so-called Fast Lossless (FL) 
predictor on “Indian Pines”.

• Each row of a spectral band image as one 
data segment (containing 145 data 
samples), based on which the GR coding 
parameter was estimated. 

• Out of 29,000 data segments from 200 
bands, we randomly selected half for 
training, and the remaining half for 
testing. 

• Only eight classes {2,3, ,,,, 9} showed up 
in the ground truth, whereas the 
remaining coding parameters were never 
chosen due to their inferior coding 
efficiency (less compression) than the 
parameters falling in the set of eight 
winning classes.

Confusion Matrix

The proposed method achieved very high 
accuracy, from about 96% (for Class 7) to 98% 
(for Class 9), indicating the distribution of each 
data segment was well learned by the deep 
belief network.



False Estimation Rates

Method 1 Method 2 Method 3 Proposed
6.21% 4.28% 4.33% 2.01%

• This table shows the proposed method has the lowest false
estimation rates than the other three methods. 

• This means that the proposed deep learning method can 
further improve the accuracy of the existing parameter 
estimation methods (already with higher than 90% accuracy) 
on the real data.



Conclusion

• We proposed a data-driven parameter estimation method for 
Golomb-Rice coding by learning from the data using a deep belief 
network. 

• To the best of our knowledge, this might be the first time the 
Golomb-Rice coding parameter estimation problem was 
formulated as a supervised learning problem. 

• Simulations of the proposed method on both synthesized and real 
data demonstrated its advantages in terms of robustness and 
accuracy over several other parameter estimation methods that 
presumes the input data to be geometrically distributed. 

• As the next step, we will study how varying the data segment size 
and the size of the training dataset will affect the estimation 
accuracy.

• Our Mission: to harness the power of machine intelligence to 
push the envelope of big data compression.
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