 Chapter 10 Simple Data Types: Built-In and User-Defined
 Chapter 10 Simple Data Types: Built-In and User-Defined

ADVANCE \D 3.60EXERCISE ANSWERS

Exam Preparation Exercises

1.
False

2.
a. expression b. expression c. expression statement d. expression

4.
a. defg b. F 70
7.
Mantissa

The part of a floating point number that contains the representable significant digits

Exponent

The part of a floating number that determines where the decimal point is placed relative to the mantissa

Representational error

Arithmetic error that occurs when the precision of the true result of an arithmetic operation is greater than the precision of the machine

Significant digits

Those digits from the first nonzero digit on the left to the last nonzero digit on the right (plus any zero digits that are exact)

Overflow

The condition that occurs when the result of a calculation is greater than the maximum number that can be represented in the computer

8.
The expression has the value FALSE.

10.
a. invalid b. valid c. valid

11.
a. True b. False

13.
a. demotion b. promotion c. demotion d. promotion

14.
False

Programming Warm‑Up Exercises

1.
This is a laboratory exercise for the student and requires no answer here.

3.
#include <cctype> // For toupper()





inFile.get(inputChar);

while (inFile)

{

 outFile << toupper(inputChar);

 inFile.get(inputChar);

}

4.
ch1 = '0' + n / 10;

ch2 = '0' + n % 10;

cout << ch1 << ch2;

Above, each assignment statement involves two implicit type coercions. The '0' on the right-hand side is promoted to int before the addition takes place, and the result is of type int. Then the assignment operation causes the int result to be coerced to type char. Using explicit type casts as follows results in only one type conversion per assignment statement:

ch1 = '0' + char(n / 10);

ch2 = '0' + char(n % 10);

cout << ch1 << ch2;

5.
#include <float> // For FLT_MAX





if (beta > FLT_MAX / 100.0)

 cout << "Value too large to multiply by 100" << endl;

else

 someFloat = beta * 100.0;

7.
enum SouthAmType

{

 ARGENTINA, BOLIVIA, BRAZIL, CHILE, COLOMBIA, ECUADOR,

 GUYANA, PARAGUAY, PERU, SURINAM, URUGUAY, VENEZUELA

};

10.
void PrintDay(/* in */ DayType weekDay) // Day to be printed

// Precondition:

// weekDay is assigned

// Postcondition:

// String corresponding to weekDay has been printed

{

 switch(weekDay)

 {

 case MONDAY : cout << "Monday";

 break;

 case TUESDAY : cout << "Tuesday";

 break;

 case WEDNESDAY : cout << "Wednesday";

 break;

 case THURSDAY : cout << "Thursday";

 break;

 case FRIDAY : cout << "Friday";

 }

}

11.
for (today = MONDAY; today <= FRIDAY; today = DayType(today + 1))

{

 PrintDay(today);

 cout << ' ';

}

12.
The expression in the return statement is of type float, whereas the declared function type is int. The value of the float expression therefore is demoted to an int return value, truncating the fractional part. To ensure rounding, change the return statement to

return float(int1) / float(int2) + 0.5;

Better yet, include an explicit type cast for clarity:

return int(float(int1) / float(int2) + 0.5);

Case Study Follow-Up
2. a.
When the user enters 0 for divisions in the GetData function, the program crashes because of

its use in function main as a divisor in the calculation of width, resulting in a divide-by-zero error.

b. Function GetData is altered to guarantee the return of divisions >0 and high>=low below

by inclusion of do-while loops around prompted input.

//**

void GetData(
/* out */ float& low, // Bottom of interval

/* out */ float& high, // Top of interval

/* out */ int& divisions) // Division factor

// Prompts for the input of low, high, and divisions values

// and returns the three values after echo printing them

// Postcondition:

// All parameters (low, high, and divisions)

// have been prompted for, input, and echo printed,

// and divisions >0 , and high >= low

{ do

 {

cout << "Enter low and high values of desired interval"

 << " (floating point)." << endl;

cin >> low >> high;

 } while (low > high);

 do

 {

cout << "Enter the number of divisions to be used (integer)." << endl;

cin >> divisions;

 } while (divisions <= 0);

 cout << "The area is computed over the interval "

 << setprecision(7) << low << endl

 << "to " << high << " with " << divisions

 << " subdivisions of the interval." << endl;

}

3. Results for the function Area on the interval 0.0 to 2.0. Note that the variable divisions needs its type changed to long for values larger than MaxInt.

(a) Results from running program Integrate.

Divisions Result Time (Seconds)

1 2.0 < 1

10 3.98 < 1

100 3.9998 < 1

1,000 3.999998 < 1

10,000 4.0 4

100,000 4.0 32

1,000,000 4.000012 303

(b) The result equals 4 for divisions equal to 10,000 or 100,000. Using more divisions than 100,000 decreases the precision of the results.

(c) See above table for the time it took the computer to execute each run. Note that these times will vary depending on the type of computer that is used. Based on the above results, the estimated time of execution for 100,000,000 divisions is: 30,303 seconds. Our estimate is based on the observation that when the number of divisions is multiplied by 10, it takes 10 times as long to compute the result.

4. Results for the function Area on the interval 0.0 to 1000.0. Note that the type of variable divisions needs to be changed to long for values larger than MaxInt.

(a) Results from running program Integrate.

Divisions Result Time (Seconds)

1 125,000,000,000 < 1

10 248,750,000,000 < 1

100 249,987,500,000 < 1

1,000 249,999,875,000 < 1

10,000 249,999,998,120 4

100,000 249,999,989,140 32

1,000,000 250,000,074,990 303

(b) The result never equals the correct answer, which is equal to 250,000,000,000. The closest run is for 100,000 divisions -- the difference between the result and the correct answer is 10,860. It would not help to use more divisions unless all variables were changed from single to double floating point.

(c) See above table for the time it took the computer to execute each run. Note that these times will vary depending on the type of computer that is used. Based on the above results, the estimated time of execution for 100,000,000 divisions is: 30,303 Seconds.

6. Following is the modified Game program to prompt the user for the names of two files to open:

//**

// Game program

// This program simulates the children's game Rock, Paper, and

// Scissors. Each game consists of inputs from two players,

// coming from fileA and fileB. A winner is determined for each

// individual game and for the games overall

//**

#include <iostream>

#include <fstream> // For file I/O

using namespace std;

enum PlayType {ROCK, PAPER, SCISSORS};

PlayType ConversionVal(char);

void GetPlays(ifstream&, ifstream&, PlayType&, PlayType&, bool&);

void PrintBigWinner(int, int);

void ProcessPlays(int, PlayType, PlayType, int&, int&);

void RecordAWin(char, int, int&);

int main()

{

 PlayType playForA; // Player A's play

 PlayType playForB; // Player B's play

 int winsForA = 0; // Number of games A wins

 int winsForB = 0; // Number of games B wins

 int gameNumber = 0; // Number of games played

 bool legal; // True if play is legal

 ifstream fileA; // Player A's plays

 ifstream fileB; // Player B's plays

 string file1Name; // string holding input file name

 string file2Name; // string holding output file name

 // Open the input files

 cout << “Enter file name for player one: “;

 cin << file1Name;

 cout << endl;

 cout << “Enter file name for player two: “;

 cin << file2Name;

 fileA.open(file1Name.c_str());

 fileB.open(file2Name.c_str());

8. To implement a test plan, you must run the program with the test cases outlined in the test plan a compare the actual results with the expected results. Test cases d-g cause the program to crash.

 There should be test case for end-of-file before each cin statement.

