

 Page | 1

 This document is licensed with a Creative Commons Attribution 4.0 International License ©2017

LAB 2: PERFORMING ATTACKS AND ADDING SECURITY
MECHANISMS TO SCADA CONTROL SYSTEMS

Estimated Time: 1 hour and 40 minutes

Purpose: The purpose of this Lab exercise is to teach students how to create attacks on the
control system and then how to create a defense mechanism by implementing iptables on the
PLC Network.

Objective: Students will use Radzio! to perform a series of injection attacks on the PLC. These
attacks should disrupt the normal behavior of the system. Additionally, students will write
iptables rules to implement an access control list on the SCADA network traffic and therefore
prevent the attacks from working.

Lab Setup and Requirements: To begin this lab, you will need to have VirtualBox and the
Water Tank simulation running. Iptables will be configured and run on the Water Tank PLC.

EXERCISE #1 – INJECTION ATTACK ON THE LECTURER
SIMULATION

On this exercise students will perform an injection attack by fabricating messages
with different settings and sending them to the target PLC. Students will use the
Radzio! software to fabricate the messages.

The target will be the water tank PLC running on the lecturer’s computer. After
successfully attacking the lecturer simulation, a security mechanism will be put in
place by the lecturer, and then the students will be asked to repeat the attack.

1. Download Radzio! from here and extract the contents of the zip file on a
folder.

 Page | 2

 This document is licensed with a Creative Commons Attribution 4.0 International License ©2017 Catalyzing Computing and Cybersecurity in
Community Colleges (C5).

2. Open RMMS.exe. On the main window, go to Connection->Settings. Select
Modbus TCP under “Protocol”, Register address starting from 0 under
“Addressing convention”, and type the target PLC address on “IP address: “
field. Also, make sure that the TCP port is 502.

3. Click on File->New and Connection->Connect. On the new spreadsheet that
appears, select Holding registers to view the PLC memory data

 Page | 3

 This document is licensed with a Creative Commons Attribution 4.0 International License ©2017 Catalyzing Computing and Cybersecurity in
Community Colleges (C5).

4. The number on the second line of the spreadsheet (+1) has the min
setpoint multiplied by 100: 4000 = 40%. Similarly, the third line (+2) has
the max setpoint multiplied by 100: 6000 = 60%. Change both settings by
double-clicking on each line and inserting a new value.

5. After successfully attacking the lecturer’s simulation, disconnect by going to
Connection->disconnect. Wait until the instructor has put the defense
mechanism in place and then try the attack again by clicking on
Connection->connect

6. Were you able to connect to the target PLC?

EXERCISE #2 - START SCADA LAB ENVIRONMENT

1. To start the virtual machine in the VirtualBox Manager, select the scadalab
VM, right-click and select Start>Normal Start. Login using the credentials
provided in Lab 1 (username:ccre, password:ccre).

2. Open Terminal by going to Applications -> Terminal Emulator
3. Navigate to the scripts folder with the command:

cd /home/ccre/scadalab/scripts

4. Run the script to configure the network with the command:

./netstart.sh

If it asks for a password, type: ccre

5. Start the Water Tank simulation with the command:

./watertank.sh

6. Launch the water tank HMI by opening the internet browser (Applications >
Web Browser) and navigate to:

100.100.100.2:8080/ScadaBR

Login to ScadaBR using username:admin, password:admin

 Page | 4

 This document is licensed with a Creative Commons Attribution 4.0 International License ©2017 Catalyzing Computing and Cybersecurity in
Community Colleges (C5).

7. Click on Data Sources on the top menu and then enable water tank data
sources to allow ScadaBR to pull data from OpenPLC.

8. Click on Graphical Views, select the Water Tank HMI from the drop down
menu.

9. Verify the levels are changing on the Water Tank HMI.

EXERCISE #3 – PREPARING RADZIO! FOR THE ATTACKS

On this exercise, students will prepare Radzio! Modbus to inject messages on the
PLC running the Water Tank simulation

Section 1: Starting Radzio! Modbus

1. Open Terminal by going to Applications -> Terminal Emulator
2. Navigate to Radzio! folder with the command:

cd /home/ccre/scadalab/lab2/Radzio

3. Start Radzio! with the command:

wine RMMS.exe

 Page | 5

 This document is licensed with a Creative Commons Attribution 4.0 International License ©2017 Catalyzing Computing and Cybersecurity in
Community Colleges (C5).

Section 2: Configuring Radzio! and connecting to the PLC

1. On the main window, go to Connection->Settings. Select Modbus TCP
under “Protocol”, Register address starting from 0 under “Addressing
convention”, and type 100.100.100.3 on the “IP address: “ field, which is
the target’s IP address. Also, make sure that the TCP port is 502.

2. Click on File->New and Connection->Connect. On the new spreadsheet that
appears, select Holding registers to view the PLC memory data, and make
sure that the “Display options” is set to “Integer”

By following these steps, you now can see the memory data from the PLC.
However, it can be a little hard to change settings from this window because we
currently don’t know what each number means. Section 3 will guide you to open
the PLC program on the PLCopen Editor to then identify where each variable is
located in the PLC memory.

Section 3: Finding variables’ location on the PLC memory

1. Open Terminal by going to Applications -> Terminal Emulator
2. Navigate to PLCopen Editor folder with the command:

cd /home/ccre/scadalab/lab1/editor

3. Start the editor with the command:

python PLCOpenEditor.py

4. In the PLCopen Editor, select File>Open. Navigate to ccre/scadalab/lab1
folder (you can find the ccre folder on the left sidebar). Double click the
Water_Tower.xml file in the Lab 1 Directory.

5. Double-click on "My Program" and look at the variables table on the top of
the screen

6. Observe the 5th column called “Location”. All variables stored in the PLC
data memory are located at %QWn, where n is a number from 0 to 1024.
Write down the name and the location (the n position) of each variable
located at %QWn

 Page | 6

 This document is licensed with a Creative Commons Attribution 4.0 International License ©2017 Catalyzing Computing and Cybersecurity in
Community Colleges (C5).

Section 3: Identifying variables on the PLC memory

1. Go back to Radzio! Modbus software.
2. Fill out the Holding Registers table with the information you collected from

the previous section. The row +0 should contain the variable on the PLC
program located at %QW0, the row +1 should contain the variable located
at %QW1, and so on…

3. You should end up with a table like this one

Now the information you see makes more sense. You should now be ready to
start the attacks.

EXERCISE #4 – INJECTION ATTACKS

On this exercise, students will use Radzio! Modbus to inject messages on the PLC
running the Water Tank simulation

Attack 1: Damaging the water pump

1. Set the min_sp bigger than the max_sp
2. On this setting, the system will turn the pump on and off frequently, which

may stress the water pump.
3. To verify the pump controls, click on File->New and select Coil status. The

pump status is on row +0.

 Page | 7

 This document is licensed with a Creative Commons Attribution 4.0 International License ©2017 Catalyzing Computing and Cybersecurity in
Community Colleges (C5).

Attack 2: Emptying the tank

1. Set min_sp to -5
2. On this setting, the system will empty the entire tank and the pump will

never be turned on
3. You can verify the water level on the tank by looking at row +6:

Level_filtered. You can also check the status of the system through the HMI
on the Web Browser.

Attack 3: Overflowing the tank

1. Set mode_register to 1
2. Set pump_register to 1
3. Set valve_register to 0
4. On this setting, the pump will be locked on, never turning off. Also, the

valve will be closed, preventing the water in the tank to flow back to the
reservoir. This is the worst scenario possible!

5. In a few seconds, you can verify that the water level goes above 100%.
You can check the water level on the tank by looking at row +6:
Level_filtered. You can also check the status of the system through the HMI
on the Web Browser.

EXERCISE #5 – SETTING UP DEFENSES

Iptables is a rule-based firewall software. The user can define which machine is
allowed to communicate on the network by using a set of rules. On this exercise,
students will write iptables rules that will prevent unauthorized users to connect
to the PLC.

Section 1: Writing iptables rules

1. On Radzio! go to Connection->Disconnect, and then close the program
2. Open Terminal by going to Applications -> Terminal Emulator
3. Log in the PLC shell by typing the command:

sudo docker exec -it plc0 bash

4. Create an iptables rules file with the command:

nano /etc/iptables.test.rules

 Page | 8

 This document is licensed with a Creative Commons Attribution 4.0 International License ©2017 Catalyzing Computing and Cybersecurity in
Community Colleges (C5).

5. This command will open an editor window showing a blank file. Type the
following inside the editor:

*filter

#Drop everything but our output to internet
-P FORWARD DROP
-P INPUT DROP
-P OUTPUT ACCEPT

#Allow established connections (the responses to our outgoing traffic)
-A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT

#Allow local programs that use loopback
-A INPUT -s 127.0.0.0/8 -d 127.0.0.0/8 -i lo -j ACCEPT

#Allow only the HMI (ScadaBR) to talk to this PLC
-A INPUT -s 100.100.100.2 -p tcp --dport 502 -m state --state NEW -j ACCEPT

COMMIT

Lines starting with the # character are comments and can be omitted. This
file set rules to block all incoming connections (-P INPUT DROP), except the
connections coming from the HMI (-A INPUT -s 100.100.100.2 …)

6. Save the file and exit by typing Ctrl+X and then Y

 Page | 9

 This document is licensed with a Creative Commons Attribution 4.0 International License ©2017 Catalyzing Computing and Cybersecurity in
Community Colleges (C5).

Section 2: Applying the new rules and testing the configuration

1. Back to the terminal, type the following command to apply the recently
created rules:

iptables-restore < /etc/iptables.test.rules

2. Verify if the new rules were applied with the command:

iptables -L

With this command, we can verify that the default policy for incoming
connections (Chain INPUT) is DROP, which means that it will reject all
incoming connections. The exceptions to this rule are the three listed under
this section. The first exception states that it should accept all incoming
connections that are responses from requests (state RELATED). The second
exception states that it should accept all connections coming from
loopback. These are internal connections and therefore are harmless. The
third exception states that any connection from the HMI should be
accepted.

3. Verify if the HMI can still communicate with the PLC by opening the Web
Browser. Change a few settings (min and max setpoints) to make sure that
the system is working properly.

4. Repeat Exercise #3 (Sections 1 and 2) and verify if you can still have
access to the PLC

 Page | 10

 This document is licensed with a Creative Commons Attribution 4.0 International License ©2017 Catalyzing Computing and Cybersecurity in
Community Colleges (C5).

ACKWOWLEDGEMENTS

This lab was developed at the University of Alabama in Huntsville by Stefanie
Smith, Ben McGee, Thiago Alves, Joseph Lee, and Tommy Morris.

OpenPLC is a completely open programmable logic controller with development
environment, human machine interface, programmable logic controller source
code, and reference hardware available at http://www.openplcproject.com/. The
OpenPLC project was founded by Thiago Alves of the University of Alabama in
Huntsville.

The Simulink models, human machine interface implementation, and ladder logic
programmation used for the gas pipeline and water storage tank test beds used
for this laboratory exercise are the copyrighted property of the University of
Alabama in Huntsville.

